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CD4+ T cells are prominent effector cells in controlling Mycobacterium tuberculosis (Mtb)
infection but may also contribute to immunopathology. Studies probing the CD4+ T cell
response from individuals latently infected with Mtb or patients with active tuberculosis
using either small or proteome-wide antigen screens so far revealed a multi-antigenic, yet
mostly invariable repertoire of immunogenic Mtb proteins. Recent developments in mass
spectrometry-based proteomics have highlighted the occurrence of numerous types of
post-translational modifications (PTMs) in proteomes of prokaryotes, including Mtb. The
well-known PTMs in Mtb are glycosylation, lipidation, or phosphorylation, known regulators
of protein function or compartmentalization. Other PTMs include methylation, acetylation,
and pupylation, involved in protein stability. While all PTMs add variability to the Mtb pro-
teome, relatively little is understood about their role in the anti-Mtb immune responses.
Here, we review Mtb protein PTMs and methods to assess their role in protective immunity
against Mtb.

Keywords: post-translational modification, Mycobacterium tuberculosis, CD4+T cell epitope, proteomics, immuno-
proteome,T cell epitope repertoire, MHC ligands

INTRODUCTION
In the last few decades, the hallmarks of cell-mediated protec-
tion against Mycobacterium tuberculosis (Mtb), the causative agent
of tuberculosis (TB), have been a subject of intense investiga-
tion. The production of the T helper cell type 1 cytokine IFNγ

is considered key in Mtb immunity, since it is a central factor in
activating macrophages to disarm intracellular mycobacteria (1,
2). A wide landscape of Mtb antigens targeted by human T cells is
being uncovered, including proteins (3–6), lipoglycans (7–9), and
lipoproteins (10–12) that are processed and exposed by antigen-
presenting cells in the context of various presentation platforms.
These can be either polymorphic classical MHC class I (HLA-A, -B,
and -C) or MHC class II (HLA-DR, -DQ, and -DP) molecules (3–
6, 10, 12), oligomorphic MHC class Ib molecules (HLA-E) (13–16)
or CD1 isoforms (7–9, 11, 17–19). Relevant to the development
of immunodiagnostic tests and vaccine candidates, strong human
IFNγ responses consistently pointed at a range of immunodomi-
nant protein antigens, including members of the so-called PE/PPE
and ESX protein families (5, 20–25). Whether these responses are
for the greater part beneficial to the host by providing protection
against Mtb or might actually help the pathogen to spread after
damaging lung tissue is, for most of them, currently unanswered.

Hyperconservation of human Mtb T cell peptide epitopes has been
described, perhaps arguing for a beneficial effect of recognition by
the host for the pathogen (26, 27), yet epitope sequence variability
has also been reported (3, 28, 29).

Several genome-wide screens and bioinformatics-guided
approaches further added to the identification of novel protein
antigens and immunodominant epitopes for a number of anti-
gen presentation platforms (5, 13, 24, 29–33). Altogether, the
picture emerging from these studies is consistent with a multi-
epitopic, multi-antigenic IFNγ response during Mtb infection.
To investigate whether different protein classes have the same
or diverse functional characteristics, Lindestam Arlehamn et al.
combined genome-wide HLA class II binding predictions with
high-throughput cellular screens of peptides to interrogate CD4+
T cell responses from latently infected individuals. A significant
clustering was seen of the majority of targeted proteins, represent-
ing 42% of the total response to three broadly immunodominant
antigenic islands, to only 0.55% of the total open reading frames
(ORFs) (5). However, no quantitative, functional, or phenotypical
distinction was observed between T cells elicited by the various
protein classes involved, such as those assigned to be secreted or
others belonging to secretion systems themselves, or to cell wall or
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cellular processes. Hence, because of equal functionality, no anti-
gen class could be implied in a more protective (or non-protective)
profile over others.

Even though greatly informative, preselecting epitope candi-
dates from the full Mtb proteome of approximately 4,000 ORFs
based on bioinformatics has limitations. Binding algorithms may
not be 100% effective and certain protective Mtb epitopes with
weaker binding properties could perhaps rank too low in the
assignment to be selected.

