
 International Journal of 

Molecular Sciences

Review

Activated Fibroblast Program Orchestrates Tumor
Initiation and Progression; Molecular Mechanisms
and the Associated Therapeutic Strategies

Go J. Yoshida 1,* , Arata Azuma 2,* , Yukiko Miura 2 and Akira Orimo 1,*
1 Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku,

Tokyo, 113-8421, Japan
2 Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School,

1-1-5, Sendagi, Bunkyo-ku, Tokyo 1138603, Japan; s7081@nms.ac.jp
* Correspondence: go-yoshida@juntendo.ac.jp (G.J.Y.); a-azuma@nms.ac.jp (A.A.);

aorimo@juntendo.ac.jp (A.O.); Tel.: +81-3-5802-1039 (G.J.Y.); Fax: +81-3-5684-1646 (G.J.Y.)

Received: 25 April 2019; Accepted: 3 May 2019; Published: 7 May 2019
����������
�������

Abstract: Neoplastic epithelial cells coexist in carcinomas with various non-neoplastic stromal cells,
together creating the tumor microenvironment. There is a growing interest in the cross-talk between
tumor cells and stromal fibroblasts referred to as carcinoma-associated fibroblasts (CAFs), which
are frequently present in human carcinomas. CAF populations extracted from different human
carcinomas have been shown to possess the ability to influence the hallmarks of cancer. Indeed,
several mechanisms underlying CAF-promoted tumorigenesis are elucidated. Activated fibroblasts
in CAFs are characterized as alpha-smooth muscle actin-positive myofibroblasts and actin-negative
fibroblasts, both of which are competent to support tumor growth and progression. There are,
however, heterogeneous CAF populations presumably due to the diverse sources of their progenitors
in the tumor-associated stroma. Thus, molecular markers allowing identification of bona fide CAF
populations with tumor-promoting traits remain under investigation. CAFs and myofibroblasts in
wound healing and fibrosis share biological properties and support epithelial cell growth, not only by
remodeling the extracellular matrix, but also by producing numerous growth factors and inflammatory
cytokines. Notably, accumulating evidence strongly suggests that anti-fibrosis agents suppress tumor
development and progression. In this review, we highlight important tumor-promoting roles of CAFs
based on their analogies with wound-derived myofibroblasts and discuss the potential therapeutic
strategy targeting CAFs.

Keywords: angiogenesis; cancer-associated fibroblasts; extracellular matrix; fibrosis; heterogeneity;
interstitial fluid pressure; metabolic reprogramming; transforming growth factor-β; tumor stiffness

1. Significant Roles of Fibrosis in Cancer Development

1.1. Contributions of Fibrosis to Cancer Development

Injured epithelial tissues are repaired by the formation of granulation tissues rich in α-smooth
muscle actin (α-SMA)-positive myofibroblasts (a hallmark of activated fibroblasts), platelets, newly
formed blood vessels, macrophages, and other inflammatory cells and extracellular matrix (ECM).
The transforming growth factor-β (TGF-β) signal pathway is involved in the emergence of
myofibroblasts, which contribute to the production of matrix metalloproteinase (MMP) and ECM
proteins, such as collagen I, fibronectin and hyaluronic acid [1–4]. The damaged tissues are then
degraded and ECM proteins are simultaneously generated de novo [2–5]. Sustained activation of
myofibroblasts promotes dysfunctional repair mechanisms, leading to accumulation of fibrotic ECM
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which is rich in collagen fibers and resistant to MMP-mediated degradation [1,6,7]. The fibrotic ECM
inhibits epithelial cell polarity and stimulates epithelial cell proliferation, which in turn results in
conditions allowing tumor formation and development [8,9].

In fact, a growing body of evidence suggests that the presence of fibrotic lesions significantly
increases the risk of cancer in numerous tissues, including the lungs, liver and breast [8–11]. Idiopathic
pulmonary fibrosis (IPF), which is a progressive and fatal lung disease of unknown etiology, is
associated with a higher incidence of lung cancers as compared with the general population [12]. IPF
is characterized by scar tissue accumulation in the lung interstitium. The injury to type II alveolar
epithelial cells triggers production of TGF-β that leads to mitogenesis of macrophages, platelets and
myofibroblasts in the injured areas, leading to the formation of fibroblastic foci. Fibroblastic foci
containing myofibroblasts at the leading edge of lung fibrosis are an indicator of poor prognosis and
decreased survival [13].

The secreted protein acidic and rich in cysteine (SPARC) family of proteins regulate ECM
assembly and growth factor signaling to modulate interactions between cells and the extracellular
environment [14,15]. SPARC (also known as osteonectin, an acidic extracellular matrix glycoprotein)
binds to soluble procollagen and prevents procollagen from interacting with cellular receptors, such as
discoidin domain receptor 2 and integrins [15,16]. In the absence of SPARC, procollagen accumulates
at the cell surface and is inefficiently incorporated into the ECM, resulting in the production of thin
collagen fibers. SPARC is thus required for procollagen to be dissociated from the cell surface and
incorporated into the ECM.

SPARC is exclusively expressed in IPF patients, never in healthy individuals [9,17]. SPARC
expression is also tightly correlated with increased collagen deposition. Inhibition of SPARC expression
significantly attenuates fibrosis in various animal models of disease [15]. SPARC is also localized in the
cytoplasm of the actively-migrating myofibroblasts within the fibroblastic foci [17]. SPARC expression
and TGF-β signaling are reciprocally regulated; TGF-β induces SPARC expression via canonical
Smad2/3 signaling in lung fibroblasts and SPARC which, in turn, activates TGF-β signaling [18].
TGF-β also induces plasminogen activator inhibitor-1 (PAI-1) expression via Smad2/3 signaling in
lung fibroblasts. Moreover, SPARC-activated integrin promotes Akt activation that inhibits glycogen
synthase kinase-3β (GSK-3β) by serine-9/21 phosphorylation, leading to β-catenin activation and
PAI-1 expression [17]. As PAI-1 prevents lung fibroblasts from undergoing apoptosis induced by
plasminogen, ectopic SPARC expression in IPF apparently mediates the progression of interstitial
fibrosis by inhibiting apoptosis in lung myofibroblasts via β-catenin activation and PAI-1 expression
in collaboration with the TGF-β signal pathway. Taken together, the observations of these cellular
mechanisms by which SPARC promotes the activation of fibroblasts in culture and its fibrosis-promoting
ability in vivo encourage investigators to seek therapeutic strategies for blocking SPARC activity. Such
research may lead to the eradication of fibrotic diseases.

In contrast to the fibrosis-promoting SPARC function, the roles of stromal SPARC in human
carcinomas appear to be far more complex and even contradictory according to previous reports.
Enhanced SPARC expression in the tumor-associated stroma correlates with a poor prognosis for
patients with non-small cell lung cancers (NSCLC) [19] and pancreatic adenocarcinomas [20], but not
for those with bladder cancers [21]. Chemical agent-induced bladder carcinomas have been shown to
grow and progress more significantly in SPARC−/− mice than in control SPARC+/+ mice [21]. Murine
carcinoma-associated fibroblasts (CAFs) extracted from SPARC−/− bladder carcinomas also exhibit
enhanced inflammatory phenotypes via NF-κB and AP-1 signaling, thereby promoting tumor growth
and metastasis, indicating a tumor-suppressive role of SPARC in bladder CAFs. Collectively, these
observations indicate cell-context dependent roles of stromal SPARC in different tumors.

