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Simple Summary: Medulloblastoma is the most common malignant pediatric brain tumor. It can be
divided into four molecular subgroups with clear biological and clinical differences: Group 3, Group 4,
SHH, and WNT. The Group 3 subgroup has the lowest overall survival rate, and the WNT subgroup
has the highest. It is known that MYCN and let-7 play a critical role in medulloblastoma tumorigenesis
and progression. By integrating multi-omics data, including gene expression, methylation, copy
number variation, and miRNA expression, we further divided the SHH subgroup according to
MYCN expression and let-7 activity and found that the combination of high MYCN expression and
high let-7 activity is associated with worse overall survival.

Abstract: Medulloblastoma (MB) is the most common pediatric embryonal brain tumor. The current
consensus classifies MB into four molecular subgroups: sonic hedgehog-activated (SHH), wingless-
activated (WNT), Group 3, and Group 4. MYCN and let-7 play a critical role in MB. Thus, we
inferred the activity of miRNAs in MB by using the ActMiR procedure. SHH-MB has higher MYCN
expression than the other subgroups. We showed that high MYCN expression with high let-7
activity is significantly associated with worse overall survival, and this association was validated
in an independent MB dataset. Altogether, our results suggest that let-7 activity and MYCN can
further categorize heterogeneous SHH tumors into more and less-favorable prognostic subtypes,
which provide critical information for personalizing treatment options for SHH-MB. Comparing the
expression differences between the two SHH-MB prognostic subtypes with compound perturbation
profiles, we identified FGFR inhibitors as one potential treatment option for SHH-MB patients with
the less-favorable prognostic subtype.

Keywords: miRNA; medulloblastoma; prognostic; MYCN; let-7; sonic hedgehog; ActMiR

1. Introduction

Medulloblastoma (MB) is the most common malignant embryonal brain tumor in chil-
dren [1,2]. The 5-year overall survival rate for patients with medulloblastoma is 65–70% [3].
Treatment for medulloblastoma usually consists of a combination of surgery, radiation,
and chemotherapy [4]. The risk stratification for patients is currently based first on age,
because patients under 3 years old do not undergo craniospinal radiation therapy, and then
on a combination of tumor size, histology, and metastatic disease [5–7]. The World Health
Organization classifies medulloblastoma, which is very heterogeneous, into four molecular
subgroups with clear biological and clinical differences: sonic hedgehog-activated (SHH),
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wingless-activated (WNT), Group 3, and Group 4 [8–14]. Group 3 has the worst overall
survival rate, and WNT has the best overall survival rate [3,10]. These subgroups reflect
different cells of origin for the tumor cells [9,15]. Furthermore, integrative genomic analyses
revealed distinct molecular features of the four medulloblastoma subgroups, such that MB
samples can be clustered into subgroups using features such as transcription, methylation,
and copy number variation (CNV) [10,16,17]. For example, in addition to each subgroup
having unique expression and methylation profiles, WNT and SHH MB have distinct
expression and methylation profiles from Group 3 and Group 4 [8,16,17].

MB is generally treated with surgery followed by chemotherapy and/or radiation ther-
apy. Given the aforementioned molecular differences among the subgroups, subgroup-specific
targeted therapies have been investigated, such as SMO inhibitors in SHH-MB, which is
known to have alterations to SUFU, GLI2, and MYCN [18,19]. In addition to differences
among the subgroups, there is also a clear heterogeneity within the subgroups them-
selves [16,20], and SHH is the most heterogenous subgroup in terms of genomic, molecular,
and clinical features [16,21]. Furthermore, SHH-MB tumors with MYCN amplification are
generally resistant to SMO inhibitors [18]. The TP53 mutation status is a prognostic factor
in MB and SHH-MB in particular [12,22–25]. TP53 mutations occur more frequently in
the WNT and SHH subgroups (13.8% and 7.6%, respectively) vs. Group 3 and Group 4
(1.5% and 0%, respectively) [12]. It is hypothesized that TP53 mutations confer radiation
resistance, so additional therapies are urgently needed to target high-risk patients in each
individual MB subgroup [12,22–25].

The MYCN/LIN28/let-7 axis, downstream of SHH, plays a critical role in SHH-
MB [16,17,26–28]. A high LIN28B expression has previously been shown to lead to a
poor prognosis in neuroblastoma, Group 3, and Group 4 MB [29,30]. MYCN is normally
highly expressed in undifferentiated cells and embryonal tumors, which are thought to be
initiated by proliferating progenitor cells unable to differentiate [31–33]. For example, in
newborn mice, high levels of Mycn were found in the brain, and these expression levels
decreased into adulthood [31,34], and human infants are more likely to have SHH-MB over
other MB subgroups [16]. In addition, the let-7 miRNA family, a group of well-known
tumor-suppressing miRNAs [35,36], is a repressor of MYCN and can be repressed by
LIN28B [37,38]. MicroRNAs (miRNAs) post-transcriptionally regulate genes and play a
critical role in carcinogenesis and tumor progression [35,39–41]. However, the miRNA
expression level does not directly reflect miRNA activity [42–45], so we developed ActMiR,
a computational tool for inferring the activity of miRNAs in vivo based on changes in
expression levels of target genes [46].

In this study, we investigated let-7 miRNA activity and MYCN interactions in MB.
Since integrative analysis between methylation, transcription, and CNV can cluster MB
into subgroups and because MB tumors consist of both stromal and tumor cells [47], we
investigated whether the tumor cellular composition can be estimated based on subgroup-
specific genomic features. We further investigated whether these cellular composition
estimates, or together with let-7 miRNA activity, are related to MB prognosis and the drug
response in MB subgroups.

