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Simple Summary: Although diffusion-weighted imaging (DWI) can be valuable for differential
diagnosis of lung cancer from benign pulmonary nodules and masses (PNMs), the diagnostic
capability may not be perfect. This study’s purpose was to compare the diagnostic efficacy of
18-fluoro-2-deoxy-glucose positron emission tomography–computed tomography (FDG-PET/CT)
and magnetic resonance imaging (MRI) of DWI and T2-weighted imaging (T2WI) in PNMs. There
were 278 lung cancers and 50 benign PNMs that were examined by FDG-PET/CT and MRI. The
sensitivity of the maximum standardized uptake value (SUVmax) was significantly lower than that of
the apparent diffusion coefficient (ADC) and the T2 contrast ratio (T2 CR). The accuracy of SUVmax
was significantly lower than that of ADC and that of T2 CR. The sensitivity and accuracy of MRI
were significantly higher than those of FDG-PET/CT. MRI can replace FDG-PET/CT for differential
diagnosis of PNMs.

Abstract: The purpose of this retrospective study was to compare the diagnostic efficacy of FDG-
PET/CT and MRI in discriminating malignant from benign pulmonary nodules and masses (PNMs).
There were 278 lung cancers and 50 benign PNMs that were examined by FDG-PET/CT and MRI.
The T2 contrast ratio (T2 CR) was designated as the ratio of T2 signal intensity of PNM divided
by T2 signal intensity of the rhomboid muscle. The optimal cut-off values (OCVs) for differential
diagnosis were 3.605 for maximum standardized uptake value (SUVmax), 1.459 × 10−3 mm2/s
for apparent diffusion coefficient (ADC), and 2.46 for T2 CR. Areas under the receiver operating
characteristics curves were 67.5% for SUVmax, 74.3% for ADC, and 72.4% for T2 CR, respectively. The
sensitivity (0.658) of SUVmax was significantly lower than that (0.838) of ADC (p < 0.001) and that
(0.871) of T2 CR (p < 0.001). The specificity (0.620) of SUVmax was that the same as (0.640) ADC and
(0.640) of T2 CR. The accuracy (0.652) of SUVmax was significantly lower than that (0.808) of ADC
(p < 0.001) and that (0.835) of T2 CR (p < 0.001). The sensitivity and accuracy of DWI and T2WI in
MRI were significantly higher than those of FDG-PET/CT. Ultimately, MRI can replace FDG PET/CT
for differential diagnosis of PNMs saving healthcare systems money while not sacrificing the quality
of care.

Keywords: positron emission tomography–computed tomography (FDG-PET/CT); magnetic
resonance imaging (MRI); diffusion-weighted magnetic resonance imaging (DWI); T2-weighted
imaging (T2WI); lung cancer; pulmonary nodule and mass (PNM)
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1. Introduction

18-fluoro-2-deoxy-glucose positron emission tomography–computed tomography
(FDG-PET/CT) is widely accepted as the imaging modality of choice in tumor staging and
as differentiating between malignant and benign pulmonary nodules [1,2]. FDG-PET/CT
has a high false-positive rate and low specificity in tuberculosis endemic areas [3]. FDG-PET
has given false-negative results for well-differentiated pulmonary adenocarcinoma [4,5],
or small volumes of metabolically active tumors [6], and false-positive results for inflam-
matory nodules [7,8]. FDG-PET/CT is not used in many hospitals due to its high cost,
radiation exposure, and the use of a contrast medium.

Magnetic resonance imaging (MRI) is more useful than CT for the visualization of the
heart, mediastinal vessels and the pericardium [9]. MRI has an advantage specifically for
investigating an invasion into the left atrium via pulmonary veins, the superior vena cava,
or myocardium. Diffusion-weighted magnetic resonance imaging (DWI) is applied uni-
versally to demonstrate the decreased diffusion of water molecules. DWI is characterized
as the random motion of water molecules in biologic tissue, which is called the Brownian
movement [10]. DWI was performed first in brain imaging, mainly for the assessment
of acute ischemic stroke, intracranial tumors, and demyelinating diseases [11,12]. The
diffusion of water molecules in malignant neoplasms is usually decreased compared to that
in benign tissue, resulting in a lower apparent diffusion coefficient (ADC) value [13,14].
The MR signal intensity of pulmonary cancers increased drastically compared to that of
benign lesions [15]. DWI can distinguish benign from malignant lesions in many organs,
especially in the lung [16–19], in the prostate [20], in the breast [21], and in the liver [22].
Two meta-analyses of MRI (DWI) reported that MRI (DWI) is valuable for a differential
diagnosis of benign and malignant pulmonary nodules and masses (PNMs) [23,24].