Furthermore, non-alcoholic steatohepatitis (NASH), characterized by fat accumulation,
inflammation and liver cell damage, leads to advanced fibrosis and cirrhosis, thereby increasing
the risk of developing hepatocellular carcinoma (HCC) [22,23]. Diabetes mellitus (DM) with insulin
resistance has also been demonstrated to be an independent risk factor for HCC development in
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NASH patients [23,24]. Activation of insulin-like growth factor 1 (IGF1) signaling stimulates cellular
proliferation by activating the mitogen-activated protein kinase (MAPK) pathway and increases
the transcription of c-Fos and c-Jun proto-oncogenes [25–27]. Moreover, phosphatase and tensin
homologue deleted on chromosome 10 (PTEN) is a crucial negative regulator of the insulin signal
pathway mediated by suppression of the phosphatidylinositol-3 kinase (PI3K)-Akt signal pathway.
It has been shown that concomitant down-regulation of PTEN and up-regulation of c-Met occurs
in HCC, leading to poor clinical outcomes [28]. Loss of PTEN function leads to the accumulation
of phosphatidylinositol-3,4,5-triphosphate (PIP3), which mimics the effects of PI3K activation and
triggers the activation of its downstream effectors, PDK1, Akt and Rac1/CDC42. Taken together, these
observations demonstrate that NASH induces activation of an oncogenic signal transduction series of
events in the non-cancerous liver to initiate tumor development.

1.2. Epithelial-Mesenchymal Transition (EMT) and Endothelial-Mesenchymal Transition (EndoMT) in Fibrosis
and Tumor Stroma

As the saying “tumors: wounds that do not heal” goes, myofibroblasts in wounds and fibrosis
mimic CAFs within a tumor [4,29,30] (Figure 1). Epithelial cells frequently transdifferentiate into
mesenchymal cells through EMT during wound healing and fibrosis. EndoMT, another form of cellular
transition, has also emerged as a mechanism underlying pathological fibrosis development [31–33].
Lineage-tagging experiments using a murine fibrosis model of renal injury indicate that about 30%
of the cells involved are derived from tubular epithelial cells via EMT, while about 35% arise from
EndoMT [34].
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EndoMT is a complex biological process in which endothelial cells lose their molecular markers, 
such as vascular endothelial cadherin (VE cadherin), and acquire the myofibroblastic phenotype 
expressing mesenchymal markers including α-SMA, type I collagen, and vimentin. These cells also 
gain motility and are thus capable of migrating into the surrounding tissues [31]. TGF-β treatment 
induces the downstream signaling pathway to significantly upregulate Snail1 expression in 
endothelial cells via EndoMT [35–37]. This observation strongly suggests that EMT and EndoMT 
share the similar molecular mechanisms. Remarkably, TGF-β1-induced EndoMT occurs 
independently of Smad2/3 phosphorylation via non-canonical TGF-β signaling [31]. Furthermore, 
several important kinases including the c-Abl protein kinase (c-Abl), protein kinase C δ (PKC-δ) and 
GSK-3β, have been shown to play pivotal roles in this Smad-independent TGF-β pathway. In the 
absence of GSK-3β phosphorylation, the kinase activity of GSK-3β is promoted and induces 
proteasomal degradation of Snail1, thereby abrogating EndoMT. Both c-Abl and PKC-δ are required 
for GSK-3β phosphorylation to induce EndoMT [38]. From the perspective of preventing tissue 
fibrosis, the inhibition of GSK-3β serine-9 phosphorylation by a specific inhibitor of PKC-δ, i.e., 
rottlerin, or by c-Abl, widely known as imatinib, degrades Snail1 and thereby inhibits EndoMT [31]. 

Figure 1. Schematic representation of both wound healing and tumor stroma. Platelets, inflammatory
immune cells including neutrophils and macrophages, vascular endothelial cells and activated
fibroblasts (myofibroblasts and carcinoma-associated fibroblasts (CAFs)) are recruited into granulation
tissues during wound healing (a) and tumor stroma (b).

EndoMT is a complex biological process in which endothelial cells lose their molecular markers,
such as vascular endothelial cadherin (VE cadherin), and acquire the myofibroblastic phenotype
expressing mesenchymal markers including α-SMA, type I collagen, and vimentin. These cells also
gain motility and are thus capable of migrating into the surrounding tissues [31]. TGF-β treatment
induces the downstream signaling pathway to significantly upregulate Snail1 expression in endothelial
cells via EndoMT [35–37]. This observation strongly suggests that EMT and EndoMT share the
similar molecular mechanisms. Remarkably, TGF-β1-induced EndoMT occurs independently of
Smad2/3 phosphorylation via non-canonical TGF-β signaling [31]. Furthermore, several important
kinases including the c-Abl protein kinase (c-Abl), protein kinase C δ (PKC-δ) and GSK-3β, have been
shown to play pivotal roles in this Smad-independent TGF-β pathway. In the absence of GSK-3β
phosphorylation, the kinase activity of GSK-3β is promoted and induces proteasomal degradation of



Int. J. Mol. Sci. 2019, 20, 2256 4 of 30

Snail1, thereby abrogating EndoMT. Both c-Abl and PKC-δ are required for GSK-3β phosphorylation
to induce EndoMT [38]. From the perspective of preventing tissue fibrosis, the inhibition of GSK-3β
serine-9 phosphorylation by a specific inhibitor of PKC-δ, i.e., rottlerin, or by c-Abl, widely known
as imatinib, degrades Snail1 and thereby inhibits EndoMT [31]. Thus, rottlerin and imatinib both
effectively suppress acquisition of the myofibroblastic phenotype and pathological fibrotic changes.

Myofibroblasts reportedly promote the induction and maintenance of EMT of epithelial cells
at wound edges [4,39]. When this physiological EMT process is disrupted, wounds cannot heal.
For instance, wound re-epithelialization of dermal tissue is compromised in mice lacking functional
Slug, which is one of the transcription factors involved in TGF-β-induced EMT [40,41]. To achieve
EMT at the wound edge, myofibroblasts secrete extracellular proteolytic enzymes, such as MMPs,
which cleave ECM components and release potent TGF-β (latent form) and other EMT-inducing
cytokines [6,42]. This is an intriguing parallel with the role EMT in cancer development and
progression; while cancer cells are regulated by cytokines, such as TGF-β, these cytokines become
tethered within the ECM, such that it remains ready for mobilization in response to certain triggers.

Stromal myofibroblasts are also observed in proximity to carcinoma cells associated with the EMT
phenotype [43]. CAFs in this context participate in the release and bioavailability by secreting
extracellular proteases and ECM-remodeling enzymes. It was previously shown that normal
colonic fibroblasts differentiate into α-SMA-positive CAFs and secrete larger amounts of MMP2
and urokinase-type plasminogen activator (uPA) associated with various cancer cells [44,45]. These
proteolytic enzymes have been suggested to cleave various ECM components such as decorin, which
covalently and potently binds to TGF-β and prevents the potential ligand from binding to the TGF-β
receptor in adjacent cancer cells [46]. ECM components act as a reservoir for various cytokines;
since decorin is able to bind TGF-β1, proteolytic degradation of decorin results in the release of this
sequestered TGF-β ligand [47]. These lines of evidence all strongly suggest that paracrine signaling
from CAFs and myofibroblasts in a wound regulates epithelial-mesenchymal plasticity in nearby
epithelial cells to further promote tumor progression and fibrosis, respectively.

2. Fibrosis-Induced Tumor Progression

2.1. Origin and Differentiation into CAFs

Although CAFs represent a major cellular component of the tumor stroma, a precise molecular
definition of CAFs is as yet lacking. Attempts to define CAFs are usually aimed at identifying
morphological features and expression patterns of the following proteins: α-SMA, asporin, collagen
11-α1 (COL11A1), fibroblast-activating protein (FAP), platelet-derived growth factor receptor (PDGFR)
α/β, fibroblast-specific protein 1 (FSP1, also called S100A4), podoplanin, SPARC, S100A4, tenascin-C,
microfibrillar-associated protein 5 (MFAP5), and vimentin [33,48–50]. However, none of these markers
are specific to CAFs. Lack of the appropriate molecular markers for identifying tumor-promoting CAFs
thus makes it difficult to elucidate the biology of these fibroblasts. Such a precise understanding would
be the first, and most fundamental, step toward developing a cell type-specific targeting approach.