Moreover, the assumption that the immunoproteome is merely
a direct translation of the coding genome is an oversimplifi-
cation. As an additional level of proteome complexity, primary
protein structures can be modified after translation. Multiple post-
translational modifications (PTMs) occur in higher and lower
organisms, involving proteolytic events or transfer of modify-
ing groups to one or more amino acids of the proteins. These
PTMs may influence the protein’s active state, compartmentaliza-
tion, turnover, and/or interactions with other proteins. The rich
nature of PTMs of prokaryotic proteomes has started to become
unraveled only recently (34), essentially through advances in mass
spectrometry (MS) (35). However, their presence in the Mtb pro-
teome and their role in virulence and immunity have not received
sufficient attention yet. Here, we review PTMs currently known to
occur in the Mtb proteome and discuss whether they modify the
Mtb immunoproteome indirectly, by engaging eukaryotic innate
receptor signaling or antigen-processing pathways, or directly by
persisting as structural moieties in the immunogenic epitopes.
In addition, we highlight technologies enabling the unbiased
detection and identification of the Mtb T cell epitope repertoire,
modified or unmodified.

POST-TRANSLATIONAL MODIFICATIONS OF Mtb PROTEINS
Current advances in MS-based proteomics have revealed that, like
in eukaryotes, PTMs can create an enormous diversity and com-
plexity of gene products in prokaryotes, as was reviewed recently
elsewhere (34). PTMs are covalent-processing events chemically
changing protein structure, often catalyzed by substrate-specific
enzymes. Hundreds of types of PTMs are known, some of which
can occur in parallel to create even more heterogeneity in the pro-
tein arsenal (36, 37). There are several technical obstacles still to
overcome in PTM analysis. In proteome measurements, each pro-
tein can be identified based on combined mass and fragmentation
patterns from various cleaved peptides. In PTM measurements,
each modification site is only represented by a single peptide
species. Modified peptides can be of low abundance and fur-
thermore may have chemical properties requiring optimization of
liquid chromatography (LC) separation techniques or fragmen-
tation modules, used in MS identification. As a solution, robust
MS-based proteomic workflows have been designed, including
affinity-based enrichment strategies that can assist in the iden-
tification of, e.g., the phosphoproteome, the glycoproteome, or
the acetylated proteome (35).

Over the last two decades, multiple proteomic studies were per-
formed on Mtb. In one recent study, using dedicated subcellular
fractionation combined with affinity enrichment and liquid chro-
matography mass spectrometry (LC-MS) based proteomics, Bell
et al. were able to bona fide identify 1,051 protein groups present

in the Mtb H37Rv proteome, including lipoproteins, glycopro-
teins, and glycolipoproteins (38). While data are accumulating,
our insight into Mtb PTMs is still far from complete (see Table 1
for summary and structure examples of PTMs discussed).

GLYCOSYLATION
Prokaryotes possess conserved N- and O-linked glycosylation
pathways, capable of enzyme-catalyzed covalently coupling gly-
cans (oligosaccharides) to proteins (65–67). N-linked glycosyla-
tion, in which oligosaccharide precursors are first assembled on a
cytoplasmic carrier molecule before being transferred en bloc to
the amide nitrogen of an Asn in the acceptor protein, has not been
observed in Gram-positive bacteria or in pathogenic mycobacte-
rial species. O-glycosylation in bacteria can proceed en bloc or
stepwise, but for Mtb it is thought to be the latter. A model was
proposed in which the initial glycosyl molecule is transferred to the
hydroxyl oxygen of the acceptor Thr or Ser residue, a process cat-
alyzed by the protein O-mannosyltransferase (PMT) (Rv1002c)
(39). Hereafter, further sugars are added one at a time, but the
enzymes involved in this elongation are unknown. While the pre-
cise role of O-glycosylation of Mtb proteins is still elusive (68), this
PTM appears essential for Mtb virulence, since Rv1002c deficient
strains are highly attenuated in immunocompromised mice (69).
Initially, glycoproteins of Mtb were reported to contain glycan
moieties based on their ability to bind the lectin concanavalin A
(ConA), e.g., 38 kDa (PstS1) protein (40). MS then enabled assess-
ment of glycosylation patterns of Mtb proteins, first the alanine-
proline-rich 45–47 kDa antigen Apa (41, 70), followed by others,
e.g., the lipoproteins (19 kDa) LpqH (42, 43) and SodC (44). Using
ConA affinity capture or other sugar-based partitioning methods,
and dedicated proteomics, Bell et al. reported a wealth of candidate
Mtb glycoproteins, associated with membrane fractions and with
culture filtrates (38), whereas others, comparing several fragmen-
tation strategies, identified novel glycosylation sites directly from
culture filtrate proteins (45, 71). These localizations corroborate
with data suggesting that O-glycosylation and Sec-translocation,
a process shuttling proteins across the bacterial cell envelope, are
linked (39). As the number of bona fide identified Mtb glycopro-
teins is increasing, a glycosylation site motif is emerging, frequently
observed at the protein C-terminus (45). Some O-glycosylated
Mtb proteins constitute B cell antigens for serodiagnostics, such
as the 38 kDa protein (72). Furthermore, they might contribute
to the virulence of Mtb by binding as adhesins to innate immune
receptors, promoting invasion of the host cells. The 19-kDa gly-
colipoprotein was shown to bind to the macrophage mannose
receptor (MR) of monocytic THP-1 cells, hereby promoting the
uptake of bacteria (73). Apa, secreted, as well as cell wall asso-
ciated, binds to human pulmonary Surfactant Protein A (SP-A),
an important lung C-type lectin (74). These two glycoproteins
were also reported to be involved in Mtb binding to DC-SIGN on
dendritic cells, although this needs further investigation (75).