Notably, we identified let-7 miRNA activity as a potential prognostic biomarker for
SHH-MB. We further demonstrated that MYCN expression, in combination with let-7
activity, stratified patients in SHH-MB into subtypes associated with different overall
survival. SHH-MB patients with both high let-7 activity and high MYCN expression had
significantly worse survival than other SHH-MB patients. Our results suggest that the MB
patients in each molecular subgroup are still heterogeneous and that a miRNA-mediated
regulatory network can be used for dissecting heterogeneity and identifying novel subtype-
specific prognostic markers and therapeutic targets.
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2. Materials and Methods
2.1. Preprocessing of Gene Expression, miRNA Expression, Methylation Data, and CNV Data

We downloaded 763 MB mRNA expression profiles (GSE85217) and 763 matching
MB methylation profiles (GSE85212) from the super series GSE85218 [16,48]. We also
downloaded 285 MB mRNA expression profiles (GSE37382) and 1097 MB genotype profiles
(GSE37384) from the super series GSE37385, which had some overlap with GSE85218 the
dataset that was not listed in the meta data [17]. For inferring the activity of miRNAs
with ActMiR, we downloaded the training dataset consisting of 73 mRNA expression
profiles and 64 miRNA pediatric brain cancer expression profiles (GSE42658), including
MB; of these data, 57 mRNA and miRNA profiles originated from the same non-control
samples [49]. From this dataset, we used 14 pilocytic astrocytoma samples, 14 ependymoma
samples, 9 MB samples, 5 glioblastoma samples, 5 atypical teratoid/rhabdoid tumor
samples, 4 choroid plexus papilloma samples, 3 diffuse astrocytoma samples, 2 anaplastic
astrocytoma samples, and 1 papillary glioneuronal sample. The 9 MB samples consisted of
5 Group 4 samples, 2 SHH samples, and 2 WNT samples.

All mRNA and miRNA expression data were log2 transformed. Copy number vari-
ation (CNV) was called on for the GSE37384 genotype profiles using version 1.64.0 of
the R package DNACopy’s circular binary segmentation method [50]. For the GSE85212
methylation profiles, we extracted DNA methylation values (β values) for each probe.
In the case of multiple probes mapping to the same gene, we performed a Spearman’s
correlation with the gene expression and the probe, with the best p-value selected because
methylation near the promoter regions is associated with gene repression [51–53]. To match
the genotype data from GSE37384 to methylation and gene expression data from GSE85218,
we used the tool MODMatcher to determine which samples were the most correlated and
then used clinical data such as age and sex to confirm their identities [53]. This resulted
in 229 samples with gene expression, methylation data, and CNV data. The results of this
mapping and the original dataset sample names are presented in Supplementary Table S1.

2.2. Identifying Cis-Regulatory Genes by Integrating Gene Expression, Methylation Data, and
CNV Data

To determine the cis-regulatory genes of MB, we used 229 samples with gene expres-
sion, methylation data, and CNV data by mapping between GSE85218 and GSE37384. We
performed multiple linear regression on these 229 mapped samples as follows: Expg ∼
Methylg + CNVg, where Expg indicates the expression levels of genes g, Methylg indicates
the DNA methylation level in a gene’s g promoter region, and CNVg indicates CNVs that
contained a gene g in cis form. The DNA methylation level was rank-based inverse normal
transformed. Cis-regulatory genes were determined based on the false discovery rate (FDR)
5% corresponding to p-values < 1 × 10−7. To calculate the FDR rates based on p-values,
the multipletests function in the statsmodels package in Python with the Benjamini and
Hochberg method was used [54]. We defined cis-Methyl genes as genes with a significantly
negative coefficient for Methylg variable in a multiple linear regression, cis-CNV genes as
those with a significantly positive coefficient for the CNV variable, and cis-CNV/Methyl as
the unique subset that met both criteria. At FDR 5% corresponding to p-values < 1 × 10−7,
we identified 3630 cis-CNV, 589 cis-methyl, and 107 both cis-CNV and cis-methyl genes.
We used a principal component analysis (PCA) to see how well these cis-regulatory genes
can separate MB subgroups.

2.3. Identifying Subgroups in GSE42658

Since GSE42658 did not list the subgroup annotation of the MB samples, we performed
subgroup classification as follows. Using the expression in GSE85218 of the cis-Methyl
genes identified above (Methods 2.2), we iteratively took the mean difference of each of the
four subgroups (SHH, WNT, Group 3, and Group 4) against a combined set of the other
three. Next, we performed a Spearman’s correlation of each GSE42658 sample’s cis-Methyl
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expression against each of the subgroup’s one vs. all mean difference. The subgroup with
the highest correlation was annotated as the GSE42658 sample’s subgroup.

2.4. Inferring Tumor Purity of SHH-MB Tumors

The expression of the cis-Methyl genes reflects a different cell of origin for each MB
subgroup. To further refine SHH-MB subgroup-specific up/downregulated genes, we
compared single-cell RNA-seq expression profiles from 25 MB patients (GSE119926) [55],
including 23 diagnostic samples and two recurrences. We downloaded TPM values
(transcript per million reads) for each gene and performed log2 transformation. Among
589 cis-Methyl genes, 247 and 248 were SHH-MB-specific up/downregulated, with genes
expressed higher/lower in SHH-MB than the other subgroups at p < 0.001, respectively.
Within the 247 SHH-MB-specific upregulated genes, 13 genes were expressed specifically
in SHH-MB tumor cells (p < 0.001 and expression in non-SHH-MB tumor cells < 1.5),
referred to as SHH-MB tumor cell-specific expressed genes (i.e., on genes). Similarly,
among 248 SHH-MB specific downregulated genes, 6 genes did not express in SHH-
MB tumor cells specifically (p < 0.001, and expression in SHH-MB tumor cells < 1.5),
referred to as SHH-MB tumor cell-specific non-expressed genes (i.e., off genes). Given the
SHH-MB tumor cell-specific on and off genes, their expression in a bulk tissue profile is
g = gre f

SHH_on ∗ purity + gre f
SHH_o f f ∗ (1− purity), with gre f

SHH_on and gre f
SHH_o f f as the reference

expressions of the SHH-MB tumor cell-specific on and off genes, respectively.

2.5. Inferring miRNA Activity with ActMiR

We previously developed a tool for inferring miRNA activity, ActMiR [46,56], based
on the expression levels of miRNA-predicted target genes in a tissue. Using ActMiR, we
trained pediatric brain-specific miRNA activity models using the miRNA expression and
gene expression data in GSE42658 [46,49]. The method is regression-based concerning both
the miRNA expression and gene expression. In brief, the ActMiR method first determined
the baseline expression levels of each miRNA’s target genes, i.e., a state where the miRNA
did not regulate gene expression. This baseline expression level was defined as the average
expression of samples with low miRNA expression. Next, we took the differences between
expression levels of the target genes and the baseline expression level for each sample to
determine how degraded the genes’ expressions were by miRNA. Finally, we performed
a linear regression between these degradation values and the baseline expression; the
resulting coefficient from the fit is the miRNA activity. However, because not all predicted
miRNA target genes are functionally regulated by miRNAs, we determined the miRNA
functional targets by using an iteratively reweighted least squares regression method
between activity and gene expression [36]. High anticorrelation between miRNA activity
and gene expression indicates that the gene is a functional target of miRNA. We inferred
the activity and determined the functional target genes for the let-7 miRNA family using
the mean miRNA expression of the following let-7 miRNA family members: hsa-let-7a,
hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f, hsa-let-7g, and hsa-let-7i.