CAFs produce growth factors and inflammatory cytokines that are capable not only of regulating
fibroblast activation in an autocrine fashion, but also of controlling the behaviors of cancer cells as
well as other stromal cells, along with remodeling the ECM in a paracrine manner [33,51,52]. CAFs
transdifferentiate from their progenitors, such as resident fibroblasts, endothelial cells, preadipocytes
and bone marrow-derived mesenchymal stem cells (MSCs) during tumor progression [50,53–55]. MSCs
are known to differentiate into CAFs in culture [56]. Injection of MSCs with carcinoma cells into
immunodeficient mice also results in enhanced tumor growth and metastasis presumably through
differentiation into tumor-promoting CAFs [57]. However, how differences among cells of origin for
CAFs impact their biological functions has yet to be elucidated. A recent elegant study demonstrated
the unique roles of CAFs originating from bone marrow in breast carcinomas [58]. Using MMTV-PyMT
transgenic mice and adaptive bone marrow transplantation techniques, Raz et al. showed bone
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marrow-derived CAFs extracted from breast tumors to have proangiogenic traits and that, when
implanted into recipient mice, these traits were significantly more marked than in those locally
arising from the mammary gland. They also found decreased PDGFRα expression to allow bone
marrow-derived CAFs to be distinguished from other CAF populations in breast tumors, highlighting
distinct fibroblast populations present in the tumor.

Myofibroblastic CAFs are induced de novo from their progenitors including normal fibroblasts,
when treated with TGF-β, platelet-derived growth factor (PDGF), Wnt7a, exosomes and microRNAs in
culture [49,50,59–61]. Activation of fibroblasts with a pro-inflammatory state also occurs in otherwise
non-activated fibroblasts treated with interleukin (IL)-1β, IL-6, leukemia inhibitory factor (LIF) and
osteopontin [62,63]. However, it remains unknown whether these de novo generated CAFs continue to
maintain their activated, tumor-promoting traits after a series of passages in culture or incubation with
carcinoma cells within a tumor mass.

From the perspective of epigenetic modifications in myofibroblasts, LIF induces constitutive
activation of the Janus kinase 1 (JAK1)/STAT3 signaling pathway mediated by post-translational
regulation of STAT3 acetylation by p300 [64–66]. The acetylated STAT3 causes an epigenetic-dependent
loss of expression of the Src homology region 2 domain-containing phosphatase-1 (SHP-1) tyrosine
phosphatase, which is a negative regulator of the JAK/STAT pathway [67,68]. Silencing of SHP-1 gene
expression by promoter methylation leads to sustained phosphorylation of JAK1 kinase and the STAT3
transcription factor that maintain the contractile and invasive abilities of CAFs [65]. Blockage of both
JAK signal and DNA methyltransferase activities results, both in vitro and in vivo, in the reversal of
the invasive phenotype of CAFs.

Table 1 shows the common activated signal pathways in both wound-induced activated fibroblasts
and CAFs. This table comparatively details the biological roles of growth factors and cytokines in
wound-healing and tumor stroma settings.

Table 1. The critical signal pathways activated in both wound-induced fibroblasts and CAFs.

Signal Pathway Wound-Induced Fibroblasts CAFs

Epithelial growth factor (EGF)

EGF stimulation increases the
phosphorylation of myosin light
chain (MLC) subunit of myosin
that promotes cell contractility in
various different cell types.
Activation of PKC with the PKC-δ
isoform mediates the cell
contraction by EGF-stimulated
MLC phosphorylation in murine
fibroblast cells [69].

Resistance to the epidermal
growth factor receptor (EGFR)
tyrosine kinase inhibitor (TKI) is
partially medicated by CAFs in
tumors through paracrine factors
secreted from these fibroblasts
[70].

Fibroblast growth factor (FGF)

FGFs have the biological activity
of stimulating the proliferation of
fibroblasts and angiogenesis [71].
FGFs exert multiple functions
through binding to and activation
of fibroblast growth factor
receptors (FGFRs), and the main
signaling through the stimulation
of FGFRs is the RAS/MAPK signal
pathway.

CAFs secrete increased levels of
FGF-1/-3 and promote cancer cell
growth and angiogenesis through
the activation of FGFR4, which is
followed by the activation of
extracellular signal-regulated
kinase (ERK) and the modulation
of MMP-7 expression [72]. In
addition, FGF-1 and FGF-3 act as
primary autocrine mediators of
epithelial-stromal interactions in
the tumor progression.
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Table 1. Cont.

Signal Pathway Wound-Induced Fibroblasts CAFs

JAK/STAT

Synovial fibroblasts mediate
chronic inflammation and joint
destruction in patients suffered
from rheumatoid arthritis (RA).
Increased levels of IL-6, TNF-α
and IL-1β production activate
STAT3 signaling that in turn
boosts expression levels of these
cytokines in an autocrine fashion
in synovial fibroblasts, promoting
chronic inflammation [73]. STAT3
activation also induces receptor
activator of nuclear factor kappa B
ligand (RANKL) expression that
stimulates osteoclastogenesis and
thus promotes the joint
destruction [73].

CAFs release high levels of IL-6
and CCL2 upon STAT3 activation
in co-culture system with cancer
cells, promoting the self-renewal
and spheroid forming potentials of
cancer stem cells [74].
Furthermore, the leukemia
inhibitory factor (LIF)-induced
JAK1/STAT3 signaling pathway
mediates expression of the
invasive CAF phenotype [75].

PDGF

PDGFs induce fibroblast activation
and fibrosis. PDGF-BB stimulates
polarization and provides
enhancement and directionality
for collagen-driven human dermal
fibroblast migration. Akt
processes both migratory and
proliferative signals from PDGF
receptors [76].

Breast tumor cells produce
PDGF-CC to activate stromal
fibroblasts that in turn confer the
basal and estrogen receptor α-
negative phenotypes into cancer
cells, rendering them
unresponsive to endocrine
treatment [77].

PGE2-Wnt

Dermal fibroblasts expressing a
low level of Dickkopf 1, a Wnt
signaling antagonist, exhibit
enhancement of the canonical
Wnt/β-catenin signal pathway
with accumulation of
prostaglandin E2 (PGE2) [78]. The
PGE2 signaling also increases
nuclear β-catenin signaling in
fibroblasts.

Autocrine activity of PGE2
regulates the production of
angiogenic factors by fibroblasts,
which are key to the
vascularization of both primary
and metastatic tumor growth [79].
Simultaneous activation of PGE2
and Wnt signals in transgenic mice
causes gastric cancer with an
abundance of vascular endothelial
growth factor-A (VEGF-A)
expressing CAFs, derived from
bone marrow [80].

TGF-β

Upon TGF-β stimulation,
fibroblasts are activated and
undergo phenotypic transition
into myofibroblasts, the key
effector cells under fibrotic
conditions. The myofibroblast
phenotype is characterized by the
formation of gap junctions and by
the acquisition of a contractile
apparatus with associated
contractile proteins. In healing
wounds, myofibroblasts are
required for tissue repair prior to
their elimination due to the
induction of apoptosis, but
constitutively activated
myofibroblasts promote fibrosis
[81].