PHOSPHORYLATION
Since Mtb can exist under various physiological states in the
host, including dormancy and active replication, it makes use of
a versatile mechanism to sense signals from the host and reg-
ulate cellular processes. Signal transduction through reversible
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Table 1 | Post-translational modifications in the Mtb proteome.

PTM Structure (example) Function and notes Mtb proteins exhibiting this PTM Reference

targeted aaa

∆Mb

O-glycosylation Pathogenesis Apa/Rv1860; Mpt83/Rv2873; 19 kDa LpqH/Rv3763;

38 kDa PstS1/Rv0934; SodC/Rv0432; WGA

enriched candidate glycoproteins

(38–45)

Thr, Ser Immune decoy

e.g. +162 (mannose)

Phosphorylation Regulation 301 proteins (46, 47)

Ser, Thr, Tyr

+80

Methylation Protease resistance HBHA/Rv0475; LBP/Rv2986c (48)

Lys, Arg, Gln, Glu

+28

Acetylation Stability Esat-6 (N-terminal threonine) (49)

Ser, Thr, Lys Compartmentalization

(protein N-term)

+42

Lipidation Compartmentalization 99 Putative lipoproteins; 42 lipoproteins (38, 42, 44,

50–55)Cys, Ser, Thr Anchoring in membrane

+830

Deamidation Regulator of protein-ligand

interaction

Pup/Rv2111c (56)

Asn, Gln

+1

N-formylationc Start bacterial protein

synthesis (fMet)

Rv0476, Rv0277C, Rv0749, Rv1686C (57, 58)

Met

(startcodon)
+28

Pupylation Degradation signal

(reversible)

1,305 proteins (56, 59–64)
Lys

+6,954

aaa amino acid.
bMass increment of modified aa (Da).
cFormally not a PTM but a modified aa.

protein phosphorylation participates in this function. The Mtb
genome encodes multiple serine/threonine protein kinases, and
Ser/Thr/Tyr protein phosphorylation occurs extensively. In addi-
tion, Mtb makes extensive use of two-component signal transduc-
tion systems, which rely on a phosphorylation cascade involving

His kinases (46). Using TiO2-phosphopeptide enrichment, Prisic
et al. assigned 301 phosphoproteins in Mtb grown under six differ-
ent conditions and identified corresponding phosphorylation site
motifs (47). These likely represent only a part of the Mtb phos-
phoproteome. However, little is known on the role of this PTM in
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the function or pathogenicity of these proteins, with exception of
the His kinases in two-component systems (46).

