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Nuclear importin a and its physiological importance
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Importin a is recognized as a classical
nuclear localization signal (cNLS)

receptor which mediates nucleocytoplas-
mic transport. However, it rapidly accu-
mulates in the nucleus in response to
cellular stresses, including oxidative
stress, causing a blockade of the classical
nuclear import pathway. We set out to
determine whether importin a performs
roles in the nucleus after cellular exposure
to stresses and discovered that it can act
directly to modulate gene expression.
With remarkable selectivity, importin a2
can access the promoter of Serine/threo-
nine kinase 35 (STK35) and increase the
levels of this transcript without require-
ment for importin β1. The nuclear
accumulation of importin a occurred
following exposure to stresses which
decreased intracellular ATP levels and
was followed by non-apoptotic cell death.
Hence the gene regulatory function of
nuclear importin a can direct cell fate.
There are now several reports of nuclear-
localized importin a proteins in diverse
cellular states, including cancer. Here we
discuss the physiological significance of
this novel functional capacity of nuclear
importin a relationship to a variety of
cellular states and fates.

A Novel Role for Importin a
Proteins in Gene Regulation

We found that HeLa cells overexpressing
nuclear importin a2 exhibited down-
regulation of transcripts encoded by
62 genes, including 22 encoding replica-
tion-dependent histones, as well as select-
ive upregulation of only two transcripts,
including Serine/threonine kinase 35

(STK35).1 The contrast between the large
numbers of downregulated mRNAs with
the small number identified as upregu-
lated suggested to us that importin a2
can effectively suppress gene expression
through chromatin binding. We hypo-
thesize that this occurs through importin
a interaction with the cNLSs in karyo-
philic proteins such as transcription
factors, since the cNLS has been shown
to overlap with DNA binding regions in
some cargo proteins.2-4 Thus we predict
that, in circumstances when importin a
accumulates in the nucleus, certain trans-
cription factors interact with importin a
via their cNLS and this binding com-
promises or changes their transcriptional
activities. Because the apparent numerical
difference between the number of up- and
downregulated genes suggests that nuclear
importin a generally acts as a suppressor
for transcription factors, and in case of
STK35, it operates by suppressing the
activity of some protein that inhibits
transcription. In support of this, we found
that the region $ 1 kbp upstream of the
first exon of Stk35 served a repressor
function for the core promoter.1 These
data suggest that importin a inhibits the
suppressor for the STK35 core promoter,
resulting in its enhanced activity.

A New Perspective
on Non-Apoptotic Cell Death

Associated with Nuclear Importin a

The physiological significance of changes
of nucleocytoplasmic transport under stress
conditions has been linked to perturbed
protein shuttling within signaling cascades,
structural modifications of transport
machinery, including the nuclear pore
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complex (NPC), and evocation of cell
death by apoptosis.5-7 However, there is
relatively little discussion about the
mechanisms by which changes in cellular
metabolism arising from stress, its asso-
ciated alterations in nucleocytoplasmic
transport, and the subsequent impact on
cell fate.8,9 We previously reported that
intracellular ATP levels decreased follow-
ing exposure to all tested stresses: UV-
irradiation, heat shock and hydrogen
peroxide, and this caused the Ran gradient
to collapse.10 This finding is in agree-
ment with a previous report that cellular
ATP depletion following exposure to
2-deoxyglucose and sodium azide leads
to a decrease in free RanGTP which is
followed by nuclear accumulation of
importin a.11 Depletion of cellular ATPs
itself has been known to induce necrosis
or caspase-independent cell death, but not
apoptosis, because of the high levels of
ATP required for caspase activation.12,13

In addition, apoptosis requires active
nuclear transport mediated by importin
a and is dependent upon a Ran gradient
and intact NPCs.14 Thus several observa-
tions support our hypothesis that blocking
the classical nuclear transport pathway,
including by induced nuclear accumula-
tion of importin a under conditions of
ATP depletion, results in the inhibition
of apoptosis and promotion of non-
apoptotic cell death. Taken together with
the ability of STK35 to enhance caspase-
independent cell death under oxidative
stress,1 it becomes evident that the com-
bined outcomes of both deficient classi-
cal nuclear transport and transcriptional
modulation by nuclear-localized importin
a direct cell fate toward a cell death
pathway that bypasses apoptosis, such as
necrosis, upon stress exposure. These
findings reveal a new mechanistic
approach to understanding how non-
apoptotic cell death is elicited by a
decrease in intracellular ATP in cells
under stress, through the re-distribution
of importin a into the nucleus (Fig. 1).

Additional Physiological
Importance of Importin a

Nuclear Localization

Is the nuclear accumulation of importin a
restricted to stress conditions? C. elegans

importin a proteins, particularly IMA-1
and -2, were detected in the nucleoplasm
of germ cells.15 In Drosophila, all three
importin as exhibit nuclear accumulation
in a stage-specific manner during spermato-
genesis.16 In mammals, importin a4, but
not its close subfamily member importin
a3, is predominantly nuclear in the adult
testis, with a striking nuclear signal evident
in pachytene spermatocytes and round
spermatids.17,18 In addition, the importin
a4 protein exhibits nuclear localization in
the murine embryonic stem (mES) cells
in undifferentiated, but not differenti-
ated, stages.19 These observations suggest
that nuclear-localized importin a pro-
teins serve key roles in cell fate choice
between maintenance of pluripotency
and differentiation.

Recently, a novel importin a family
member was identified, referred to as
karyopherin a7 (KPNA7) in human,

mouse and cattle.20-22 KPNA7 is closely
related to importin a2 and localized in
the nucleus in mouse oocytes and zygotes
as well as in HeLa cells.20,21 Interestingly,
a mutant Kpna7 gene caused abnormal
expression of chromatin modification-
associated genes and also induced epigene-
tic modification of histone H3K27me3.21

These observations bear a striking
correlation to our finding that nuclear
importin a2 causes downregulation of
mRNAs encoding replication-dependent
histones1 and highlight the need to gain
a precise understanding of the genomic
and chromatin-associated modifications
effected by nuclear importin a in the
nucleus.

Of direct relevance to human disease,
breast cancer cells exhibit the remarkable
expression and nuclear localization of
human karyopherin a2 (KPNA2, ortho-
log of mouse importin a2), and this may

Figure 1. Schematic model for mode of cell death induced by stress in response to depleted
intracellular ATP. Cellular stresses which deplete intracellular ATP induce a Ran gradient collapse
and importin a accumulates in the nucleus. This leads to a block in classical nucleocytoplasmic
protein transport via the importin a/b1 pathway. Nuclear importin a functions to elevate STK35
transcription and promotes non-apoptotic cell death in oxidative stress. The Ran gradient collapse
may be induced by both ATP depletion and through modulated activity of Ran-related proteins,
such as RCC1, in some stress conditions.9
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be significantly associated with patient
survival rates.23-26 High expression and
nuclear localization of KPNA2 was also
observed in lung tumor tissues,27 esopha-
geal squamous cell carcinoma,28 bladder
cancer29 and prostate cancer.30 Moreover,
increased expression and elevated nuclear
accumulation of importin a5 and impor-
tin a7 have been reported in tubular and
glomerular cells of diabetic rats.31

Collectively these reports highlight the
potential contribution of nuclear importin
a to various cellular events, each of which
might involve a different substrate specifi-
city, reflect cell-specific expression patterns
and effect distinct transcriptional out-
comes. Our findings should encourage
investigations of additional functions for
importin a in a variety of cellular states
and fates.
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