Increased TGF-β production by
tumor cells gives rise to the
desmoplastic stroma in murine
tumor models [82,83]. TGF-β
potently suppresses immunity,
induces angiogenesis and
promotes cancer cell migration
and invasion by stimulating EMT.
Moreover, cancer cell-derived
TGF-β activates TGF-β signaling
in CAFs, inducing the
up-regulation of monocarboxylate
transporter 4 (MCT4) (a marker of
glycolysis) and BNIP3 (a marker of
autophagy) and the loss of
caveolin-1 (CAV1) [84].
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2.2. Emerging Roles of CAFs for Therapeutic Resistance

Recent emerging evidence supports crucial roles of CAFs for therapeutic resistance, as exemplified
by innate and adaptive resistance in various human carcinomas (Figure 2).
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Figure 2. Emerging roles of CAFs for therapeutic resistance. CAFs play crucial roles in innate resistance
to anti-cancer drugs (left). CAF-released insulin-like growth factor 2 (IGF2) provides cancer cells
with tumor-initiating ability and EGFR-TKI-resistance. HGF produced by CAFs blunts the efficacy
of BRAF and EGFR inhibitors in BRAF-mutant melanoma cells and lung cancer cells via MAPK
and PI3K/AKT signal pathways. CAF-produced PDGF-CC attenuates the efficacy of anti-VEGF
therapy via increasing neo-angiogenesis. Breast tumor cell-derived PDGF-CC also enables CAFs
to produce stanniocalcin 1 (STC1), HGF and IGFBP3 that contribute to promoting conversion of
luminal cancer cells into basal cancer cells, resulting in resistance to treatment with selective estrogen
receptor modulators (SERMs). Upon therapeutic insult, CAFs acquire adaptive resistance (right).
Chemotherapy induces pro-inflammatory phenotypes in CAFs via activation of NF-κB signaling,
resulting in enhanced production of Wnt family member wingless-type MMTV integration site family
member 16B (WNT16B), IL-6 and IL-8 from these fibroblasts that provides breast cancer cells with
chemoresistant ability. Increased levels of IL-7 and IL-11 production are also induced in CAFs by
chemotherapy, rendering cancer cells tumor-initiating and apoptosis-resistant. Treatment of CAFs
with the BRAF inhibitor induces ECM remodeling, resulting in activation of integrin β1/focal adhesion
kinase (FAK)/Src and ERK signaling in melanoma cells. The histone deacetylase (HDAC) inhibitor
treatment enables CAFs to produce the senescence-associated secretory phenotype (SASP) factors.
Exposure to anti-androgen therapy encourages CAFs to produce SFRP1 that promotes prostate cancer
neuroendocrine differentiation. Treatment of different human carcinomas with the CSF1 receptor
inhibitor targeting TAMs allows CAFs to boost CCL3 and CXCL-1/2/5 productions, resulting in the
recruitment of MDSCs into tumors and thus promoting tumor growth and progression.

2.2.1. Innate Resistance of CAFs to Anti-Cancer Drugs

CAFs produce inherently increased levels of growth factors and inflammatory cytokines that
attenuate the efficacy of anti-cancer treatment. For example, CAFs produce an abundance of insulin-like
growth factor 2 (IGF2) that renders cholangiocarcinoma and pancreatic cancer cells resistant to EGFR
tyrosine kinase inhibitors (TKI) by activating the insulin receptor (IR)/insulin-like growth factor 1
receptor (IGF1R) signaling axis [85,86]. CAF-produced IGF2 also reportedly promotes invasion and
metastasis of colon cancer cells [87]. Moreover, stromal IGF2 induces NANOG expression and thus
boosts the cancer-initiating properties of lung cancer cells through IR/IGF1R signaling followed by
activation of the AKT-PI3K pathway [88].

Mechanisms underlying the stroma-mediated innate resistance to the BRAF inhibitor have also
been addressed using BRAF-mutant melanoma cells in other studies. Hepatocyte growth factor
(HGF) released from fibroblasts contributes to resistance to the BRAF inhibitor, presumably via the
downstream signaling of the MAPK and PI3K/AKT pathways [89]. While treatment with BRAF-
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and MEK-inhibitors is not sufficient to overcome HGF-induced resistance, BRAF- and MET (the
HGF receptor)-inhibitors suppress the majority of HGF-induced drug resistance in BRAF-mutant
melanoma [89,90]. Similarly, HGF-producing human fibroblastic cells confer resistance to gefitinib,
a TKI selective to EGFR in lung cancer cells through the PI3K/Akt signal pathway [91]. Importantly,
anti-HGF neutralizing antibody and the natural HGF inhibitor NK4 significantly overcome the gefitinib
resistance in culture and in tumor xenografts raised by lung cancer cells admixed with HGF-producing
human fibroblasts in mice treated with gefitinib.

Inhibition of VEGF-A is effective in treating several human carcinomas [92]. However, tumors
often show resistance to anti-VEGF treatment. Importantly, CAFs have been shown to mediate the
resistance to anti-VEGF therapy and the molecular mechanism was elucidated in murine lymphoma
models [93]. Murine CAFs were isolated from subcutaneous tumors developed by lymphoma cell
lines resistant to the antiangiogenic therapy with VEGF inhibitors. The increased level of PDGF-CC
produced by CAFs resulted in rendering tumor cells resistant to anti-VEGF therapy by stimulation of
neoangiogenesis, when lymphoma cells otherwise sensitive to anti-VEGF therapy were co-implanted
with these fibroblasts into recipient mice [93].

Human breast cancers of the luminal subtypes expressing female hormone receptors are effectively
treated with selective estrogen receptor modulators (SERMs), such as tamoxifen, while tumors of
the basal-like subtype that do not express hormone receptors fail to have effective targeted therapies.
Roswall et al. have recently demonstrated that CAFs play crucial roles in regulating the phenotypic
conversion of luminal breast cancers into basal-like cancers, which show the worst overall survival
among various human breast cancer subtypes [77]. Human breast cancer cells produce PDGF-CC
that acts onto the cognate PDGF receptors expressed on closely apposed CAFs to activate these
fibroblasts. The resulting activated CAFs produce stanniocalcin 1 (STC1), HGF and insulin growth
factor binding protein 3 (IGFBP3), all of which downregulate the expression levels of the luminal
markers including FOXA1, estrogen receptor and GATA3, resulting in the conversion of the luminal
tumors into basal-like tumors [77]. Notably, the luminal phenotype and sensitivity to endocrine
therapy were shown to be restored in otherwise resistant tumors, not only by genetic targeting of
the PDGF-C gene in the MMTV-PyMT murine basal-like breast cancer model, but also by treatment
with the neutralizing PDGF-CC antibody of patient-derived triple-negative breast tumor xenografts
transplanted orthotopically in immunodeficient mice.

2.2.2. Adaptive Resistance of CAFs to Anti-Cancer Drugs

CAFs have been shown to prime chronic inflammation, as exemplified by recruitment of
protumorigenic macrophages in an NFκB signal-dependent fashion, resulting in the promotion of
tumor growth and angiogenesis [94]. With stress exposures, such as chemotherapy and radiation, these
fibroblasts also acquire the pro-inflammatory phenotype via further activating NFκB signaling, resulting
in increased survival signals of cancer cells. The activated NFκB signaling in the therapy-treated
CAFs enhances production of different cytokines including Wnt family member wingless-type MMTV
integration site family member 16B (WNT16B), IL-6 and IL-8, leading to the induction of chemoresistance
in breast cancer cells [95,96]. CAFs treated with cisplatin also boost IL-11 production to activate the
STAT3 signal pathway and upregulate the expressions of the anti-apoptotic proteins such as Bcl-2 and
survivin for prostate cancer cells to acquire resistance to apoptosis [97]. Moreover, CAFs extracted
from freshly resected human colorectal cancer specimens after chemotherapy reportedly show higher
IL-7 production than those without chemotherapy [98]. This stromal IL-7 provides CD44-positive
colon cancer cells with further increased tumor-initiating ability, thereby promoting tumor cell growth
both in vitro and in vivo [98].

Furthermore, chemotherapy-induced stromal chronic inflammation is responsible for angiogenesis
and ECM remodeling, and subsequently provides tumor cells with a physical barrier against the cytotoxic
agents administered [33,99,100]. Recent investigations have shown that conventional chemotherapy
and radiotherapy can lead to increased tumor stiffness involving the stroma response [49,101,102].
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Remarkably, treatment with PLX-4270 (BRAF inhibitor) activates tumor-associated fibroblasts to induce
ECM remodeling that activates integrin β1/FAK/Src signaling in melanoma cells [101]. This signal
activation then renders melanoma cells resistant to PLX-4270 via ERK activation.

Treatment of stromal fibroblasts with high concentrations of HDAC inhibitors, such as SAHA,
TSA and vorinostat, causes the senescence-associated secretory phenotype (SASP) mediated by the
direct activation of the NFκB signal [103,104]. Treating fibroblasts with HDAC inhibitors results in
significant paracrine stimulation of tumor growth, which suggests that high-dose HDAC inhibitors
would likely impact the stromal compartment adversely in a therapeutic setting.