Using the functional target genes determined by ActMiR in GSE42658, we inferred ac-
tivity in the GSE85218 MB dataset [16] following the procedure, as previously described [56].
In brief, based on the expression levels of the negatively associated functional target genes
of each miRNA, we calculated the sum of the scaled expression levels for each sample. We
defined the baseline samples for each miRNA as the samples with the lowest sum of scaled
expression levels of negatively associated functional target genes. We defined the bottom
5% of the total samples as the baseline samples. After defining the baseline samples, the
procedure to estimate the miRNA activity is the same as the standard ActMiR procedure
described above. As MB gene expression is heterogeneous by subgroup, we inferred the
activity on each subgroup separately using the classifications defined in Reference [16].
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2.6. Survival Association of miRNA Activity or Gene Expression

We tested for the overall survival associations with miRNA activity. We used Cox
proportional hazards regression on each MB subgroup with activity. We also separated
samples within each subgroup based on whether their miRNA activity was higher or lower
than the linear regression line between activity and tumor purity. We fit Kaplan–Meier
survival curves and tested the equivalence of the curves using log-rank tests for high vs.
low activity [57]. We performed the same procedure for the gene expression levels.

2.7. Interaction between Activity and Gene Expression

We investigated the relationship between the let-7 family’s activity and MYC, MYCN,
and LIN28A/B, because they are in the same signaling pathway [35]. We calculated
correlations between the gene expression and activity. We also separated samples based
on subgroup-specific MYCN expression and whether the samples were greater or less
than the purity-adjusted subgroup-specific expression (linear regression line between
expression and tumor purity). The resulting four groups were high activity and high
expression (MYCNhigh-let-7 activityhigh), high activity and low expression (MYCNlow-let-7
activityhigh), low activity and high expression (MYCNhigh-let-7 activitylow), and low activity
and low expression (MYCNlow-let-7 activitylow).

2.8. Identification of Functional Target Genes Enriched for Canonical Pathways

We annotated the function of miRNAs by comparing their functional target genes with
1329 canonical pathways from MSigDB databases [58] and identified biological pathways
overrepresented in the functional target gene set of each miRNA using Fisher’s exact test.

2.9. Detecting Small Molecules That Might Be Effective to SHH Subtypes with Poor Prognosis

First, we determined the differentially expressed genes (DEGs) between SHH-MB of
high let-7 activity and high MYCN expression vs. the rest of SHH-MB by using t-tests.
We determined DEGs at FDR 1%, which corresponded to p-values < 1.4 × 10−4. To
calculate the FDR based on the p-value, the multipletests function in the statsmodels
package in Python with the Benjamini and Hochberg method was used [54]. Next, based
on differentially expressed genes, we determined whether these genes were upregulated
or downregulated for tumors with high let-7 activity and high MYCN expression. Then,
we investigated whether these genes were perturbed by drug treatments using the query
tool (https://clue.io/query/, accessed on 3 June 2021) from the Connectivity Map (CMap)
of the Library of Integrated Network-Based Cellular Signatures (LINCS) gene expression
resource [59,60]. A negative enrichment score from CMap indicated that the treatment of
the drug showed opposite expression changes for SHH-MB tumors with high let-7 activity
and high MYCN expression compared to other SHH-MB tumors.

2.10. Validation

To validate our observations, we applied the analyses on 194 MB mRNA expression
profiles generated by the St. Jude group in the following datasets [61]: GSE10327 [20],
GSE12992 [62], and GSE30074 [63] and from http://www.stjuderesearch.org/data/me
dulloblastoma/, accessed on 26 March 2021 [28], which, overall, included 46 SHH-MB
samples. We normalized these mRNA expression profiles to the GSE85218 SHH samples
using ComBat in the sva R package [64]. We inferred the miRNA activity based on the
models trained on the GSE42658 dataset. To assess the survival as sociations between
let-7 activity and MYCN expression, we separated the samples into four groups based on
purity-adjusted expression and let-7 activity (above or below the linear regression lines
between let-7 activity/MYCN expression and tumor purity in GSE85218) and calculated
the survival differences between different groups.

https://clue.io/query/
http://www.stjuderesearch.org/data/medulloblastoma/
http://www.stjuderesearch.org/data/medulloblastoma/
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2.11. Computational Methods

Analysis was carried out using Python version 3.7.9 and R version 3.6.1 using the
packages scipy, lifelines, and survival [65–67]. The figures were generated with seaborn
and ggplot2 [68–70].

3. Results
3.1. Inter- and Intra-Tumor Heterogenity of MB Accessed by Cis-Methylation Regulated Genes

MB is categorized into four molecular subgroups according to gene expression patterns
and clinical features [8–11]. The molecular subgroups of MB have been shown to be
associated with distinct clinical features [8–14]. Here, we examined a MB cohort [16] with
the multi-omics profiling data available (Methods). The subgroup and age characteristics of
the MB cohort are described in Table 1. First, we used a PCA on the gene expression, and as
expected, it was able to separate the MB samples into the four molecular subgroups [8–14]
(Figure 1A). We further explored whether the expression of genes primarily regulated by
methylation (Methods) can better cluster MB into subgroups, because DNA methylation
shows a highly dynamic pattern during cellular differentiation, indicating its key function
related to cell fate specification [71–73], and patterns of DNA methylation may provide
an indirect assessment of these developmental origins. Indeed, cis-methyl genes (i.e.,
expression regulated by the methylation level in its promoter region; see Materials and
Methods for details) can better separate MB into subgroups (Figure 1B) than all the genes
(Figure 1A). In contrast, cis-CNV genes (i.e., expression regulated by its DNA copies; see
Materials and Methods for details) did not improve the subgroup separation (Figure 1C,D).

Table 1. Number of samples by subgroup and age for the studies, as described by Northcott et al. [16].
The validation datasets had incomplete age information [20,28,61–63].

