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Abstract

Non-invasive biomarkers will enable widespread screening and early diagnosis of Alzhei-

mer’s disease (AD). We hypothesized that the considerable loss of brain tissue in AD will

result in detection of brain lipid components in urine, and that these will change in concert

with CSF and brain biomarkers of AD. We examined urine dicarboxylic acids (DCA) of car-

bon length 3–10 to reflect products of oxidative damage and energy generation or balance

that may account for changes in brain function in AD. Mean C4-C5 DCAs were lower and

mean C7-C10 DCAs were higher in the urine from AD compared to cognitively healthy (CH)

individuals. Moreover, mean C4-C5 DCAs were lower and mean C7-C9 were higher in urine

from CH individuals with abnormal compared to normal CSF amyloid and Tau levels; i.e.,

the apparent urine changes in AD also appeared to be present in CH individuals that have

CSF risk factors of early AD pathology. In examining the relationship between urine DCAs

and AD biomarkers, we found short chain DCAs positively correlated with CSF Aβ42, while

C7-C10 DCAs negatively correlated with CSF Aβ42 and positively correlated with CSF Tau

levels. Furthermore, we found a negative correlation of C7-C10 DCAs with hippocampal vol-

ume (p < 0.01), which was not found in the occipital volume. Urine measures of DCAs have

an 82% ability to predict cognitively healthy participants with normal CSF amyloid/Tau.

These data suggest that urine measures of increased lipoxidation and dysfunctional energy

balance reflect early AD pathology from brain and CSF biomarkers. Measures of urine

DCAs may contribute to personalized healthcare by indicating AD pathology and may be uti-

lized to explore population wellness or monitor the efficacy of therapies in clinical trials.
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Introduction

Alzheimer’s disease (AD) is the most common form of dementia, the sixth leading cause of

death in the US, and the fourth leading cause of death in African Americans [1]. AD is charac-

terized by extracellular β-amyloid deposition in the brain [2], followed by intracellular neurofi-

brillary tangles of hyperphosphorylated Tau proteins, accompanied by neuronal loss [3]. All

attempts to reduce amyloid deposition in dementia have been unsuccessful in preventing or

slowing neurodegeneration [4] and cognitive function, thus efforts are now focused on treat-

ment at earlier stages of pathology [5]. However, methods to select patients with early AD

pathology are limited by incomplete understanding of early pathophysiology and lack of bio-

markers to predict the onset of AD in a cognitively healthy (CH) individual. Aims to improve

this selection process [6] include clinical trials in mutation carriers with autosomal dominant

AD, whose estimated clinical onset is more reliable based on each person’s family history [7].

This early onset disorder is rare and pathologically distinct from sporadic AD, for which the

lack of non-invasive, widely usable, predictive biomarkers is a substantial bottleneck for prop-

erly designing trials in individuals prior to symptom onset.

The principal validated biomarkers for AD rely heavily on molecular changes in the known

amyloid/Tau pathology of AD, represented by decreased β-amyloid and increased Tau in cere-

brospinal fluid (CSF) [8–10], and/or increased brain amyloid or Tau by positron emission

tomography (PET) [11]. These techniques are not widely available or applicable to many

patients due to the invasiveness of CSF collection and PET imaging and the high expenses for

these procedures; furthermore, although useful to distinguish clinical groups, the margin of

error for predicting onset of clinical deterioration may be 10–20 years [12–14]. Other candi-

date biomarkers from invasive studies include other CSF proteins [15–17], blood measures of

Tau or amyloid [18], metabolites [19], or exosomes [20]; and, from non-invasive urine collec-

tion, proteins [21], and neural thread protein [22, 23]. Recent reports [24, 25] indicate great

promise for AD blood biomarkers (amyloid and others), but these preliminary candidates

remain to be further validated, and the need for more predictive molecular biomarkers is still

widely recognized [26].

Amongst the many fluids that the body produces, we have focused our biomarker discovery

efforts on urine samples, since it is a rich source of molecules that can be quantified to reflect

brain and body function. Of the several metabolites found in urine, we targeted dicarboxylic

acids (DCA) because they are implicated in several processes associated with AD pathology.

For example, DCAs are formed from the oxidative breakdown of unsaturated fatty acids [27,

28] and the increase in oxidative stress associated with AD is predicted to alter DCA formation

from long chain monounsaturated and polyunsaturated fatty acids. Several DCAs such as suc-

cinic acid and glutaric acid contribute to energy metabolism and changes in their levels may

impact mitochondrial function. Mitochondrial function and energy imbalance are proposed

to contribute to AD pathology. DCAs are known to inhibit mitochondrial ATP production

and alter respiration. Moreover, modification of several mitochondrial proteins by succinyla-

tion is suggested to impose dysfunctional consequences [29, 30]. Thus, dysfunctional brain

mitochondria reported in AD [31, 32] may account for the reduction of some DCAs, while

oxidative damage of brain lipids resulting in the loss of brain tissue in AD [33] would increase

urinary excretion of oxidized DCAs [34].