Intriguingly, androgen deprivation therapy increases the population of CD105 (endoglin)-positive
CAFs, which contribute to neuroendocrine differentiation of epithelial prostate carcinoma cells [105].
CAF-derived secreted frizzled-related protein 1 (SFRP1), which is driven by the CD105-mediated
signal pathway, is both necessary and sufficient to induce the neuroendocrine differentiation of prostate
carcinoma in a paracrine manner. These series of observations raise concern regarding the undesirable
side effects of therapeutic agents; paracrine signaling from treatment-primed CAFs might influence the
regrowth and malignancy of nearby tumor cells.

CAFs play a key role in driving the drug resistance not only by raising particular gene expression
patterns and signaling pathways as mentioned above, but also by stimulating recruitment of
immunosuppressive cells into the tumor. Tumor-associated macrophages (TAMs) are non-neoplastic
cells abundant in stroma of different human tumors and exert either pro-tumoral or tumoricidal
functions in response to cytokine exposure [106,107]. A growing body of evidence indicates that
pro-tumoral TAMs support tumor growth and progression by influencing tumor hallmarks [107].
Colony-stimulating factor 1 (CSF1) receptor signaling is a key regulator of TAM recruitment,
differentiation and survival. Treatment with CSF1 receptor inhibitors targeting TAMs clearly reduces
tumor growth in murine tumor models, though the anti-tumor effect was shown to be very limited in
patients [106]. The molecular mechanisms underlying the tumor progression elicited by substantial
depletion of TAMs remain, however, unknown. Importantly, a recent study revealed this to be
due to increased CCL3 and CXCL-1/2/5 productions from CAFs treated with the CSF1 receptor
inhibitor [108]. These CAF-produced chemokines then stimulate the recruitment of polymorpho-nuclear
myeloid-derived suppressor cells (PMN-MDSCs) into tumors, resulting in the promotion of tumor
growth and progression. These findings therefore demonstrate that CAFs mediate neutralization of
the anti-tumor effect exerted by CSF1 receptor inhibitors via recruitment of PMN-MDSCs into tumors.

2.3. Cross-Talk between CAFs and Tumor Microenvironment

The wound-healing program is strongly dependent on the cross-talk between various stromal
cells and myofibroblasts at the wound site [109,110] (Figure 1). For instance, myofibroblasts induce
angiogenesis from preexisting parental vessels or from the circulating endothelial precursor cells
(EPCs) recruited at the wound site via the secretion of a potent preangiogenic chemokine, CXCL12,
also known as stromal cell-derived factor-1 (SDF-1) [111,112]. Chemotactically-attracted EPCs then
transdifferentiate into endothelial cells in the presence of VEGF, which is also secreted by myofibroblasts.

In certain contexts, myofibroblastic CAFs induce neo-angiogenesis via secretion of preangiogenic
factors including CXCL12, VEGF, PDGF, TGF-β and HGF in a wide range of cancers [49,50,113–117].
Most desmoplastic tumors are highly vascularized, wherein shifting the switch toward an
angiogenesis-promoting phenotype occurs [118,119]. Interestingly, as in the case of wound healing, the
CAF niches depend on the CXCL12/CXCR4 axis and VEGF production to stimulate the formation of
neovasculature at the invasive front of breast cancer [115,120–122]. As the CXCR4 receptor for CXCL12
is expressed on both the tumor cells and EPCs [123,124], CAF-produced CXCL12 stimulates tumor
growth and neoangiogenesis via acting CXCR4 expressed on these cells. The production of VEGF
from tumor cells and CAFs also boosts neoangiogenesis in breast cancer tissues. Collectively, niches
of myofibroblasts in wounds and CAFs are both likely to support angiogenesis, apparently through
similar signaling pathways.
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It was recently shown that hypermethylated in cancer 1 (HIC1), which is a tumor suppressor
gene located at 17p13.3, resides exclusively within CpG islands, frequently showing hypermethylation
in several tumors such as breast, lung and prostate carcinomas [125–128]. A recent study found
that HIC1-depleted breast cancer cells markedly produce CXCL14 that activates Akt and ERK1/2
signal pathways, by acting through its cognate receptor GPR85 on resident fibroblasts in a paracrine
manner, resulting in the induction of a phenotypic conversion into CAFs [127]. The activated CAFs, in
turn, boost the production of chemokine CCL17 that acts on its cognate receptor CCR4, located on
breast cancer cells, to drive metastasis. Collectively, the HIC1-CXCL14-CCL17 positive-feedback loop
reciprocally mediating interactions between breast tumor cells and myofibroblastic CAFs contributes
to the malignant potentials of breast tumors.

CAFs remodel the ECM components and thereby regulate tumor stiffness [129]. It was recently
shown that squamous cancer cells activate EGFR in response to tumor stiffness, which leads to
actomyosin contractility and collective invasion [130]. From a mechanistic standpoint, enhanced
tyrosine kinase activity of EGFR results in Ca2+-dependent regulation of Cdc42 small GTPase activity
in tumor cells, which in turn leads to phosphorylation of MLC2. The MLC kinase regulates
actomyosin-dependent ECM remodeling due to CAFs. Surprisingly, two Ca2+ channel blockers,
the phenylalkylamine verapamil and the nondihydropiridine diltiazem, which have been used for
treating hypertension and arrhythmia for decades, show the therapeutic efficacy for preventing
collective cancer invasion, an effect achieved by significantly down-regulating the phosphorylation
of MLC2.

It is noteworthy that mechanical force-mediated ECM remodeling by CAFs depends on actomyosin
contractility generated through the Rho-associated protein kinase (ROCK) signal pathway [129].
The IL-6/JAK1/signal transducer and activator of transcription 3 (STAT3) axis also controls actomyosin
contractility by regulating the levels of phosphorylated-MLC2 in both melanoma cells and CAFs.
In striking contrast to melanoma cells, in which the IL-6-gp130/ JAK1-ROCK axis is required for the
amoeboid-like individual tumor migration, this signaling pathway is not required for the migration
of squamous carcinoma cells themselves, but is required for CAFs to remodel the matrix, which is
necessary for promoting the collective invasion of these carcinoma cells [64].

EMT of epithelial tumor cells, the process by which the number of tumor-initiating cells (TICs) is
increased [131,132], is apparently regulated in cooperation with CAFs. Recent studies also highlight
the importance of epithelial-mesenchymal plasticity to be determined by several transcription factors,
including ZEB1, Snail and Twist. The resulting tumor cells with the hybrid epithelial/mesenchymal
trait mediated by partial EMT are considered to enhance the tumor-initiating, invasive and metastatic
properties as well, along with promoting chemoresistance [132–135]. These phenotypic changes are
also presumably induced by CAF-regulated ECM components, exosomes and soluble factors.

3. Metabolic Reprogramming of CAFs During Cancer Progression

3.1. Metabolic Symbiosis Between Cancer Cells and CAFs

Features of desmoplastic tumor stroma resemble those of wound healing and involution during
gestation. Mammography measures and compares the different types of breast tissue visible on a
mammogram, which is an X-ray image of the breasts routinely used to screen for breast cancer in
clinics. High breast density represents a greater amount of glandular and connective tissue than fat and
has an association with higher risk for breast cancer development [136]. The expression level of CD36,
a cell surface receptor for fatty acids, is downregulated in fibroblasts extracted from noncancerous
breast tissues with high mammographic density as well as in breast CAFs [137]. CD36 expression is
also known to be required for human mammary fibroblasts to transdifferentiate into preadipocytes
in culture. Consistently, adipocytes were shown to regenerate from myofibroblasts in a murine skin
wound healing model [138]. These findings demonstrate that down-regulation of CD36 expression
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in the stroma results in increased fibrosis in the breast, resulting in high mammographic density,
presumably via attenuated transdifferentiation into adipocytes from mammary fibroblasts.

AMP-activated protein kinase (AMPK) reportedly regulates the translocation of the fatty acid
transporter CD36 from intracellular stores to the plasma membrane [139], thereby promoting fatty
acid uptake into skeletal muscle. CD36 also contributes to the activation of mitochondrial fatty acid
β-oxidation (FAO) which in turn influences their metabolic plasticity in ovarian and oral carcinoma
cells, leading to greater lymph node metastasis [140,141].