Although DWI can be valuable for differential diagnosis of lung cancer from benign
PNMs, the diagnostic capability may not be perfect. DWI has a weak point for pulmonary
abscesses and mycobacteria infections [25]. The usefulness of T2WI was demonstrated, es-
pecially in the evaluation of high-intensity fluid materials associated with the organ lesions,
such as intratumoral necrosis, cysts, mucus, hemorrhage, or edema [26,27]. Combined
assessment of DWI and T2WI works well together for detecting PNMs. We reported MRI
(DWI + T2WI) was useful for the assessment of PNMs in a previous paper [25]. In this paper,
we compared diagnostic performance between MRI (DWI + T2WI) and FDG-PET/CT.

The purpose of this study was to compare the diagnostic efficacy of FDG-PET/CT
and MRI with DWI and T2WI in discriminating malignant from benign PNMs.

2. Materials and Methods
2.1. Eligibility

The institutional ethical committee of Kanazawa Medical University consented to
the study protocol for evaluating FDG-PET/CT and MRI in patients with PNMs (the
consented number: No. I302). An informed consent document for the MRI was obtained
from each patient after discussing the risks and benefits of the examinations. The study
was performed according to the guidelines of the Declaration of Helsinki.

2.2. Patients

Patients who had lung cancer or a benign pulmonary nodule and mass (BPNM) in
chest X-rays were examined first by chest CT with contrast media. PNMs that were less
than 6 mm of solid nodules or 15 mm of part-solid nodules were followed by CT, FDG-
PET/CT or MRI for two years. When growth was detected, surgical resection of them
was performed. In the patients who had primary lung cancers or BPNMs in CT and had
FDG-PET/CT and MRI examinations from May 2009 to April 2020, 331 patients qualified
for detailed analysis of FDG-PET/CT and MRI with DWI and T2WI before pathological
diagnosis and bacterial diagnosis. Patients in the study had PNMs with a maximum
size of 150 mm or less (range 5–150 mm, mean 31.9 mm) in CT, which had no definitive
calcification. Patients with a part-solid PNM were included. Lung cancers with pure
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ground-glass-nodules (GGNs) were excluded. Patients who received prior treatment were
excluded. Most of the PNMs were pathologically determined by surgical resection or
bronchoscopic examination. The other PNMs were determined by bacterial culture or a
roentgenographically follow-up study. The PNMs were determined as benign when the
PNMs decreased in size or disappeared upon review of chest X-rays films or CT. Out of
331 patients, 3 patients were excluded because of insufficient data. Finally, 328 PNMs were
registered in the study (Table 1), of which 208 patients were men and 120 were women.
Their mean age was 68.3 years old (range 37 to 85). There were 278 lung cancers and
50 BPNMs. Twenty-nine patients had part-solid PNMs. Out of the 328 patients with PNMs,
311 were also used in another paper [25]. The diagnosis was made pathological in all
278 lung cancers. The 278 lung cancers consisted of 192 adenocarcinomas, 64 squamous
cell carcinomas, 5 large cell neuroendocrine carcinomas (LCNECs), 3 large cell carcinomas,
4 adenosquamous carcinomas, 2 carcinoids, 7 small cell carcinomas and 1 carcinosarcoma.
TNM classification and the lymph node stations of lung cancer were classified according to
the new definitions in UICC 8 [28]. There were 2 pathological T1mi (pT1 mi) carcinomas,
69 pT1a carcinomas, 53 pT1b carcinomas, 5 pT1c carcinomas, 80 pT2a carcinomas, 22 pT2b
carcinomas, 39 pT3 carcinomas, and 8 pT4 carcinomas. There were 222 pathological N0
(pN0) carcinomas, 34 pN1 carcinomas, and 22 pN2 carcinomas. There were 269 pathological
M0 (pM0) carcinomas, 6 pM1a carcinomas, 2 pM1b carcinomas, and 1 M1c carcinoma.
There were 122 pStage IA carcinomas, 60 pStage IB carcinomas, 28 pStage IIA carcinomas,
26 pStage IIB carcinomas, 32 pStage IIIA carcinomas, 1 pStage IIIB carcinoma, 8 pStage IVA
carcinomas, and 1 pStage IVB carcinoma.