Dataset Subgroup Subgroup
Number Age Number

Training (GSE85218) SHH 223 0–3 62
4–10 55

10–17 29
18+ 69

WNT 70 0–3 1
4–10 23

10–17 27
18+ 13

Group 3 144 0–3 24
4–10 90

10–17 17
18+ 5

Group 4 326 0–3 11
4–10 181

10–17 108
18+ 14

Validation SHH 46 <3 23
≥3 22

WNT 21 <3 0
≥3 21

Group 3 37 <3 9
≥3 27

Group 4 74 <3 3
≥3 71
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Figure 1. Subgroup distributions based on the PCA of expression profiles of (A) all 21,050
genes measured within GSE85212, GSE85217, and GSE37384; and (B) the 589 cis-methyl genes;
(C) 3630 cis-CNV genes; and (D) 107 genes in the overlap of the cis-CNV and cis-Methyl genes.

This result indicates that the expression of cis-methyl genes can capture epigenetic
fingerprints linked with the subgroups. Indeed, different molecular subtypes reflect dif-
ferent cells of origin of tumor cells [15,74], which have unique epigenetic fingerprints [29].
Furthermore, the expression of these cis-methyl genes that associate with cell types can
be used to estimate the tumor cell purity in tumor samples. For example, the expression
of cis-methyl genes can clearly separate SHH-MB (black dots in Figure 1B) from other
MB subgroups. By integrating single-cell RNA sequencing (scRNAseq) data of the MB
samples, we identified a set of cis-methyl genes whose expression was exclusively on or off
in SHH-MB tumor cells (PN progenitor cells, [74]) (see Materials and Methods for details).
As expected, the expression of this set of genes was able to separate SHH-MB from the
other MB subgroups (Supplementary Figure S1). Then, the SHH-MB tumor cell fraction in
tumor samples was estimated based on this set of genes (see Materials and Methods).

In addition, the MB subgroups have varying amplifications/deletions in oncogenic
genes [16,17]. As consistent with previous studies [16,17], both MYC and MYCN were
cis-CNVs (p = 1.096 × 10−8 and 5.234 × 10−11, respectively; Materials and Methods).
Furthermore, we found that MYC and MYCN are differently expressed by the subgroup
(Figure 2A,B). The Group 3 and WNT subgroups showed higher MYC expression levels,
while the SHH and WNT subgroups showed higher MYCN expression levels than the other
two subgroups. The higher expression of MYCN in SHH compared to the other subgroups
is consistent with known MYCN amplifications within the subgroup [16].
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Figure 2. Expression profiles for critical genes in the LIN28 pathway. (A–D) The expression distri-
butions of MYC, MYCN, LIN28A, and LIN28B, respectively, in GSE85218. LIN28A has a similar
expression for all four subgroups. SHH and WNT have lower expressions than Group 3 and Group 4
in LIN28B and higher expression in MYCN [16,20]. MYC has a unique expression profile: SHH and
Group 4 have lower expressions, while WNT and Group 3 have higher expressions. ♦: Diamonds
indicate outliers.

3.2. MYCN/LIN28/Let-7 Axis

MYCN, LIN28, and let-7 form a feed-forward loop (Figure 3), with MYCN promot-
ing the transcription of LIN28A/B and LIN28A/B inhibiting the maturation of let-7 mi-
croRNAs and then let-7 inhibiting MYCN post-transcriptionally [35,37,38,75–77]. The
MYCN/LIN28/let-7 axis plays a critical role in SHH-MB [16,17,26–28]. The expression of
LIN28B had subgroup variations, while the expression of LIN28A did not (Figure 2C,D).
The SHH and WNT subgroups had lower LIN28B expression levels than Groups 3 and 4
(Figure 2D), opposite of what would be expected based on the biology of high MYCN
leading to high LIN28A/B expression (Figure 3), suggesting other molecular mechanisms
regulating the feed-forward loop.

Figure 3. LIN28 signaling pathway. MYC, MYCN, and IL-6 promote transcription for LIN28A/B.
let-7 miRNAs post-transcriptionally repress the expression of MYC, MYCN, and IL-6.

Next, we examined the overall survival associations of the expression of LIN28A,
LIN28B, MYC, and MYCN using Cox proportional hazards regression. The expression
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of MYC, MYCN, and LIN28B was associated with the overall survival, as expected when
examining all the MB samples together (Table 2), as their expression is also associated
with the subgroups (Figure 2). When examining their associations with survival in each
individual subgroup, the MYCN expression level was not associated with survival in
SHH-MB (Table 2), even though MYCN was highly expressed in SHH-MB (Figure 2). On
the other hand, the LIN28B expression level was low in SHH-MB (Figure 2), suggesting
that other genes may play an important role in the MYCN/LIN28/let-7 pathways, such as
let-7 miRNAs. Therefore, the let-7 miRNA family was further examined for their impact on
the survival of SHH-MB.

Table 2. Associations of the overall survival (OS) and genes in the LIN28 pathway. Using all MB
samples together, LIN28B, MYC, and MYCN were significantly associated with survival. For SHH-
MB, only LIN28B was significantly associated with the OS. In WNT-MB, none of the four genes
was significant. In Group 3, MYC and MYCN were significant. In Group 4, MYC’s association
was significant.

Subgroup Gene Hazard Ratio Wald p Log-Rank p

Training All Samples MYCN 0.86 1.9 × 10−2 0.019
MYC 1.1 4.9 × 10−3 4.6 × 10−3

LIN28A 1.0 0.98 0.98
LIN28B 1.4 1.1 × 10−6 8.0 × 10−7

Training SHH MYCN 1.3 0.25 0.26
MYC 0.97 0.91 0.91

LIN28A 1.1 0.79 0.79
LIN28B 1.5 0.01 9.2 × 10−3

Training WNT MYCN 2.8 0.45 0.43
MYC 0.40 0.26 0.27

LIN28A 1.8 0.70 0.70
LIN28B 0.82 0.92 0.92

Training Group 3 MYCN 0.74 0.028 0.029
MYC 1.2 0.020 0.019

LIN28A 0.71 0.29 0.29
LIN28B 1.3 0.11 0.11

Training Group 4 MYCN 1.1 0.49 0.49
MYC 1.3 1.01 × 10−3 8.4 × 10−4

LIN28A 0.96 0.83 0.83
LIN28B 0.97 0.87 0.87

3.3. MB Has Higher Let-7 Activity Than Other Brain Tissues and Subgroup-Specific Activity

Let-7 miRNAs are tumor suppressors [37,38,78] post-transcriptionally repressing MYCN ex-
pression, as well as feedback repressing LIN28 expression in the MYCN/LIN28/let-7
pathway [35,39,40]. Therefore, we explored the prognostic effect of let-7 activity in MB.
There was no MB dataset with samples profiled for both miRNA and mRNA expression,
so we examined miRNA profiles of 57 pediatric brain tumors (GSE42658) [49] that re-
sembled MB. Within this dataset, the let-7 miRNAs had higher expression than the other
miRNAs (Figure 4A), and the let-7 expression in MB was not significantly different from its
expression level in the other tissues (MB vs. other tissues, t-test p = 0.65, Figure 4B).