CD36 is involved in caveolae, a subset of lipid rafts forming part of the cell membrane
microdomain enriched in cholesterol and signaling proteins. Decreased expression of CAV1, another
component of caveolae within the tumor microenvironment, is also consistently associated with
poor clinical outcomes in patients with a wide variety of malignancies [142]. CAV1-deficient
fibroblasts also show concomitantly decreased CD36 expression, stabilization of hypoxia-induced
factor-1α (HIF-1α), activation of TGF-β signal transduction and induction of myofibroblast
differentiation [142,143]. These CD36-deficient fibroblasts likewise undergo a metabolic shift from
mitochondrial oxidative phosphorylation to aerobic glycolysis, promoting the metabolic plasticity
of these fibroblasts [142,144,145] (Figure 3). These findings suggest that altered caveolae function in
the tumor microenvironment induces tumor metabolic heterogeneity, leading to the manifestation of
malignant features. These mechanistic insights into how the alteration of caveolae is induced and
maintained in CAFs are currently under investigation.Int. J. Mol. Sci. 2019, 20, 2256 11 of 29 
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Figure 3. Metabolic reprogramming in CAFs. CD36 and caveolin 1 (CAV1) are components of caveolae,
a subset of lipid rafts found in the cell membrane microdomain enriched for cholesterol and signaling
proteins. These CD36 and CAV1 expressions are downregulated in CAFs. The attenuated CAV1
expression concomitantly decreases CD36 expression, stabilizes hypoxia-induced factor-1α (HIF-1α),
activates TGF-β signal transduction and induces myofibroblast differentiation in fibroblasts. This
attenuated CD36 expression also shows a metabolic shift from mitochondrial oxidative phosphorylation
to aerobic glycolysis, promoting metabolic plasticity in these fibroblasts. Tumor-derived reactive
oxygen species (ROS) are responsible for down-regulation of CAV1 in CAFs. Loss of CAV1 in CAFs
also results in ROS elevations, which in turn stabilize HIF-1α.

Initially, the Warburg effect was believed to be confined to specific tumor cell types [146–148].
However, the emerging concept of a “reverse Warburg effect” has recently attracted considerable
research attention [145,149,150]. Tumor-derived reactive oxygen species (ROS) are responsible for
down-regulation of CAV1 in CAFs [151–153] (Figure 3). Loss of CAV1 in CAFs also results in ROS
elevations, which in turn stabilize HIF-1α. In other words, malignant cells induce a “pseudo-hypoxic”
microenvironment for CAFs [145,154]. Because the transcription factor HIF-1α promotes glycolysis
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and provides cancer cells with lactate and glutamate, elevated ROS production in tumor cells
indirectly induces the uptake of intermediate metabolites of the tricarboxylic acid (TCA) cycle in
mitochondria (Figure 4). Of note, CAFs consume more glucose and secrete more lactate than normal
fibroblasts [154–156]. Furthermore, CAFs depend significantly on autophagy that may lead to resistance
to chemotherapy [145,155,157]. Collectively, fibroblasts surrounding epithelial tumor cells undergo
metabolic reprogramming, which results in a metabolic phenotype resembling that induced by the
Warburg effect. Importantly, metabolic symbiosis between epithelial cancer cells and CAFs requires a
cell population to express a different MCT subtype [145,158–161]. Epithelial tumor cells express MCT1,
which contributes to uptake of the lactate provided by CAV1-deficient CAFs, which in turn express
MCT4, a marker of both aerobic glycolysis and lactate efflux (Figure 4).Int. J. Mol. Sci. 2019, 20, 2256 12 of 29 
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Figure 4. Metabolic symbiosis between cancer cells and CAFs requires the expression of a different
MCT subtype. Monocarboxylate transporter 1 (MCT1)-expressing cancer cells induce ROS-mediated
pseudohypoxia for MCT4-expressing CAFs, causing HIF-1α accumulation in the nucleus. CAFs depend
on aerobic glycolysis and secrete lactate via MCT4. Cancer cells exhibit robust lactate uptake via MCT1,
allowing them to generate large amounts of ATP via the mitochondrial TCA cycle. Tumor cells then
efficiently produce metabolic intermediates, such as NADH by utilizing lactate derived from CAFs.
ROS are a major hallmark of cancer tissues that drives robust metabolism in adjacent proliferating
MCT1-positive cancer cells, which are abundant in mitochondria, mediated by the paracrine transfer of
mitochondrial fuels, such as lactate, pyruvate and ketone bodies.

3.2. Signal Pathways Involved in Metabolic Reprogramming of CAFs

Accumulating evidence strongly suggests that p62 (also known as sequestosome 1) is involved
in metabolic reprogramming of activated fibroblasts in fibrosis and tumor stroma [162–166]. p62
is a multifunctional adaptor protein and a specific substrate for autophagy. p62 is thus selectively
incorporated into autophagosomes through the direct binding with LC3 (microtubule-associated
protein light chain 3) to be degraded by autophagy [167,168].

Hepatic stellate cells (HSCs), which can transdifferentiate into myofibroblasts in response to certain
stimuli, play critical roles in liver fibrosis and HCC development [163]. A study showed that vitamin D
receptor (VDR) signaling exerts the anti-fibrotic and anti-inflammatory effects in HSCs [163]. p62 also
mediates the anti-fibrotic function by a direct interaction with VDR and the retinoid X receptor that
promotes their heterodimerization, a process critical for target gene recruitment [163]. Moreover, Duran
et al. have shown that loss of p62 expression in HSCs enhances their myofibroblastic differentiation,
thereby impairing suppression of fibrosis and inflammation by VDR agonists in chemical agent-induced
murine fibrosis and tumor models. Consistent with the aforementioned observations, these findings
demonstrate decreased p62 expression to be crucial for myofibroblast differentiation to exert their
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actions of supporting fibrosis and tumor growth via attenuated VDR signaling. However, the molecular
mechanisms underlying the observed down-regulation of p62 expression in activated fibroblasts
remain as yet unknown.

Significant down-regulation of p62 expression also underlies the metabolic reprogramming in
CAFs mediated by the mammalian target of rapamycin (mTOR) complex 1/Myc cascade controlling
IL-6 secretion [166]. Reduced activity of the mTOR complex 1 in p62-deficient fibroblasts accounts
for c-Myc down-regulation and the subsequent up-regulation of IL-6, resulting in the promotion of
inflammation and tumorigenesis. The lack of p62 in CAFs promotes resistance to glutamine deprivation
by directly regulating ATF4 stability via its p62-mediated polyubiquitination [162]. Interestingly,
selective autophagy mainly regulated by p62 does not account for the capacity of p62-deficient CAFs
to withstand glutamine starvation [162,166]. Up-regulation of ATF4 due to p62 deficiency in the tumor
stroma enhances glucose carbon flux through a pyruvate carboxylase-asparagine synthase cascade,
which in turn results in asparagine generation as a compensatory source of the nitrogen required
for proliferation of both cancer cells and CAFs. It has been shown both in vitro and in vivo that
p62-deficient stromal fibroblasts produce non-essential amino acids which are crucial for proliferation
in the absence of glutamine by maintaining the TCA cycle in mitochondria, explaining how the
p62-deficient tumor stroma stably provides asparagine in an ATF4-dependent manner [162,164,169].
In addition, CSL/RBPJκ, a transcriptional suppressor which is converted into an activator by Notch,
plays the role of a negative regulator for CAFs [165]. CSL interacts with p62 and their expression
levels are downregulated in murine dermal CAFs through autophagy, indicating that autophagy
downmodulates CSL protein expression via p62 in CAFs [165].