Table 1. Patients’ characteristics.

Diagnosis No. of Patients

Lung cancer 278

adenocarcinoma 192
squamous cell ca. 64

LCNEC 5
Large cell ca. 3

Adenosquamous ca. 4
Carcinoid 2

Small cell ca. 7
Carcinosarcoma 1

Inflammatory benignity 39

Mycobacterial disease 13
(Tbc 5, NTM 8)

Pneumonia 12
Pulmonary abscess 7

Pulmonary scar 3
Organized
pneumonia 2

Other 2

Non-inflammatory benignity 11

Hamartoma 5
Pulmonary

sequestration 2

Other 4

Total No. of patients 328
LCNEC: large cell neuroendocrine carcinoma, Tbc: tuberculosis, NTM: nontuberculous mycobacteria.

For 50 BPNMs, there were 39 inflammatory BPNMs [Mycobacterial disease 13 (tu-
berculosis 5, nontuberculous mycobacteria 8), pneumonia 12, pulmonary abscess 7, pul-
monary scar 3, organized pneumonia 2, pulmonary granuloma 1 and sarcoidosis 1, and
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11 non-inflammatory BPNMs (hamartoma 5, pulmonary sequestration 2, nodular lymphoid
hyperplasia 1, inflammatory myofibroblastic tumor 1, encapsulated pleural effusion 1], and
pleural cyst 1). Twenty-nine BPNMs were pathologically diagnosed by resection. Three
BPNMs were diagnosed as a mycobacterial disease by bacterial culture. The remaining
18 BPNMs were diagnosed as benign diseases by reduced size or vanishing of the BPNMs.

2.3. FDG-PET/CT

FDG-PET/CTs were performed using a PET camera (SIEMENS Biograph Sensation 16,
Erlangen, Germany). Each patient fasted at least 6 h before being scanned. The plasma
glucose level was checked before the injection of FDG and was confirmed to be <180 mg/dL
in all patients. The dose of 18F-FDG was 3.7 MBq/Kg of body weight. The CT data were
collected in the helical acquisition mode. Each patient’s CT images were matched to
the pixel size of his or her PET data in order to match the in-slice resolution of the PET
images. A 60-min uptake period is needed to allow the contrast medium to take effect,
and an emission scan was taken for 3 min per bed position, and whole-body scanning was
performed from head to pelvis. The PET data were reconstructed with an ordered-subset
expectation algorithm using the CT images for attenuation correction. The PET-CT images
were analyzed on a dedicated workstation.

After image reconstruction, a round region of interest (ROI) of a 2-dimension (2D) was
drawn on the fused CT image by the radiologist with 30 years of radioisotope scintigraphy
and FDG-PET/CT experience who was not aware of the patients’ clinical data. For the
lesions with negative or faintly positive FDG-PET findings, the region of interest (ROI) was
drawn on the fusion image with the corresponding CT. From those ROIs, the maximum
standardized uptake value (SUVmax) was obtained.

2.4. MR Imaging

All MR images were performed without contrast media using a 1.5 T magnetic scanner
(Magnetom Avanto, Siemens, Erlangen, Germany). The conventional MR images were
made of axial and coronal T1 weighted turbo spin-echo (TSE) and T1 gradient recalled
echo (GRE), and axial and coronal T2-weighted TSE (Table 2). Examination of the 1.5-T
MRI was conducted as follows: T2-weighted imaging (T2WI) was performed in a TSE;
TR/TE, 4400–6000/74 ms; FOV, 350 × 240 mm; matrix, 320 × 198; thickness, 6.0 mm), Flip
angle 90◦. T1-weighted imaging (T1WI) was performed in a TSE and a GRE. DWIs with
a single-shot echo-planar method were conducted with a slice thickness of 6 mm under
SPAIR (spectral attenuated inversion recovery) with a respiratory triggered scan with the
next condition: TR/TE/flip angle, 3000–4500/65/90; diffusion gradient encoding in three
orthogonal directions; b-value = 0 and 800 s/mm2; field of view, 350 mm; matrix size,
128 × 128.