Several studies have demonstrated that miRNA functional activity was not accurately
reflected by its expression level [42–44], so we inferred the activity of let-7 using the
previously described ActMiR method [46,56]. All let-7 miRNAs were highly expressed in
pediatric brain tumors (Figure 4A), so we inferred let-7 activity using the mean expression
of all let-7 miRNAs rather than individual miRNAs. Although let-7 miRNAs were not
significantly differentially expressed among the different tissues (Figure 4B), let-7 activity
in MB was significantly higher than the activity in most other tissues in a one vs. others
comparison (t-test, p = 0.011), except the activity in choroid plexus papilloma (Figure 4C),
indicating the potential regulatory role of let-7 miRNAs in MB.
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Figure 4. Distributions of the miRNA expression in GSE42658. (A) A histogram of the mean expres-
sion levels of all the miRNAs. Let-7 family miRNAs are indicated as red vertical lines. (B) Boxplots
of the mean let-7 family expression across tissue types. The expression of let-7 members in MB (red)
is not significantly different from its expression in other tissues or tumor types. (C) The inferred
let-7 family activity across tissues. The Let-7 activity in MB (red) was significantly higher than in the
other tissues in a one vs. others comparison (t-test, p = 0.011). A higher activity of let-7 in MB with
similar expression levels to other tissues indicates that the let-7 family more frequently regulates the
expression of its target genes in MB compared to other tissues [46,56]. ♦: Diamonds indicate outliers.

The functional target genes of the let-7 miRNAs, estimated by integrating the miRNA
expression and gene expression data of GSE42658, were used to infer the subgroup-specific
let-7 activity for the 763 MB samples in GSE85218 using the ActMiR method [46] (see
Materials and Methods for details). The subgroups SHH and Group 4 had 136 and 145 let-7
functional targets, respectively, much larger than the 33 and 38 functional targets in WNT
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and Group 3, respectively (Figure 5A). The SHH and Group 4 subgroups were enriched for
a MYCN amplification [16], suggesting a potential relationship between MYCN and let-7
miRNA activity.

Figure 5. Inferred activity in the let-7 miRNA family and correlation against MYCN for samples in
GSE85218. (A) The bar plot of the number of inferred functional targets for the let-7 family. p-values
indicating enrichment for functional targets by the hypergeometric test. SHH and Group 4 have
the most functional targets of the let-7 family. (B–E) Correlations of the let-7 activity and MYCN
expression in the subgroups SHH, WNT, Group 3, and Group 4, respectively. In SHH-MB, let-7
activity and MYCN expression had a significant Spearman’s correlation, with p = 1.66 × 10−8. The
correlation p-values were 0.411, 0.117, and 0.319 in WNT, Group 3, and Group 4, respectively.

To annotate the function of miRNAs, we assessed the biological pathways over-
represented in the functional target genes of the let-7 miRNAs (see Materials and Methods
for details) [58] at 5% FDR corresponding to p-values < 1 × 10−3. The functional targets of
let-7 in SHH-MB were uniquely significantly enriched for the Reactome G1 Phase pathway
(Supplementary Figure S2).

Next, because let-7 miRNAs suppress the MYCN expression post-transcriptionally [35]
(Figure 3), we examined the correlation between let-7 activity and MYCN expression.
In SHH-MB, let-7 activity had a significant negative correlation with MYCN expression
(p = 1.66 × 10−8; Figure 5B), while let-7 activity was not significantly correlated with MYCN
expression in the other subgroups (Figure 5C–E). This observation also indicates a potential
regulatory role of let-7 miRNAs in the MYCN/LIN28/let-7 pathways in SHH-MB.
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3.4. Stratifying SHH-MB by MYCN Expression and Let-7 Activity

The SHH-MB subgroup is the most heterogeneous among the MB subgroups [16,55].
As MYCN is highly expressed in SHH-MB (Figure 2) and let-7 miRNA is potentially active
(Figure 5) in SHH-MB, we investigated the potential of MYCN expression and/or let-7
activity as a prognostic biomarker (Table 3). MYCN is amplified in some SHH-MB tumor
cells [16,55], such that MYCN expression was significantly correlated with SHH-MB tumor
purity, as expected (Spearman’s correlation coefficient = 0.3265, p = 6.193 × 10−7; Supple-
mentary Figure S3A). On the other hand, let-7 activity was significantly anticorrelated with
SHH-MB tumor purity (Spearman’s correlation coefficient = −0.3891, p = 1.788 × 10−9;
Supplementary Figure S3B). Note that the LIN28A/B expression levels were very low
(Figure 2 and Supplementary Figure S4A) and did not correlate with the tumor purity
(Spearman’s correlation coefficient r = 0.02 and −0.01, p = 0.7 and 0.85 for LIN28A and
LIN28B, respectively).

Table 3. Associations of the overall survival rate and genes in the LIN28 pathway with let-7 activity
based on the SHH-MB samples in GSE85218. LIN28A/B KM curves for SHH-MB are shown in
Supplementary Figure S11A,B.