4. Targeting Tumor Stroma Fibroblasts to Attenuate Tumor Progression

4.1. Tumor Stiffness and Enhanced Interstitial Fluid Pressure

As noted above, both tumor cells and CAFs secrete a number of factors which promote
angiogenesis, the most widely-accepted of which are members of the VEGF family. Angiogenesis
and lymphatic co-options correlate with tumor progression and poor patient outcomes, and are
the primary contributors to the altered fluid flow and interstitial fluid pressure (IFP) in the tumor
microenvironment [170–172]. Vessels developing in the tumor microenvironment are generally irregular
and have major gaps in the endothelial cell layer, reducing the degree of coverage by myofibroblasts
and pericytes [173–176]. Furthermore, myofibroblastic CAFs induce not only increases in the numbers
of fibrotic foci, but also the contraction of the interstitial space [33,177]. The increased vessel number in
conjunction with increased hydraulic conductivity or the relative ease with which fluid moves across
the vessel wall, is responsible for the irregular and increased influx of fluid into the tumor stroma.
Indeed, rising IFP is frequently reported in solid tumors, such as breast carcinoma, glioblastoma
and malignant melanoma [178–180]. This increased IFP is due not only to fluid failing to properly
drain out of the interstitial space, but also to a number of other physiological changes in the tumor
microenvironment, including both an increased number of tumor cells and more ECM deposition in
the tumor stroma.

Recent studies support tumor microenvironment stiffness as a therapeutic target aimed at
preventing cancer development and progression [181–184]. The tumor stromal region typically consists
of excessive amounts of fibrous collagen, which can be cross-linked by soluble mediators, such as
lysyl oxidase (LOX), thereby increasing the stiffness of the tumor microenvironment [185–187]. In turn,
this increased tumor stiffness is considered to profoundly influence tumor progression inducing
activated oncogenic signal pathways driven by activated FAK, Akt, β-catenin, and PI3K, as well as the
inhibition of tumor suppressor molecules, such as PTEN. Targeting tumor stiffness via the inhibition
of LOX enzymatic activity has been demonstrated to decrease metastatic dissemination of breast
and colorectal tumor cells in vivo [188,189]. Treatment with LOX-blocking antibody in combination
with gemcitabine also shows attenuated metastases of early-stage pancreatic tumors in Pdx1-Cre
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KrasG12D/+ Trp53R172H/+ (KPC) mice, however, the effects are not observed in late-stage tumors,
presumably due to the presence of considerable levels of already established cross-linked collagen [190].

In pancreatic cancers, tumor cells secrete Hedgehog (Hh) ligands to act on a patched (PTCH1)
receptor expressed in CAFs. Hh signaling is thus activated by the ligand binding to PTCH1 that
relieves an inhibitory effect on Smoothened (SMO) in these fibroblasts [191]. Hh signaling in CAFs
coordinates the acquisition of a poorly-vascularized, desmoplastic microenvironment which impairs
drug delivery in pancreatic adenocarcinoma [192–194]. Suppression of the stromal Hh signal by the
inhibitor of SMO improves the delivery of gemcitabine via transiently increasing vascular density of
pancreatic tumors in KPC mice [194].

Increased tumor stiffness impacts not only tumor cells, but also similarly exerts its effects on
the surrounding stromal cells, wherein tumor stiffness activates normal fibroblasts to acquire CAF
phenotypes and maintains them by the nuclear localization of yes-associated protein (YAP) in the
Hippo signal pathway [195–198]. Actomyosin contractility and Src function are required for YAP
activation by stiff matrices. Conversely, YAP depletion reduces the ability of CAFs to form fibrous
collagen networks and to promote angiogenesis in vivo. YAP regulates expression levels of several
cytoskeleton-related molecules including ANLN and DIAPH3 and then stabilizes MLC2/MYL9. Matrix
stiffness further enhances YAP activation, thereby establishing a feed-forward self-reinforcing loop
which helps to maintain the CAF phenotype [198]. Increased YAP1 activity in CAFs thus also induces
a stiff ECM associated with the Rho-ROCK axis, thereby activating both Src and YAP signaling in a
self-stimulating manner.

4.2. Therapeutic Strategy Against Activated Tumor Stroma

As noted above, CAFs compromise the effects of cancer therapies not only by producing large
amounts of tumor-promoting growth factors and inflammatory cytokines, but also by recruiting other
stromal cell types including immunosuppressive inflammatory cells into tumors. Nonetheless, as
clonal somatic genetic alterations are rarely harbored in CAFs of different human carcinomas and these
fibroblasts are anticipated to be less likely than carcinoma cells to acquire resistance to therapy [199],
CAFs are speculated to be a promising therapeutic target [50,200,201].

Treatment with chemotherapy significantly eradicates chemosensitive tumors. However, a considerable
number of CAFs often survive in the remnant tumors after treatment. The surviving CAFs acquire
innate and adaptive therapeutic resistance that are accompanied by stromal inflammation and increased
collagen accumulation, leading to iatrogenic tumor stiffness and the development of chemoresistant
tumors. Treatment with several drugs in combination with chemotherapy shows promising results
compromising the CAF-induced drug resistance in murine tumor models (Figure 5).

Aberrant IFP elevation disrupts the distribution of systemically administered anti-cancer drugs and
thereby compromises the treatment of solid tumors [171,172,202,203]. Hyaluronidases are enzymes that
catalyze the degradation of hyaluronic acid (HA), a glycosaminoglycan distributed widely throughout
various different tissues. Pegylated recombinant hyaluronidase, known as PEGPH20, contributes to the
significant decrease in IFP, thus improving gemcitabine sensitivity in pancreatic ductal adenocarcinoma
(PDAC) [204–206]. PEGPH20 reportedly reduces IFP in the PDAC microenvironment and expands
the tumor vasculature to improve perfusion, which increases access for anti-tumor immune cells and
therapeutic agents. A randomized phase II study was also performed using a total of 279 patients with
previously untreated metastatic pancreatic ductal adenocarcinoma treated with chemotherapy alone
or chemotherapy plus PEGPH20 [207]. The results demonstrated that PEGPH20 treatment is more
beneficial in patients with HA-high tumors than in those with HA-low tumors. The level of HA in the
tumor-associated stroma was also shown to be a promising biomarker for identifying patients who
may benefit from PEGPH20 treatment [207].
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Metformin is an oral drug used in the management of patients with type II DM. Metformin
administration was first reported to likely be associated with a reduced risk of cancer in the DM
patients more than a decade ago [208]. Recently, mounting evidence has pointed to its anti-cancer
effects in various malignancies [209–211]. This is a typical example of drug re-positioning [212].
Metformin has been reported to play a suppressor role in inflammatory and fibrosis-related
diseases, such as atherosclerosis, cardiac fibrosis, renal fibrosis, interstitial pulmonary fibrosis and
endometriosis [213–216]. Inhibition of TGF-β signal pathway, monocyte-to-macrophage differentiation,
and NFκB-mediated inflammatory factors is involved in the molecular mechanisms underlying these
non-malignant diseases. Importantly, similar mechanisms of metformin action have been suggested
to contribute to suppression of the stromal reaction in tumors. In lung cancer, metformin was
demonstrated to suppress pulmonary interstitial fibrosis during gefitinib therapy [217]. In ovarian
cancer patients, cisplatin administration increases IL-6-producing myofibroblastic CAFs populations
through activation of NFκB signal pathway in the tumor-associated stroma [218]. Pretreatment with
metformin actually inhibits the desmoplastic stromal reaction via attenuation of the NFκB signal and
IL-6 secretion from CAFs. This explains how the IL-6 receptor antagonist, which has conventionally
been used for treating rheumatoid arthritis, might serve as an anti-cancer agent in clinical settings.

Renin-angiotensin system inhibitors, which have been prescribed for the treatment of
cardiovascular diseases, receive considerable attention in oncology [219]. Angiotensin II (AngII)
/AngII type I receptor (AT1R) axis plays pivotal roles in promoting tumor growth and progression.
The treatment of CAFs with losartan, which is a selective AT1R blocker (ARB), reportedly attenuates
activated fibroblastic state, as exemplified by TGF-β signaling and α-SMA expression, as well as
ECM production in culture [220]. Importantly, in mice orthotopically bearing breast cancer cells
chemotherapy in combination with losartan inhibits tumor growth and increases survival of the mice
more significantly than monotherapy does [219–221].