Table 2. Imaging parameters used for the study on a 1.5 T magnetic resonance scanner.

Sequence Echo Time (TE)
(ms)

Repetition Time
(TR) (ms)

Slice Thickness
(mm)

Field of View
(FOV) (mm)

Matrix
Size

T1 turbo-spin echo (TSE) 5.4 600–1000 6 mm 320 × 198 320 × 198
T1 gradient recalled echo (GRE) 4.78 6.54 3.5 mm 380 × 240 256 × 151

T2 turbo-spin echo (TSE) 74 4400–6000 6 mm 350 × 240 320 × 198
DWI SPAIR with respiratory

triggered fat suppression 65 3000–4500 6 mm 350 128 × 128

SPAIR: spectral attenuated inversion recovery.

For the visual detection in DWI, diffusion detectability scores (DDSs) of lung cancers
and BPNMs were determined visually on a 5-point scale in our article [29], which was a
revision of the Hahn SY model [30]. After image reconstruction, a two-dimensional (2D)
round or elliptical region of interest (ROI) was drawn on the lesion that was detected
visually on the ADC map with reference to T2-weighted or CT image. The procedures were
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repeated three times, and the minimum ADC value was obtained. The T2 contrast ratio
(T2 CR) of a PNM was defined based on the definition of Koyama et al. [31]: T2 CR = the
ratio of T2 signal intensity of a PNM divided by T2 signal intensity of the rhomboid muscle.
T2 signal intensities of PNMs were obtained by drawing round, elliptical, or free-hand
ROIs on lesions that were detected visually on the T2WI. The ROI drawn on the muscle
was fixed at 120 mm2 (a round of 8 mm in size) according to the description of Koyama
et al. The MRI data were evaluated by a radiologist (M.D.) with 25 years of MRI experience
who was unaware of the patients’ clinical data and a pulmonologist (K.U.) with 28 years of
experience. The experienced author (K.U.) performed all measurements, supported by the
experienced radiologist (M.D.). They eventually reached the same consensus. There was
no discrepancy in the data between the radiologist and the pulmonologist.

2.5. PET and MRI Analysis

In FDG-PET/CT, the receiver operating characteristics (ROC) curve of the diagnostic
performance of SUVmax for discriminating BPNM from lung cancer was obtained, and
sensitivity, specificity, and accuracy by the optimal cutoff values (OCV) were determined.
The mean SUVmax of lung cancer was compared to that of BPNM.

In MRI, relationships between DDSs and lung cancer/BPNM were shown. The ROC
curve of the diagnostic performance of ADC for discriminating BPNM from lung cancer
was obtained, and sensitivity, specificity, and accuracy by the OCV were determined. The
mean ADC of lung cancer was compared to that of BPNM. The ROC curve of the diagnostic
performance of T2 CR for discriminating BPNM from lung cancer was obtained, and
sensitivity, specificity and accuracy by the OCV were determined. The mean T2 CR of lung
cancer was compared to that of BPNM.

Diagnostic performance of SUVmax, ADC, and T2 CR were compared between lung
cancer and BPNM.

2.6. Statistical Analysis

The data are presented as the mean ± standard deviation. A non-parametric test
(Mann–Whitney U test) was applied to compare the mean value of the two groups. A Chi-
square test was used for the comparison of ratios. A ROC curve was applied to evaluate
the diagnostic capability of SUVmax, ADC value and T2 CR value in terms of malignant–
benign differentiation. The OCV of SUVmax, ADC, and T2 CR for a differential diagnosis
were determined using GraphPad Prism (Version 5.02, GraphPad Software, Inc., La Jolla,
CA, USA). PNMs with an SUVmax of the OCV or more were defined as positive. PNMs
with an SUVmax less than the OCV or those which could not be detected on FDG-PET
were defined as negative. PNMs with an ADC of the OCV or less were defined as positive.
PNMs with an ADC more than the OCV were defined as negative. PNMs with a T2 CR of
the OCV or less were defined as positive. PNMs with a T2 CR or more than the OCV were
defined as negative. The sensitivity, specificity, and accuracy of SUVmax versus ADC or
T2 CR for PNMs were compared using the McNemar test. The statistical analyses were
performed based on StatView for Windows (Version 5.0; SAS Institute Inc., Cary, NC, USA).
A p-value of <0.05 was defined as statistically significant.