LIPIDATION
Lipidation of proteins is predicted for a small percentage (0.9–
2.5%) of ORFs in mycobacterial genomes, and is required for their
anchoring and sorting to the cell surface [reviewed in Ref. (50,
76)]. The first step in Mtb lipoprotein biogenesis occurs in the N-
terminal leader of preprolipoproteins having a so-called lipobox
motif, involving the attachment of diacylglycerol to the thiol group
of a Cys, by Lgt (phosphatidylglycerol-pre-prolipoprotein diacyl-
glyceryl transferase). Second, the signal peptide directly upstream
of the modified Cys is cleaved off by LspA (prolipoprotein sig-
nal peptidase/signal peptidase II). Only recently, proof was found
that slow-growing Gram-positive mycobacteria also share the third
step in lipoprotein biosynthesis with Gram-negative bacteria, i.e.,
adding a third acyl residue to the free amino group of the modi-
fied Cys by Lnt (phospholipid-apolipoprotein N -acyltransferase)
(51). Brulle et al. described the BCG_2070c as the major ORF
in BCG to encode a functional Lnt using a mycobacteria-specific
acyl substrate, tuberculostearic acid (52). Lipoprotein genesis is
essential for Mtb. Deletion of lgt was not possible (77), while an
lspA deletion mutant was viable but had an attenuated pheno-
type (78, 79). For Mtb, multiple (candidate) lipoproteins have
been identified, and classified as components of transport sys-
tems, enzymes, or as molecules involved in cell adhesion or in
signaling (38, 50), several of which were not only lipidated but
also glycosylated (42, 44, 52). In line with the dogma that lipopro-
teins are pathogen associated molecular patterns (PAMPs) sensed
by TLR2 (80), Sanchez et al. showed that the glycolipoprotein
38 kDa PstS1 triggers a TLR2 and caspase-dependent apoptotic
pathway in human macrophages (53). Besides this mechanism,
the 19-kDa glycolipoprotein LpqH was shown also to induce a
caspase independent apoptotic mechanism, involving mitochon-
drial apoptosis-inducing factor (AIF), killing macrophages (54).
Furthermore, TLR2-dependent inhibition of MHC class II func-
tion was observed for LpqH (81). The cumulative data on LpqH
suggest that through its PTMs, this glycolipoprotein exploits mul-
tiple innate immune receptors and mechanisms to enter (73),
incapacitate, and kill mononuclear phagocytes. Notably, Lopez
et al. reported that the lipid moiety of LpqH was not required
for the TLR2-dependent apoptosis of macrophages (82). As
another innate feature, LpqH and the lipoprotein LprG were
found to directly stimulate TLR2/TLR1 on memory CD4+ T cells
(55), presumably via engaging TLR2 and TLR1 pockets by their
thioether-linked diacylglycerol and amide-linked third acyl chain,
respectively (83).

FORMYLATION
Formylation/de-formylation of proteins is a typical hallmark of
bacterial proteomes. Protein synthesis in bacteria is initiated with
a formylated methionine (fMet) residue, which is then enzy-
matically cleaved by peptide deformylase (PDF) and methionine
aminopeptidase to generate mature proteins. The human immune
system can benefit from this unique formylation pathway to dis-
tinguish self from non-self proteins. Although formylation is not
strictly a PTM, but comes with the first “modified” building block

of protein synthesis, the presence of the formyl group can be
considered a variation of plain translation of the genetic code.
What might be the life span of the formylated state of proteins is
unknown so far. However, short formylated Mtb protein frag-
ments have been identified that can be presented as epitopes
via non-classical murine MHC class Ib molecules of infected
macrophages and appear to be protective in a Mtb challenge model
(57, 58). This suggests that in vivo-formylated proteins can enter
antigen-processing pathways before the enzymatic removal of the
N-terminal fMet residue has occurred. Recently, N-formylated
peptides of ESAT-6 and glutamine synthetase were found to have
immunotherapeutic potential in a Mtb mouse infection model. A
role for formyl peptide-receptor recognition in activation of innate
immune cells was implied (84), but presentation via non-classical
MHC molecules may also play a role.

PUPYLATION
Pupylation is a protein-to-protein modification, first identified
in Mtb. It covalently attaches the C-terminal Glu of the 6.9-kDa
“Protein Ubiquitin-like Protein” (Pup) to the ε-amine of Lys side
chains of an interacting protein partner (59). Although the full
purpose of the pupylation pathway in Actinobacteria remains to
be elucidated, it is assumed that in Mtb, disposing of a proteaso-
mal system, tagging proteins with Pup renders them susceptible
for proteasomal degradation (60–62), similar to the well-known
ubiquitin-initiated protein degradation pathway. The C-terminal
Glu of Pup itself is generated by another PTM, i.e., deamidation
of the C-terminal Gln (56). From various large-scale proteomic
studies, a database of the mycobacterial “pupylome,” containing >
150 verified pupylated proteins and >1,000 candidate pupylated
proteins, was annotated (63). Depupylation activity also occurs
(64), hence the modification can be reversed.