It has recently been recognized that some DCAs have receptors that control signaling and

immune functions. Thus, changes in DCA biosynthesis may alter critical pathways resulting in

abnormal AD brain function. Recent studies report higher longer-chain DCA plasma levels in

stroke patients [35], further validating a role for these metabolites in neurovascular processes

linked to brain disease.
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In our current studies, we examined urine from individuals that were selected at higher risk

for AD because of their age, and classified them as CH after an extensive neuropsychometric

battery and the Uniform Data Set-2 criteria of the National Alzheimer’s Coordinating Centers

(NACC) [36]. We previously reported the logistic regression model based on CSF amyloid and

Tau levels that correctly classified individuals with clinically probable AD [37] and used this to

distinguish age-matched CH individuals with normal amyloid/Tau (CH-NAT) or pathological

amyloid/Tau (CH-PAT). In a four year follow up, none of the CH-NATs but 40% of the

CH-PATs declined cognitively [38]. Our hypothesis is that oxidative stress damages essential

brain lipids and results in abnormal mitochondrial function that may contribute to neuronal

dysfunction in early AD pathology. Our data supports this hypothesis by showing a group of

shorter chain urine DCAs (C4, C5) that are lower in AD while another group of medium

chain DCAs (C7, C8, C9) that are higher in AD urine compared to CH. We propose that DCA

assays of urine, the epitome of an accessible sample for non-invasive AD screening, may offer

a quantitative measure of both the increase in lipid oxidation and the reduction in energy com-

ponents in AD.

Materials and methods

Ethics statement and diagnosis of study participants

The clinical research review committee of Huntington Medical Research Institutes and the

Institutional Review Board of Quorum, protocol 33797, approved the protocol and consent

forms for this study. All study participants gave written, informed consent. Primary caregivers

who had durable power of attorney for health for participants who had diminished capacity

because of diagnosis of clinically probable AD also approved and signed the consents. Partici-

pants between 70 and 100 years of age were recruited from the greater Los Angeles area, and

medical and neuropsychological diagnostic processes for this study have been previously

described [37]. Initially, the study participants were divided based on neuropsychological stud-

ies into 2 groups, cognitively healthy (CH, n = 76) and clinically probable AD (AD, n = 25).

Based on our published method, we further divided the CH group into asymptomatic low risk

individuals (CH-NAT, n = 45), and asymptomatic high risk individuals (CH-PAT, n = 31),

based on beta amyloid42/Tau ratios in the cerebrospinal fluid (CSF) [37].

Measures of brain volume by MRI

The MR datasets were obtained using a GE 3 or 1.5T MR scanner with a standard eight-chan-

nel array head coil at HMRI. Anatomical sagittal spin echo T2-weighted scans were first

obtained through the hippocampi (TR/TE 1550/97.15 ms, NEX = 1, slice thickness 5 mm with

no gap, FOV = 188 x 180 mm, matrix size = 384 x 384). Baseline sagittal T1-weighted maps

were then acquired using a T1-weighted 3D fast spoiled gradient echo (FSPGR) pulse sequence

and variable flip angle method using flip angles of 2˚, 5˚ and 10˚. Data was analyzed using

Freesurfer 6.0 (Freesurfer, Harvard) to obtain hippocampal and occipital lobe volumes (in μL).

Urine collection, total protein, albumin, and creatinine

A single point mid-stream specimen of urine was collected from study participants after an

overnight fast, between 8:00 am and 10:00 am. After centrifugation to remove any debris,

urine was fractionated and stored in polycarbonate tubes at -80˚C until required for analyses.

Urine was diluted (10-20X) and levels of creatinine determined using the improved Jaffe

method using picrate using creatinine (0–15 mg/dL) as a standard (Creatinine kit, # 500701,

Cayman Chemical Company, Ann Arbor, MI). Urine albumin was quantified using size
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exclusion chromatography (HP1050) on a Zorbax GF-250 column (4.6 x 250 mm) using 0.1

PBS (pH 7.0) at a flow rate of 0.5 mL/min. The column was calibrated with thyroglobulin (670

kDa), gamma globulin (158 kDa), ovalbumin (44 kDa), myoglobulin (17 kDa), and vitamin B-

12 (1.35 kDa) and levels of albumin calculated (mg/mL).

Materials

HPLC grade water, ethyl acetate, and derivatizing reagents pentafluorobenzyl bromide

(PFBBr) and anhydrous acetonitrile were purchased from Fisher Scientific. Hydrochloric acid,

sodium sulfate, sodium chloride, non-deuterated dicarboxylic acids, dodecane, and N, N-dii-

sopropylethylamine (DIPEA) were purchased from Sigma-Aldrich. Deuterated DCA stan-

dards (succinic acid-d4, adipic acid-d4, suberic acid-d4, sebacic acid-d16) were purchased from

Cambridge Isotope Laboratory.