3. Results
3.1. Radiological Characteristics Based on DDSs of DWI

Relationships between DDSs and lung cancer/BPNM were presented in Table 3.
In lung cancer cases, 209 PNMs (75.2%) were classified in DDS5 and 32 PNMs (11.5%)
in DDS4. As a result, 241 PNMs (86.7%) were classified in DDS4 and more. In BPNMs,
pulmonary abscesses and mycobacterial infections showed decreased diffusion. 22 BP-
NMs (44.0%) were classified in DDS5 and 14 (28.0%) in DDS2. The mean DDS of lung
cancers (4.55 ± 0.92) was significantly higher than that (3.77 ± 1.32) of BPNMs (p < 0.0001)
(Figure 1).
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Table 3. Relationships between diffusion detectability scores (DDSs) and lung cancer /BPNMs.

Degree of DDS DDS1 DDS2 DDS3 DDS4 DDS5 No. of Total Cases

Lung cancer 4 (1.4%) 14 (5.0%) 19 (6.8%) 32 (11.5%) 209 (75.2%) 278 (100%)
BPNM 0 14 (28.0%) 7 (14.0%) 7 (13.5%) 22 (44.0%) 50 (100%)

No. of total cases 4 28 26 39 231 328
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Figure 1. Comparison of DDS between lung cancer and BPNM. The mean DDS (4.55 ± 0.92) of lung
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3.2. Radiologic Presentations of CT, FDG-PET/CT, DDS of DWI, ADC Map and T2WI in PNMs

According to the DDSs, malignant/benign PNMs, chest CT, FDG-PET/CT, DWI, ADC
map, and T2WI are presented in Figures 2–6.
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Figure 6. Papillary adenocarcinoma showed 7.7 for SUVmax, DDS 5, 1.20 × 10−3 mm2/s for ADC, and 1.98 for T2 CR.
Yellow arrows shows PNMs.

3.3. ROC Analysis and Diagnostic Performance of SUVmax, ADC and T2 CR

The ROC curve of the diagnostic performance of SUVmax for discriminating BPNM
from lung cancer presented area under the ROC curve (AUC) was 67.5% (Figure 7). When
the OCV of SUV max was set at 3.605, the sensitivity was 65.25%, the specificity 60.0%, and
the accuracy 64.3%.
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Detail of SUVmax, ADC, and T2 CR between lung cancer and BPNM were shown in
Table 4. In relationships between the mean SUVmax and lung cancer/BPNM, the mean
SUVmax (7.89 ± 6.73) of lung cancer was significantly higher than that (4.11 ± 3.90) of
BPNM (p < 0.0001) (Figure 8, Table 4).

Table 4. SUVmax, ADC, and T2 CR between lung cancer and BPNM.

Variable Lung Cancer BPNM
p-Value

Mean Standard
Deviation Minimum Maximum Mean Standard

Deviation Minimum Maximum

SUVmax 7.89 6.73 0 32 4.11 3.9 0 15 p < 0.0001
ADC 1.24 0.29 0.646 2.355 1.67 0.59 0.556 3.13 p < 0.0001
T2 CR 2.05 0.53 0.703 4.707 2.73 1.04 0.877 7.019 p < 0.0001
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The ROC curve of the diagnostic performance of ADC for discriminating lung can-
cer from BPNM showed the AUC was 74.3% (Figure 9). When the OCV of ADC was
set at 1.459 × 10−3 mm2/s, the sensitivity was 84.0%, the specificity 64.0%, and the ac-
curacy 81.1%. In relationships between the mean ADC and lung cancer/BPNM, the
mean ADC (1.24 ± 0.29 × 10−3 mm2/s) of lung cancer was significantly lower than that
(1.67 ± 0.59 × 10−3 mm2/s) of BPNM (p < 0.0001) (Figure 10, Table 4).
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The ROC curve of the diagnostic efficacy of T2 CR for differentiating lung cancer
from BPNM the AUC was 72.4% (Figure 11). When the OCV of T2 CR was set at 2.46,
the sensitivity was 87.3%, the specificity 64.0%, and the accuracy 83.8%. In relationships
between the mean T2 CR and lung cancer/BPNM, the mean T2 CR (2.05 ± 0.53) of lung
cancer was significantly lower than that (2.73 ± 1.04) of BPNM (p < 0.0001) (Figure 12,
Table 4).
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3.4. Comparison of Diagnostic Performance of SUVmax, ADC and T2 CR