ACETYLATION AND ACETYL-LIKE MODIFICATIONS
Transferring an acetyl, propionyl, maloyl, or succinyl group to
the ε-amine of lysines (Nε-modification) or to the α-amines of
protein N-termini (Nα-modification) are widely occurring PTMs
in prokaryotes (34). Mtb encodes multiple proteins annotated as
putative acetyl transferases acting on protein substrates (85). A
well-studied Nα-acetylated Mtb protein is the virulence factor
and immunodominant antigen, early secretory antigenic target
6 (Esat-6) (49). Acetylation presumably confers protein stabil-
ity and compartmentalization, and occurs at Thr2, becoming the
N-terminus after removal of the fMet residue at position 1.

METHYLATION
This PTM involves the addition of one or several methyl groups
to either the ε-amine of lysines or to the side chain carboxyl
of Glu. Although this PTM occurs in Mtb, genes encoding Mtb
protein-methyltransferases have not been identified yet. Two Mtb
adhesins, heparin-binding hemagglutinin (HBHA, Rv0475) and
laminin-binding protein (LBP, Rv2986c) were shown to be methy-
lated (48). HBHA is a 28-kDa multifunctional protein found on
the surface and in culture filtrates of mycobacteria. Automated
Edman degradation and mass spectrometric analysis indicate that
at least 13 out of 16 Lys residues in the Lys-Ala-Pro rich C-terminal
region of HBHA can be mono-or dimethylated, generating a
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spectral envelop of isoforms (Figure 1A) (48). HBHA mediates
mycobacterial adherence to epithelial cells via the interactions
of this C-terminus with sulfated glycoconjugates on the surface
of epithelial cells and methylation was implied to play a role in
resistance to proteases present in bronchoalveolar lavage fluids
(86–88). Recently, Sohn et al. showed that HBHA from Mtb also
targeted murine macrophages and induced apoptosis via a mech-
anism involving mitochondria (89). Interestingly, HBHA purified
from Mycobacterium avium subsp. paratuberculosis contains an N-
terminal acetylated alanine residue in addition to the methylated
lysines (90), whereas there is no evidence for acetylation of the
N-terminal residue of Mtb HBHA (88).

POST-TRANSLATIONAL Mtb PROTEIN MODIFICATIONS IN
PROTECTIVE IMMUNITY AND VACCINE CANDIDATES
The rich variety of PTMs to a large proportion of the Mtb pro-
teome is likely to play a major role in the successful intracellular
lifestyle of Mtb during chronic and sometimes lifelong infections.
In the quest of novel vaccines, urgently needed to improve the
limited protective capacity of BCG, it may be useful to understand
the role of these PTMs in the host response to Mtb infection.
Over thousands of years, a balance has been reached in which Mtb
avoids excessive immunity allowing it to survive in the host, and in
which a certain level of immunity allows the host not to succumb
to the infection.

While the primary Mtb proteome shows features of hypercon-
servation, suggesting an evolutionary advantage to ensure stable
epitope recognition by CD4+ T cells (26), PTMs superimpose a
high level of complexity. This may complicate the identification of
protective protein antigens based on in silico analyses and recom-
binant DNA technologies. Once protective protein antigens have
been identified, the exact structural features need to be known for
optimization and process development of the antigen. Further-
more, it will be important to know whether a particular PTM acts
as an immune modulator, or/and whether it is part of the struc-
tural antigen moiety targeted by the adaptive immune system.

Illustrative in this respect are three examples of Mtb protein
antigens with PTMs, currently considered as vaccine candidates
because of their immunodominance in humans and/or protective
effect in animal models.

The 45–47 kDa secretory and cell-surface adhesin Apa is a major
mycobacterial antigen with different O-mannosylation patterns in
pathogenic versus non-pathogenic mycobacterial species that are
critical for its T cell antigenicity in vivo and in vitro (70, 91). T
cells from BCG-vaccinated PPD-responsive individuals recognize
either both native mannosylated Apa (nApa) and recombinant
non-mannosylated Apa (rApa), or nApa only. These latter T cells
did, in contrast to the former, not recognize synthetic peptides cor-
responding to the Apa protein sequence. Together with the finding
that recognition of nApa required active antigen processing, these
data suggest that mannosylation does not induce alternate pro-
cessing of nApa but rather that the carbohydrate moiety is an
intrinsic part of the T cell epitope(s) (92). Protection by Apa was
shown in guinea pig and mouse models in the context of vari-
ous vaccine platforms (protein, DNA, and poxvirus boost) and
routes (intanasal and subcutaneous), as a subunit or as a BCG-
booster vaccine (70, 92–94). In a mouse model, adjuvanted nApa
was found to induce higher frequencies of CD4+ T cells, produc-
ing more cytokines, compared to adjuvanted rApa. However, both
antigens were equally protective against virulent Mtb infection
when used as a subunit vaccine or as a BCG-booster vaccine (92).
This indicates that O-mannosylation is not required for the protec-
tive effect in this model. However, understanding of the impact of
the different immune responses evoked by nApa and rApa, as well
as the nature of the putative naturally processed glycopeptide(s),
need further investigation.