Test Variable Hazard
Ratio Wald p Log-Rank p

Surv~MYCN MYCN 1.3 0.25 0.26
Surv~LIN28A LIN28A 1.1 0.79 0.79
Surv~LIN28B LIN28B 1.5 0.011 0.0092

Surv~let-7 let-7 169.5 0.32 0.32
Surv~purity purity 3.3 0.11 0.11

Surv~age age 0.99 0.55 0.55
Surv~MYCN + let-7 MYCN 1.7 0.066 0.069

let-7 2.9 × 105

Surv~purity + MYCN + let-7 purity 1.4 × 10−3 0.025 0.024
MYCN 1.7

let-7 7.7 × 103

Next, the SHH-MB samples were partitioned into high/low MYCN expression groups
based on the purity-adjusted mean MYCN expression level (Supplementary Figure S3A)
or into high/low let-7 activity groups based on the purity-adjusted mean let-7 activ-
ity (Supplementary Figure S3B). Neither MYCN or let-7 were significantly associated
with the survival rate (MYCN: log-rank test p = 0.182, Figure 6A and let-7: log-rank test
p = 0.362, Figure 6B). When combining MYCN and let-7 activity information together, the
SHH-MB patients with both high MYCN expression and high let-7 activity (MYCNhigh-
let-7 activityhigh) had a much worse overall survival rate than the other three groups
(MYCNhigh-let-7 activitylow, MYCNlow-let-7 activityhigh, and MYCNlow-let-7 activitylow)
(log-rank test p = 0.0028, Figure 6C).

3.5. Validation in an Independent MB Cohort

To validate our observations, we combined 194 MB mRNA expression profiles gener-
ated by the St. Jude’s Children’s Research Hospital group [61], including GSE10327 [20],
GSE12992 [62], GSE30074 [63], and from http://www.stjuderesearch.org/data/medullob
lastoma/, accessed on 26 March 2021 [28] (see Materials and Methods), referred to as the
validation cohort collectively. The characteristics of the validation cohort are summarized
in Table 1. Like the GSE85218 dataset, the MYCN expression in SHH-MB was significantly
higher than in the other groups (p = 1.420 × 10−9, Supplementary Figure S5B). The same
analyses above were applied to the validation cohort (the results are listed in Table 4).

http://www.stjuderesearch.org/data/medulloblastoma/
http://www.stjuderesearch.org/data/medulloblastoma/


Cancers 2022, 14, 139 13 of 21

Figure 6. Kaplan–Meier overall survival curves for SHH-MB based on the MYCN expression,
let-7 family activity, and MYCN + let-7 family activity for the samples in GSE85218. High activ-
ity/expression (blue) was defined as the group of samples with activity/expression greater than
or equal to the linear regression line between the MYCN/let-7 family and purity, and low activ-
ity/expression (orange) was defined as the group of samples with activity/expression less than the
linear regression line. (A) The Kaplan–Meier survival curves for SHH with high vs. low MYCN
expression (log-rank test p = 0.182), (B) the Kaplan–Meier survival curves for SHH with let-7 activ-
ity (p = 0.362), and (C) the Kaplan–Meier survival curves for let-7 activity and MYCN expression.
MYCNhigh-let-7 activityhigh showed a significantly worse outcome (log-rank tests with p = 0.0028)
than the combined group (Others) of MYCNhigh-let-7 activitylow, MYCNlow-let-7 activityhigh, and
MYCNlow-let-7 activitylow. The Others group in 7C is represented as individual groups in Supple-
mentary Figure S12.

For SHH-MB in the validation cohort, the inferred let-7 activity and MYCN expression
were significantly anticorrelated (Spearman’s correlation r = −0.393, p = 0.00689) (Sup-
plementary Figure S6A), consistent with the observations in the GSE85218 data. Their
associations with survival are listed in Table 5. Similarly, the inferred SHH-MB tumor
purity was correlated with MYCN expression (r = 0.2961, p = 0.04572) and anticorrelated
with let-7 activity (r = −0.3261, p = 0.0270). Then, the SHH-MB samples were partitioned
into high/low MYCN expression or high/low let-7 activity groups based on the purity-
adjusted mean values (Supplementary Figure S3C,D). MYCN expression or let-7 activity
alone were not significantly associated with survival (p-values = 0.27 and 0.63, respectively;
Figure 7A,B). When combining MYCN expression and let-7 activity information together,
the SHH-MB patients with both high MYCN expression and high let-7 activity had a sig-
nificantly worse survival rate than MYCNhigh-let-7 activitylow, MYCNlow-let-7 activityhigh,
and MYCNlow-let-7 activitylow (log-rank test p-value = 0.037; Figure 7C). All these findings
were consistent with our observations in the GSE85218 dataset.

Table 4. Associations of the survival rate and genes in the LIN28 pathway based on samples in the
validation dataset.

Subgroup Gene Hazard Ratio Wald p Log-Rank p

Validation all MYCN 1.3 0.019 0.019
MYC 1.0 0.58 0.58

LIN28A 1.7 0.041 0.044
Validation SHH MYCN 1.4 0.14 0.14

MYC 0.77 0.49 0.49
LIN28A 5.3 0.074 3.5 × 10−5

Validation WNT MYCN 5.2 0.15 0.076
MYC 0.20 0.23 0.17

LIN28A 65.8 0.27 0.25



Cancers 2022, 14, 139 14 of 21

Table 4. Cont.

Subgroup Gene Hazard Ratio Wald p Log-Rank p

Validation Group3 MYCN 0.90 0.82 0.82
MYC 1.2 0.30 0.29

LIN28A 2.0 0.28 0.28
Validation Group4 MYCN 1.7 1.1 × 10−3 4.3 × 10−4

MYC 1.1 0.64 0.64
LIN28A 0.66 0.39 0.39

Figure 7. Associations of the survival rate and MYCN expression and let-7 activity based on SHH-MB
samples in the validation datasets. High activity/expression (blue) was defined as the group of sam-
ples with activity/expression greater than or equal to the linear regression line between MYCN/let-7
family and purity, and low activity/expression (orange) was defined as the group of samples with
activity/expression under the linear regression line. (A) The Kaplan–Meier overall survival curves
for MYCN expression (log-rank test p = 0.267), (B) the Kaplan–Meier overall survival curves for
let-7 family activity (log-rank test p = 0.627), and (C) the Kaplan–Meier survival curves for let-7
activity with MYCN expression. MYCNhigh-let-7 activityhigh (blue) showed a significantly worse
outcome (log-rank tests p = 0.037) than MYCNhigh-let-7 activitylow, MYCNlow-let-7 activityhigh, and
MYCNlow-let-7 activitylow.

Table 5. Associations of the survival rate and genes in the LIN28 pathway, let-7 activity, and their
combined effects for the SHH-MB samples in the validation dataset. LIN28A KM curves for SHH-MB
are shown in Supplementary Figure S11C.