When the OCVs were set at 3.605 for SUVmax, 1.459 × 10−3 mm2/s for ADC, and
2.46 for T2 CR, sensitivity, specificity and accuracy were calculated using the McNemar
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test (Table 5). Concerning comparison of sensitivity among SUVmax ADC and T2 CR, the
sensitivity (0.658 (183/278)) of SUVmax was significantly lower than that (0.838 (233/278))
of ADC (p < 0.001), and significantly lower than that (0.871 (242/278)) of T2 CR (p < 0.001).
Concerning the comparison of specificity among SUVmax, ADC, and T2 CR, the specificity
(0.620 (31/50)) of SUVmax was the same as that (0.640 (32/50)) of ADC (not significant)
and the same as that (0.640 (32/50)) of T2 CR (not significant). Concerning the comparison
of accuracy among SUVmax, ADC, and T2 CR, the accuracy (0.652 (214/328)) of SUVmax
was significantly lower than that (0.808 (265/328)) of ADC (p < 0.001) and significantly
lower than that (0.835 (274/328)) of T2 CR (p < 0.001).

Table 5. Sensitivity, specificity, and accuracy of PNMs using their OCVs.

Variable TP FN TN FP Sensitivity Specificity Accuracy

SUVmax 183 95 31 19 0.658 (183/278) * 0.62 (31/50) * 0.652 (214/328) *
ADC 233 45 32 18 0.838 (233/278) ** 0.64 (32/50) ** 0.808 (265/328) **
T2 CR 242 36 32 18 0.871 (242/278) *** 0.64 (32/50) *** 0.835 (274/328) ***

* vs. ** p = 0.0089 * vs. ** N.S. * vs. ** p = 0.0365
* vs. *** p = 0.0176 * vs. *** N.S. * vs. *** p < 0.001

TP: true positive, FN: false negative, TN: true negative, FP: false positive, N.S.: not significant. Asterisks (*, ** or ***) shows the special
values of the columns.

4. Discussion

Our results showed that the sensitivity (0.658) of SUVmax was significantly lower than
that (0.838) of ADC (p < 0.001) and that (0.871) of T2 CR (p < 0.001). The specificity (0.620)
of SUVmax was the same as that (0.640) of ADC and as that (0.640) of T2 CR. The accuracy
(0.652) of SUVmax was significantly lower than that (0.808) of ADC (p < 0.001) and that
(0.835) of T2 CR (p < 0.001). This result showed MRI with DWI and T2 WI is an alternative to
FDG-PET/CT. In this study, T2 CR of T2WI had a good quality for differential diagnosis of
PNMS. T2WI can make up for a weak point with DWI. A pulmonary abscess that strongly
presents decreased diffusion in DWI could be differentiated from lung cancers using
T2WI [32]. Combined analysis of DWI and T2WI could judge PNMs more precisely and
would be more accurate for differential diagnosis of PNMs [25]. Ultimately this study shows
MRI can replace PET-CT for differential diagnosis of PNMs. Adding DWI to T2WI was
reported to be helpful for detecting viable tumors after neoadjuvant chemoradiotherapy
compared with T2WI alone or FDG-PET/CT in patients with locally advanced rectal
cancer [33].

Concerning the comparison between DWI and FDG-PET/CT, DWI was described
to be more useful than FDG-PET/CT in the diagnosis of primary pulmonary lesions and
the nodal assessment of non-small cell lung cancers (NSCLCs) [18,34]. The advantage of
DWI can be explained not only by DWI having fewer false-positive results for N staging
of NSCLC compared with FDG-PET [35] but also by DWI having fewer false-negative
results [18]. Two articles described the diagnostic ability of DWI with that of FDG-PET/CT
for PNMs [16,36]. The sensitivity and the accuracy of FDG-PET/CT were significantly
lower [16], or the sensitivity of FDG-PET/CT was significantly lower [36] than those of
DWI, which was identical to the result of this study.