In contrast to Apa, the natural PTM of HBHA, methylation,
is essential for providing high levels of protection against Mtb
challenge in mice, in addition to its antigenicity in Mtb-infected
human individuals (95, 96). However, immunization of mice
with purified non-methylated HBHA induces antibodies and Th1
cytokines at levels similar to those induced by immunization with

FIGURE 1 | Molecular and immunological hallmarks of naturally
methylated HBHA. (A) LC-MS analysis (lower part) and summary of
methylation pattern (upper part) of HBHA from BCG. Indicated by arrows are
the masses of molecular variants in the mass envelope, the lowest and
highest of which correspond to HBHA containing 0 or 25 methyl groups,
respectively. Methylations are borne by the lysine residues of the C-terminal
part. Data indicate that at least 13 out of the 16 C-terminal lysines can be
mono- or dimethylated. (B) In vitro IFNγ release to methylated HBHA

stimulation according to Mtb infection status. Shown are IFNγ concentrations
in nanogram/milliter as measured in Elisa after stimulation with methylated
HBHA for 24 h of PBMC from three groups of subjects: non-infected controls
(CTRL), subjects with latent Mtb infection (LTBI), and patients with active
tuberculosis (TB). The dotted line represents the positivity cut-off for the
assay. For each group, the median of results is marked as a horizontal line.
Statistical significance of differences: ***p≤0.0001. Data are with licensed
permission from Ref. (23).
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methylated HBHA. Also, the antibody isotype profiles are similar
in both instances. Interestingly, however, only splenocytes iso-
lated from mice immunized with methylated HBHA, and not with
non-methylated HBHA, induce IFNγ secretion upon incubation
with Mtb-pulsed macrophages. Methylated HBHA-specific T cell
responses are likely to participate in protection against disease in
humans, since T cells from patients with active TB secrete signif-
icantly lower amounts of IFNγ after stimulation with methylated
HBHA than subjects with latent Mtb infection (Figure 1B) (23,
97, 98). HBHA is being considered as a BCG-booster vaccine (99),
as responses to methylated HBHA were found to be primed in
BCG-vaccinated infants (100). It is not yet known whether the
PTM affects the presentation of non-modified protective T cell epi-
topes via modulation of antigen uptake or processing, or whether
methylation is part of the protective T cell epitope(s) involved.

The N-terminal-Thr acetylated antigen ESAT-6 is known as an
immunological hotspot in humans (6). During natural infection
or after subunit vaccination in mice, vigorous Th1 type CD4+ T
cell responses are directed to the N-terminal immunodominant
epitope ESAT-61–15, whereas other epitopes are masked (101).
These can be revealed by redesigning ESAT-6 analogs in which
the dominant epitope is removed, resulting in the engagement
of protective CD4+ T cell responses that resist infection-driven
terminal differentiation (102). To our knowledge, the role of the
N-acetylation at Thr2 in generating the ESAT-6 peptide repertoire
has not been interrogated, yet in view of ESAT-6’s current status
as a vaccine candidate in clinical testing (99, 103), such assessment
may be important.

In order to fully characterize these candidate vaccine antigens,
it will be important to elucidate the exact roles of the added glyco-
, methyl-, or N -acetyl moieties, respectively. Does their presence
modulate effective antigen processing, perhaps by steering prote-
olysis and immunodominance through masking certain enzyme
cleavage sites as was shown for O-linked glycans (104), or are
they part of the protective immunoproteome itself ? Clearly more
studies are needed, including epitope identification approaches to
unravel, in these and other targeted vaccine candidates, the role
of PTMs in the Mtb immunoproteome. Knowledge on the precise
role of the PTM of Mtb vaccine candidates may be of great help
to optimize vaccine candidates and potentially to simplify vaccine
design and process development.