Test Variable Hazard
Ratio Wald p Log-Rank p

Surv~MYCN MYCN 1.4 0.14 0.14
Surv~LIN28A LIN28A 5.3 0.074 3.5 × 10−5

Surv~LIN28B LIN28B N/A N/A N/A
Surv~let-7 let-7 11.4 0.55 0.55

Surv~purity purity 0.20 0.81 0.81
Surv~age age <3 1.2 0.79 0.79

age ≥3 N/A
Surv~MYCN + let-7 MYCN 1.8 0.039 0.025

let-7 7.7 × 103

Surv~purity + MYCN + let-7 purity 0.98 0.090 0.057
MYCN 1.8

let-7 7.7 × 103
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3.6. Drug Repurposing to Identify Potential Therapeutic Treatment for SHH Subgroups

MYCN-amplified SHH-MB is generally resistant to SMO inhibitors, a targeted therapy
for SHH-MB [18,19,79]. It has been suggested that DFMO would have a greater effect on
MYCN-amplified tumors [80]. ODC inhibition by DFMO decreases LIN28 and increases
let-7 [35,76,81], so the low expression of LIN28A/B in SHH-MB and the high let-7 activity
suggest that DFMO is unlikely to be effective for SHH-MB patients with high MYCN
expression and high let-7 activity who have a less-favorable survival rate. Thus, there is an
urgent need to develop therapeutics for SHH-MB patients, especially for patients with high
let-7 activity and high MYCN expression.

To understand the molecular mechanisms driving the survival differences (Figure 6),
we compared SHH-MB with both high MYCN expression and high let-7 activity against
the other SHH-MB samples and identified 172 differentially expressed genes at FDR < 1%,
including 125 upregulated and 47 downregulated genes in the MYCNhigh-let-7 activityhigh

SHH-MB group. Using these genes, we performed a pathway enrichment analysis and
found that the upregulated genes were enriched for KEGG neuroactive ligand receptor
interaction (p = 3.448 × 10−5) and other ligand–receptor pathways, which may indicate
cell-to-cell interactions as potential drug targets (Supplementary Figure S7).

Next, we compared these differentially expressed genes with drug signatures in the
Connectivity Map (CMap) of the Library of Integrated Network-Based Cellular Signatures
(LINCS) gene expression resource [59,60] using the query tool (https://clue.io/query/,
accessed on 3 June 2021). We identified 21 drug candidates whose effects may reverse
the DEG signature (negative scores lower than −90, Table 6). Some drugs with the same
mechanisms of actions showed consistent enrichment scores < −90. For example, FGFR
inhibitors, including orantinib, PD-173074, and brivanib, were in the candidate drug list
(Table 6). Previous studies have shown that FGFR promotes MB tumor cell invasion
in vitro [82], the blockade of FGFR represses brain tissue infiltration in vivo [82], and FGFR
inhibitor decreases the viability and proliferation in MB cell lines [83]. These results suggest
that the FGFR signaling pathway may be a potential target for treating SHH-MB patients
with both high MYCN expression and high let-7 activity.

Table 6. CMap results for the 21 drugs with negative CMap connectivity scores. The target genes
of these drugs are shown as a full table in Supplementary Table S3. 1 CMap connectivity score. A
score of 95 indicates that only 5% of the reference gene sets showed stronger connectivity than the
current query to the perturbagen in question. 2 Number of drugs that have the same mechanism
of action and of which scores are smaller than −90. The number in parentheses indicates the total
number of drugs with the same mechanisms of action. 3 Enrichment statistics of drugs with the same
mechanisms of action. Only shown scores are smaller than −90.

Score 1 Name Description Number of
Drugs 2

Enrichment
Score 3

−99.26 cobalt(II)-chloride HSP inducer 1 (3) -
−98.8 amonafide Topoisomerase inhibitor 1 (16) -
−98.64 embelin HCV inhibitor 1 (3) -
−97.22 hyperforin Cyclooxygenase inhibitor 1 (57) -
−97.02 parthenolide NF-kB pathway inhibitor 1 (12) -
−95.75 dapsone Bacterial antifolate 1 (3) -
−95.6 brivanib FGFR inhibitor 3 (3) −97.12
−94.79 ketoconazole Sterol demethylase inhibitor 1 (6) -

−94.68 piperacillin Bacterial cell wall synthesis
inhibitor 1 (29) -

−94.61 ziprasidone Dopamine receptor
antagonist 1 (65) -

−92.54 tienilic-acid Sodium/potassium/chloride
transporter inhibitor 1 (4) -

https://clue.io/query/
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Table 6. Cont.

Score 1 Name Description Number of
Drugs 2

Enrichment
Score 3

−92.07 sitagliptin Dipeptidyl peptidase
inhibitor 1 (3) -

−91.88 orantinib FGFR inhibitor 3 (3) −97.12

−91.59 FCCP Mitochondrial oxidative
phosphorylation uncoupler 1 (2) -

−91.52 XMD-885 Leucine rich repeat kinase
inhibitor 1 (3) -

−91.3 geldanamycin HSP inhibitor 1 (13) -

−90.67 harpagoside Acetylcholinesterase
inhibitor 1 (17) -

−90.59 tyrphostin-AG-1478 EGFR inhibitor 1 (42) -
−90.43 AG-370 PDGFR receptor inhibitor 1 (9) -
−90.06 PD-173074 FGFR inhibitor 3 (3) −97.12
−90.05 kinetin-riboside Apoptosis stimulant 1 (10) -

4. Discussion

Our integrative analysis of gene expression, methylation, and CNV identified cis-methylation
genes that better separated MB patients into molecular subgroups than all genes, in-
dicating subgroups are probably linked to an epigenetic memory of development lin-
eages [15,29,55,74]. By leveraging inferred miRNA activity, we identified a subset of
SHH-MB patients with a worse survival rate than other SHH-MB patients (Figure 6C),
and the association was validated in an independent SHH-MB cohort (Figure 7C). The
MYCNhigh-let-7 activityhigh SHH-MB subset did not overlap with the SHH-MB subtypes
based on a similarity network fusion (SNF) analysis [16]. SHH-α and SHH-β, subtypes
of SHH-MB by SNF, were enriched for MYCN amplification and were associated with
worse survival outcomes [16] (five-year survival 69.8% and 67.3% for SHH-α and SHH-β,
respectively vs. 88–88.5% for other SHH-MBs). The MYCNhigh-let-7 activityhigh SHH-MB
patient group consisted of 32 samples, where 10 of the samples fell into the SNF subtypes
SHH-α or SHH-β (five and five samples, respectively) (Fisher’s exact test p = 0.05 and
p = 0.6).