Koyama et al. [31] reported that MRI can detect and stage lung cancer, and this method
could be an excellent alternative to CT or PET/CT in the investigation of pulmonary
malignancies and other diseases [37]. Conventional MRI can reveal the essential differences
between mass-like tuberculosis and lung cancer and may be helpful for discriminating
pulmonary masses [38]. When an invasion is unclear by CT criteria, MRI can play an
important role in defining lesser degrees of invasion [39]. MRI is superior to CT for the
visualization of the pericardium, the heart and mediastinal vessels [40]. MRI can be of use
specifically for assessing invasion of the myocardium, superior vena cava, or extension of
the tumor into the left atrium via pulmonary veins [40]. Although FDG-PET/CT is thought
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to be more effective for this purpose, MRI has the advantage of being more universally
available and less expensive [37].

Pure bronchioloalveolar carcinoma (BAC) is a subtype of adenocarcinoma, which
appears as lepidic growth of tumor cells along the alveoli without vascular, stromal, lym-
phatic, or pleural invasion [41], and appears as pure ground-glass-nodule (GGN) on CT
scans. The SUVmax of GGN-type lung cancers was described to be 0.64 ± 0.19 [42]. Ade-
nocarcinomas with BAC features have been rapidly increasing in incidence in the past two
decades [43]. Although Could MK et al. [2] described meta-analysis results that presented
sensitivity by FDG-PET was over 90% for malignant pulmonary lesions, these results
were from studies released from January 1966 to September 2000 in the MEDLINE and
CANCERLIT databases, and they were mainly solid lung cancers, whose FDG uptake was
higher than pure BACs and adenocarcinomas of predominantly BAC features. Nowadays,
CTs are performed widely and cases with pure BACs, adenocarcinomas of predominantly
BAC features, or tiny lung cancers within 10 mm have increased. They seem to be false-
negatives in FDG-PET/CT owing to their low-level metabolism and tiny metabolically
active tumors. For diagnosis of non-solid solitary pulmonary nodules, the cutoff of 1.5 was
applied for SUVmax [44]. Recently, the sensitivity by FDG-PET for malignant pulmonary
lesions has lowered due to the fact that adenocarcinomas with BAC features have been
rising in incidences in the past two decades [43]. One of the reasons for the lower sensitivity
(0.658) of PNMs on FDG-PET in this study was guessed to be associated with increased
adenocarcinomas with predominantly BAC features.

For contrast-enhanced CT, PNMs that can be enhanced by more than 20 Hounsfield
units (HU) after the administration of contrast medium was usually malignant, whereas
PNMs that can be enhanced less than 15 HU were benign [45]. A recent meta-analysis of
ten contrast-enhanced CT studies presented a pooled sensitivity of 93%, a specificity of 76%,
a positive predictive value (PPV) of 80%, and a negative predictive value (NPV) of 95%
for PNMs [46], and the data sources were studies published in PubMed between January
1990 and December 2005. Most PNMs of this study were solid solitary pulmonary nodules.
Concerning the comparison between CT and FDG-PET/CT, the sensitivity and specificity
for CT were 0.94 (95% confidence interval (CI): 0.87–0.97), 0.73 (95% CI: 0.64–0.80), and
the pooled sensitivity and specificity for FDG-PET/CT were 0.89 (95% CI: 0.85–0.92), 0.78
(95% CI: 0.66–0.86) [47]. No significant differences were observed between CT and FDG-
PET/CT for sensitivity, specificity [47]. The data sources were studies published between
January 1992 and 2018. Most PNMs of this study were solid solitary pulmonary nodules.
These results were better than those of this study that included part-solid PNMs.

Mark L. Schiebler, in the Editorial of Radiology in 2016, cited our paper on whole-
body DWI MRI (DWIBS) for lung cancer as follows [48]. There is a single paper by
Usuda et al. [49] that presents that whole-body DWI MRI can be performed to adequately
stage NSCLC. He described that if the diagnostic ability of whole-body DWI MRI is
proved to be equivalent to PET-CT for clinical staging of lung cancer while also reducing
medical costs, whole-body DWI MRI will ultimately replace FDG-PET/CT in the future.
In other organs, whole-body DWI MRI is a valid technique for the assessment of bone
marrow involvement in lymphoma patients and is more efficient than FDG PET/CT for
the assessment [50]. Whole-body DWI MRI is a sensitive and specific imaging technique
for lymphoma evaluation, supporting its use in place of CE-CT for staging [51].