Pirfenidone is an orally active synthetic anti-fibrotic agent structurally similar to pyridine
2,4-dicarboxylate [222]. This drug was recently approved for the treatment of patients with IPF.
Pirfenidone exerts anti-fibrotic effects through inhibition of TGF-β and Hh signaling in lung fibroblasts
of IPF patients [223]. Miura et al. recently reported that pirfenidone is likely to reduce the risk of lung
cancer development in patients with IPF [224]. The retrospective analysis also demonstrated lung cancer
incidence to be significantly lower in a pirfenidone-treated group than in a non-pirfenidone-treated
group. Indeed, this anti-fibrotic agent induces apoptotic cell death of CAFs residing among NSCLC
cells [225] and decreases the expression of collagen triple helix repeat containing 1 (CTHRC1),
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which is associated with tumor aggressiveness and poor clinical outcomes for NSCLC patients [226].
Importantly, simultaneous co-administration of pirfenidone with chemotherapy inhibits tumor growth
and metastasis of breast and pancreatic carcinoma cells, presumably due to attenuation of the TGF-β
signal pathway, activated fibroblastic state and ECM protein production in CAFs [227–229].

Bromodomain-containing protein 4 (BRD4), a bromodomain and extra-terminal (BET) family
member is an important epigenetic reader. BRD4 is critical for the activated fibroblastic state and
enhancer-mediated profibrotic gene expression in both HSCs and CAFs [230,231]. Several investigations
also show that treatment with a small molecule inhibitor of BRD4 significantly attenuates fibrosis and
tumorigenesis via inhibition of stromal TGF-β signaling in murine liver fibrosis models [230,232] as
well as patient-derived pancreas and skin squamous cell carcinoma models [231,233].

Experimental evidence supports that the VDR signaling suppresses TGF-β-Smad2/3 signaling
to attenuate the fibrotic reactions in fibrosis and tumor stroma [234]. Treatment with VDR ligands
thus inhibits the activated state of HSCs and CAFs in murine liver fibrosis [235] and pancreatic
carcinoma [236] models. This anti-fibrotic effect is due to the inhibition of the Smad3 recruitment into
the binding sites of cis-regulatory regions in the profibrotic genes.

Taken together, these findings indicate that several anti-fibrosis drugs have major potential for
impairing and even blocking tumor-promoting CAFs, resulting in attenuation of tumor growth and
progression in experimental animal models.

5. Closing Remarks

In this review, we have described the close relationship between tumorigenesis and fibrosis, both
of which are accompanied by the expansion of activated fibroblast populations. Several aspects of
the cellular mechanisms underlying CAF-promoted tumorigenesis and therapy-resistance have been
elucidated. However, there are CAF populations that have surprisingly been shown to suppress
tumor growth and progression in different murine tumor models including those of the pancreas,
bladder and colon [237–240]. These studies indicate that activation of Hh signaling in CAFs by tumor
cell-produced Hh ligand suppresses the growth of tumors via bone morphogenetic protein (BMP)
signaling in tumor cells, suggesting the presence of CAF populations with tumor-suppressive functions.
In marked contrast, a very recent study using murine models of TNBC found that Hh signaling
in CAFs promotes cancer stem cell plasticity and chemoresistance in cancer cells via elevation of
stromal FGF5 production [182]. These contradictory observations raise the possibility of cancer cell
context-dependent differences in stromal Hh signaling. Although tumor-suppressive or -promoting
functions may be inherent in fibroblasts within tumors due to their multiple cells-of-origin, their
complex interactions with other stromal cells and carcinoma cells with genetically and epigenetically
diverse alterations would also presumably be crucial for generating CAF heterogeneity during tumor
progression. Thus, CAFs can reasonably be described as a “cell state” rather than a “cell type” [241].

Several growth factors and cytokines have been identified as inducing CAF differentiation in
progenitors, some of which consist of the feedback loop between cancer cells and CAFs in the tumor
microenvironment. CAFs also stably maintain their transcriptome and metabolic profiling in an
autocrine fashion. It is noteworthy that activated and tumor-promoting traits in these fibroblasts are
retained during in vitro propagations, despite a lack of ongoing interactions with carcinoma cells,
suggesting the key roles of epigenetic alterations in CAFs, as exemplified by DNA methylation [65].
Given that CAFs are responsible for high IFP in the tumor microenvironment, therapies aimed at
preventing iatrogenic tumor stiffness hold great promise. Furthermore, it is remarkable that pirfenidone,
one of the anti-fibrotic drugs, not only prevents IPF-associated lung cancer development but also inhibits
the distant metastasis of difficult-to-cure breast carcinoma. However, the molecular mechanisms which
would allow anti-cancer therapies to precisely target CAFs have yet to be elucidated. The importance
of targeting the tumor stroma as well as tumor cells themselves has attracted increasing academic
attention as researchers strive to achieve the precision medicine.
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Abbreviations

AngII angiotensin II
ARB angiotensin II type I receptor blocker
AT1R angII type I receptor
α-SMA α-smooth muscle actin
BRD4 Bromodomain-containing protein 4
CAFs carcinoma-associated fibroblasts
CAV1 caveolin 1
c-Abl c-Abl protein kinase
CSF1 colony-stimulating factor 1
DM diabetes mellitus
ECM extracellular matrix
EGF epithelial growth factor
EGFR epidermal growth factor receptor
EMT epithelial-mesenchymal transition
EndoMT endothelial-mesenchymal transition
EPCs endothelial precursor cells
ERK extracellular signal-regulated kinase
FAK focal adhesion kinase
FGF fibroblast growth factor
FGFRs fibroblast growth factor receptors
GSK-3β glycogen synthase kinase-3β
HA hyaluronic acid
HCC hepatocellular carcinoma
HGF hepatocyte growth factor
Hh Hedgehog
HIC1 hypermethylated in cancer 1
HIF-1α hypoxia-induced factor-1α
HSCs hepatic stellate cells
IFP interstitial fluid pressures
IGF1R insulin-like growth factor 1 receptor
IGF2 insulin-like growth factor 2
IL interleukin
IPF idiopathic pulmonary fibrosis
IR insulin receptor
JAK1 Janus kinase 1
LIF leukemia inhibitory factor
LOX lysyl oxidase
MAPK mitogen-activate protein kinase
MCT monocarboxylate transporter
MLC myosin light chain
MMP matrix metalloproteinase
MSCs mesenchymal stem cells
mTOR mammalian target of rapamycin
NASH non-alcoholic steatohepatitis
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NSCLC non-small cell lung cancer
PAI-1 plasminogen activator inhibitor-1
PDAC pancreatic ductal adenocarcinoma
PDGF platelet-derived growth factor
PDGFR platelet-derived growth factor receptor
PGE2 prostaglandin E2
PI3K phosphatidylinositol-3 kinase
PIP3 phosphatidylinositol-3,4,5-triphosphate
PKC-δ protein kinase C δ

KPC Pdx1-Cre KrasG12D/+ Trp53R172H/+

PMN-MDSCs polymorpho-nuclear myeloid-derived suppressor cells
PTEN phosphatase and tensin homologue deleted on chromosome 10
ROCK Rho-associated protein kinase
ROS reactive oxygen species
SASP senescence-associated secretory phenotype
SHP-1 src homology region 2 domain-containing phosphatase-1
SDF-1 stromal cell-derived factor-1
SMO Smoothened
SPARC secreted protein acidic and rich in cysteine
STAT3 signal transducer and activator of transcription 3
STC1 stanniocalcin 1
TAMs tumor-associated macrophages
TCA tricarboxylic acid
TGF-β transforming growth factor-β
TKI tyrosine kinase inhibitor
TNBC triple-negative breast carcinoma
TIC tumor-initiating cells
uPA urokinase-type plasminogen activator
VDR vitamin D receptor
VEGF vascular endothelial growth factor
WNT16B Wnt family member wingless-type MMTV integration site family member 16B
YAP yes-associated protein
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