High MYCN expression being associated with inferior survival in SHH-MB is expected,
as MYCN is an oncogene [16]. However, let-7, a known tumor suppressor, is downregulated
in multiple tumor types [37,78,84]. It is counterintuitive that MYCNhigh-let-7 activityhigh

SHH-MB patients had a worse overall survival rate than the other SHH-MB patients,
especially MYCNhigh-let-7 activitylow SHH-MB patients. It has been shown that high
levels of MYCN protein persist in MYCN-amplified neuroblastoma after transfecting
high levels of let-7 miRNA and that MYCN, which is the most abundant target for let-7
miRNA, actually acts as a sponge for let-7 miRNAs in these cells [85]. Our observation
that MYCNhigh-let-7 activityhigh SHH-MB was associated with worse survival might be
due to the MYCN sponge effect on let-7 miRNAs dominating the let-7-repressing effect
on MYCN transcripts. Indeed, MYCN expression and let-7 activity were not correlated in
MYCNhigh-let-7 activityhigh SHH-MB, while they were significantly anticorrelated in other
SHH-MB (Supplementary Figure S8).

High LIN28 expression is known to be significantly correlated with a shorter survival
time in MB [86]. LIN28B regulates multiple oncogenic processes, in part by downregulat-
ing the let-7 miRNA family in MB, and LIN28B expression is associated with survival in
Group 3 and Group 4 MB [29]. However, whether LIN28/let-7 play an important role in
SHH-MB is not previously known, indicating that our finding that let-7 plays a potential
critical regulatory role in SHH-MB is novel. Beyond validation in independent datasets
(Figure 7), experimental validations, such as RT-qPCR after let-7 knockdown or overexpres-
sion in SHH-MB cells, are needed to confirm the regulatory relationships between let-7 and
its target genes.
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About 8% of SHH-MB patients carry TP53 mutations based on a whole-genome
sequencing study [12]. A separate study showed that SHH-MB with TP53 mutations
have worse survival than SHH-MB without TP53 mutations [23]. The functional impact
of TP53 mutations is heterogeneous, resulting in a spectrum of functional changes from
loss of function to gain of function [87]. In our training dataset (GSE85218), the TP53
mutation status of five SHH-MB tumor samples was characterized by whole-genome
sequencing [12,88]. One of the five SHH-MB samples carried a TP53 mutation. To assess
the relationship between the TP53 mutation status and potential p53 protein function, we
estimated the p53 pathway activity for each SHH-MB sample in the training dataset based
on ssGSEA [89,90]. The SHH-MB sample with TP53 mutations was within the lowest
quartile of the p53 pathway activity (Supplementary Figure S9A); however, SHH-MB
patients with p53 pathway activity lower than the activity in this TP53-mutated patient
had better survival than the other SHH-MB patients (Supplementary Figure S9B). These
results together indicate a high complexity in including the TP53 mutation status or p53
functional status in prognostic biomarker models.

The overall survival rates of the four MB subgroups were not significantly differ-
ent (Supplementary Figure S10), and SHH-MB was the most heterogeneous subgroup
among the four MB subgroups [12]. SMO inhibition is a targeted therapy for SHH-MB,
but SHH-MB patients with high MYCN expression were resistant to SMO inhibitors in
general [18,19,79]. Furthermore, p53 mutations are associated with MYCN amplification
and are implicated in conferring resistance to both radiation therapy and SMO inhibitors in
SHH-MB [22–25]. A subset of SHH-MB patients with high MYCN expression (MYCNhigh-
let-7 activityhigh SHH-MB) had a significantly worse survival rate than the other SHH-MB
(Figures 6 and 7). Thus, it is urgent to identify effective treatments for these MYCNhigh-let-7
activityhigh SHH-MB patients. DFMO, an inhibitor of LIN28A/B, has been identified as a
potential treatment option for embryonal tumors [80]. It is worth noting that the LIN28A/B
expression levels were low in SHH-MB (Figure 2) and similar to other tissues (Supplemen-
tary Figure S13), so it is unlikely that DFMO is effective in SHH-MB. Our analysis suggests
that FGFR inhibitors are potential drug candidates for MYCNhigh-let-7 activityhigh SHH-MB
(Table 6). We note that the effects of these predicted candidates have not been validated
in SHH-MB cancers. Further in vitro and in vivo experiments are needed to validate and
strengthen our findings and demonstrate their therapeutic values. Our results suggest
that the MB patients in each molecular subtype are still heterogeneous, and integrated
genomic analyses can be used for dissecting their heterogeneity and identifying novel
subtype-specific prognostic biomarkers and therapeutic targets.

5. Conclusions

We applied an integrated genomic analysis on MB datasets and inferred the let-7
miRNA activity in MB. We identified a SHH-MB subset with high MYCN expression
and high let-7 activity associated with a worse survival rate than the other SHH-MB and
validated the association in an independent MB cohort.
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//www.mdpi.com/article/10.3390/cancers14010139/s1: Table S1: MODMatcher mapping results.
Table S2: GSE42658 let-7 family functional target genes and GSE85218 functional target genes.
Table S3: A full list of the CMap connectivity scores and target genes. Figure S1: SHH-MB spe-
cific genes; Figure S2: Functional annotation of let-7’s functional targets; Figure S3: Partitioning
SHH-MB samples into MYCN expression low/high or let-7 activity low/high with tumor purity;
Figure S4: Histogram of mean gene expression levels based on SHH samples; Figure S5: Validation
version of Figure 2 based on St. Jude data set; Figure S6: Correlation between MYCN expression
and let-7 activity and Kaplan-Meier survival curves for the validation cohort; Figure S7: Func-
tional annotation of differentially expressed genes (DEGs) used for CMAP; Figure S8: Comparison
between let-7 family activity and MYCN expression levels for the four SHH groups separated
by MYCN expression and let-7 activity in the validation cohort; Figure S9: TP53 in SHH-MB
samples of GSE85218; Figure S10: Subgroup KM curve in GSE85218 and the validation cohort;
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Figure S11: Kaplan-Meier overall survival curves for LIN28A and LINB expression levels based on
SHH MB samples; Figure S12: Kaplan-Meier survival curves for GSE85218 displaying individual
groups; Figure S13: Expression of MYC, MYCN, LIN28A, and LIN28B in GSE42658.
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