TOWARD UNBIASED ASSESSMENT OF THE Mtb
IMMUNOPROTEOME
Protein antigens, modified or not, are translated for T cell sur-
veillance into immunogens in antigen-processing pathways of
antigen-presenting cells. This translation consists of enzymatic
cleavage and rescue of protein fragments onto the molecules of
a relevant antigen-presenting platform, such as classical class I or
II MHC molecules (105), non-classical MHC molecules, includ-
ing class Ib MHC molecules (16), or CD1 isoforms (17). The
identification of the exact nature of the naturally processed and
presented Mtb immunoproteome would require dedicated tech-
nologies such as LC-MS, first pioneered MHC class I ligands by
Hunt et al. more than two decades ago (106, 107). Typically,
cell lines would be grown at large scale (>1× 109 cells) and,

after detergent solubilization and immunoaffinity purification of
MHC-ligand complexes, bound peptide epitopes would be eluted.
The purified endogenous MHC class I ligands were characterized
by dedicated LC-MS and MS/MS sequencing.

Nowadays, ever evolving LC-MS/MS systems have greatly
added to our understanding of the endogenous peptide repertoire
and binding motifs of many MHC class I and II molecules (108–
111), as well as of class1b MHC molecules (112). For the classical
MHC pathways, the notion has emerged that antigen-presenting
cells express approximately 100,000 MHC class I and II mole-
cules at their surface, presenting thousands of different endoge-
nous peptides, at widely divergent abundances (113). LC-MS/MS
sequencing can unambiguously identify the epitopes as they are
eluted from their antigen-presenting molecules in a qualitative and
quantitative manner, revealing both primary epitope sequences, as
well as any modifications to them (114). LC-MS/MS analyses have
shown that processing inside antigen-presenting cells can gener-
ate modified or unpredictable MHC epitopes, such as deamidated
(115), citullinated (116), or cysteinylated (117) ligands, as well as
ligands arising from protein splicing (118–120) or from alterna-
tive reading frames or read-throughs of protein-encoding genes
(121–123).

Pathogen-encoded immunoproteomes, including PTMs, gen-
erated from the proteome inside infected or antigen endocytosing
antigen-presenting cells, should be detectable through LC-MS/MS
sequencing approaches as well, although pathogen-derived ligands
will be needles in the haystack of eluted self epitopes. To facili-
tate the identification of these non-self pathogen-derived antigens,
targeted LC-MS/MS approaches have been developed (124–127).
Foreign epitopes that originate from proteins synthesized during
infection inside antigen-presenting cells, such as viral MHC class I
epitopes during infection, can be traced using algorithms detecting
isotopic patterns in the mass chromatograms of MHC immuno-
proteomes from carefully mixed infected and non-infected cell
cultures that were metabolically labeled during growth (128).
Alternatively, epitopes that arise from exogenous proteins endocy-
tosed by antigen-presenting cells during infection, such as bacterial
MHC class II epitopes, can be traced back in the MHC-bound
peptide repertoire after metabolic labeling of antigen during the
prokaryotic cell growth (126, 129). However, if PTMs are suspected
in the foreign MHC immunoproteome, chromatography, ion frag-
mentation strategy, and even affinity enrichment strategies will
have to be considered accordingly. Until now, only a single study
has reported the identification of several Mtb epitopes presented
by MHC class I via LC-MS (130). More approaches are underway
to extend our knowledge on the naturally processed and MHC-
presented Mtb epitopes, including those derived from methylated
HBHA, using dedicated LC-MS. These studies include large-scale
human monocyte or dendritic cell cultures and either in vitro
Mtb infection or targeted antigen pulsing. Inhibition of MHC
class II presentation upon incubation with live Mtb, mycobac-
terial lysates, or purified antigens may frustrate these attempts
(131, 132). Dedicated isolation and analytical discovery proce-
dures should then help to identify the Mtb epitope “needles” in
the self “haystack,” and increase our knowledge on the role of PTM
in the Mtb immunoproteome.
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CONCLUDING REMARKS
Fast developments in LC-MS/MS-based proteomics have enabled
the detection of many types of PTMs in proteomes of prokaryotes,
including Mtb. Elucidating the role of PTMs in the immunopro-
teome of protective Mtb protein antigens is important for the
molecular optimization of vaccine candidates, and will also greatly
benefit from technical advancements in LC-MS/MS.
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