The use of radiomics in the differential diagnosis between benign and malignant PNMs
will be a great tool for the future. A large number of indeterminate pulmonary nodules
and masses provides considerable diagnostic and management challenges. Conventional
nodule evaluation relies on visually identifiable discriminators such as size and speculation.
Radiomics is a developing field aimed at deriving automated quantitative imaging features
from medical images that can predict nodule and tumor behavior non-invasively. In CT or
FDG-PET/CT, radiomics has been extensively applied to lung cancer and multiple studies
evaluated its role in diagnosis, prognosis, and response to treatment [52]. In MRI, there
is also the possibility that radiomics is useful for diagnosis, prognosis, and response to
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treatment of lung cancer. Concerning the use of radiomics in the differential diagnosis
between benign and malignant lung nodules, ADC histograms of PNMs are efficient
methods for differential diagnosis [53].

When a PNM could not be judged as malignant or benign in CT, we should examine
it with MRI for the assessment. When we obtain a strong diffusion in which ADC is lower
than its own OCV of the PNMs, the PNM must be lung cancer or a pulmonary abscess or a
mycobacterial infection with abscess. Additional T2WI can prove it is lung cancer when its
T2 CR is lower than its own OCV of the PNMs and can prove it is a pulmonary abscess or
a mycobacterial infection when its T2 CR is higher than its own OCV of the PNMs.

Limitations of FDG-PET/CT were radiation exposure, the need for contrast medium,
a 6-h fast before FDG-PET/CT, the limitation for patients with diabetes mellitus and an
expensive cost. The limitations of MRI are the impossibility for patients with metal medical
devices, pacemakers, or tattoos. The advantages of DWI are easier accessibility, relatively
cheaper, and no X-rays radiation exposure compared with PET-CT. The number of hospitals
where PET-CT is equipped is limited due to the difficulty in handling the radioisotope of
18F-FDG. The cost of DWI is almost one-third of that of a PET-CT examination. In addition,
no radiation exposure during an MRI examination is favorable compared to some radiation
exposure during a PET-CT examination.

There are two disadvantages of DWI. First, benign PNMs accompanied by histopatho-
logical necrosis such as a pulmonary abscess or mycobacterial infection show restricted
diffusion and lower ADC values. Abscesses and thrombi impede the diffusion of water
molecules owing to their hyperviscous characteristics [54,55]. The pus itself causes low
ADC values and heavily impedes water mobility, and the pus may be associated with its
high cellularity and viscosity [56]. In the assessment of DWI, 22% of benign lesions express
restricted diffusion with high b-values [57]. These papers can explain some BPNMs were
false-positive when DWI was applied for the assessment of BPNMs with abscesses.

Second, mucinous adenocarcinomas are hypointense in DWI and had higher ADC
values, which could be misjudged as benign lesions in DWI. Mucinous carcinomas possess
higher ADC values and a lower DWI signal intensity than tubular adenocarcinoma in
the ano-rectal region because mucinous carcinomas possess rather lower cellularity than
tubular adenocarcinomas [58]. Mucinous adenocarcinomas will be also misdiagnosed as
benign lesions in T2WI because they contain a large quantity of viscous liquid [25].

We have to keep in mind that the research had two limitations. First, it was a ret-
rospective research project and was conducted at a single institution. The number of
benign PNMs was only 50. For a more accurate assessment, additional cases of BPNM are
necessary. Further, adequately powered prospective randomized trials will be needed to
evaluate FDG-PET/CT and MRI for discriminating between lung cancer and BPNM.

5. Conclusions

The purpose of this study was to compare the diagnostic efficacy of FDG-PET/CT
and MRI with T2WI and DWI in distinguishing malignant from benign PNMs. There
were 278 lung cancers and 50 BPNMs. The sensitivity and accuracy of DWI and T2WI in
MRI were significantly higher than those of FDG-PET/CT. Ultimately MRI can replace
FDG-PET/CT for differential diagnosis of PNMs saving healthcare systems money while
not sacrificing the quality of care.
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