Dicarboxylic acid extraction and derivatization

The extraction protocol was adapted from Costa et al [39]. Briefly, 500 μL urine and 100 μL

deuterated internal standard mixture at 20ng/μL in ethanol was diluted to 1 mL with brine

solution and acidified to pH 2 with 3 drops of 1 M HCl. Then, the urine was extracted 3 times

with 3 mL ethyl acetate. The combined organic layer was dried with sodium sulfate before

decanting and drying under a stream of nitrogen at 45˚C. Once dry, the extracted DCA were

converted to dipentafluorobenzyl esters by adding 25 μL of 5% v/v PFBBr and 25 μL 10% v/v

DIPEA in anhydrous acetonitrile to the residue. The reaction was allowed to proceed for 30

min at 60˚C. The reaction solution was then dried under a stream of nitrogen before adding 1

mL of hexanes to the reaction tube, vortexed for 10 min, and then transferred to GC/MS vials.

After evaporation under a stream of N2, the derivatized residue was dissolved in 100 μL dode-

cane for GC/MS analysis.

GC-MS analyses of derivatized dicarboxylic acids

DCA have two reactive carboxylic acid groups, making the parent mass M+2PFB. [M+1PFB]-

carboxylate ions (m/z) were detected by injecting 1 μL derivatized extracts onto a 7890A GC

system coupled to a 7000 MS Triple Quad (Agilent Technologies). Gas chromatography was

performed over 21.2 min using a Phenomenex Zebron ZB-1MS capillary GC column (2x15 m

length, 0.25 mm I.D., 0.50 μm film thickness) heated to 150˚C for 1.2 min, ramped to 270˚C at

20˚C/min, and held for 2 min, then ramped to 340˚C at 10˚C/min and held for 5 min. The

temperature of the ion source was 200˚C and the temperature of the quadrupoles was 150˚C.

Single ion monitoring (SIM) was used to measure the [M+1PFB]- carboxylate ions after nega-

tive ion chemical ionization using methane gas.

The reproducibility measures (SD) when repeating the entire preparation and GCMS of the

same original sample was< 20%; the SD when running the same sample by GCMS on conse-

cutive days was < 6%. The list of carboxylate ions (m/z) for non-deuterated and deuterated

dicarboxylic acid standards, retention times, linear ranges, and limits of detection are shown

in S3 Table. The total ion chromatogram obtained from the GC/MS and the structures of the

C3-C10, including the ionized PFB product are in the S1 Fig. along with the overall GCMS

method.

Data and statistical analyses

Agilent MassHunter Workstation Software was used to analyze GC/MS data. A calibration

curve was acquired prior to sample analysis and quality control standards were analyzed after
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every 10 samples. All samples were analyzed in triplicate. Peak integration was automatic for

most fatty acids and manual integration was used in selected cases when automatic integration

failed. We examined the mass of DCA normalized to volume, and then determined the percent

distribution and proportion of the DCAs. By utilizing the percentage, we are able to reduce the

coefficient of variation and also account for hydration as the percentages represent how each

species relates to each other. Mann Whitney U tests were used to test for differences in DCA

levels between cognitive groups. General linear models with Tukey-Kramer pairwise compari-

sons were used for multivariable analysis of C4-C5 and C7-C9 DCAs to adjust for potential

confounders. Candidate cofounders were age, sex, smoking status, and Stroop Interference

score, well-known predictors of cognitive health. Smoking status was modeled as a continuous

variable (0 = never, 1 = ex, 2 = current). Multinomial logistic regression was used to predict

cognitive group based on DCA levels.

All data analyses were performed using GraphPad Prism software or SAS v9.4 (SAS Insti-

tute, Inc., Cary, NC) and 0.05 was used as the significance level for all tests. Additionally, we

used Spearman’s rank correlation to evaluate relationships between DCA species and CSF lev-

els of Ab and Tau proteins and also selected brain volumes as determined by MRI.

Results

We recruited 100 study participants > 70 years of age and classified individuals by NACC

UDS-2 criteria and consensus conferencing as cognitively healthy (CH, n = 76) or probable

AD (n = 25). Those with mild cognitive impairment were excluded to reduce heterogeneity in

the analysis. CH individuals were sub-classified by CSF Aβ42 and Tau into CH-NAT (n = 45),

or CH-PAT (n = 31). The groups were of similar age, and women comprised 58.3–66.7%

across the groups (Table 1). We genotyped these individuals to determine their ApoE status,

and compared their BMI and average number of years of education. In the latter case, AD indi-

viduals had less formal education than CH (p = 0.036), typical for AD [40].

To account for kidney function and hydration levels [41–43], we analyzed the urine con-

centration of total protein, creatinine, albumin, and the urinary albumin to creatinine ratio

(UACR). Individuals with AD showed evidence of kidney function impairment through

higher mean concentrations of total protein, albumin, and UACR compared to controls

(Table 1), consistent with the higher level of albuminuria recognized with cognitive decline

[44–46].

Detection of dicarboxylic acids in urine

We quantified 8 DCAs in urine from cognitively healthy and AD individuals: malonic (C3),

succinic (C4), glutaric (C5), adipic (C6), pimelic (C7), suberic (C8), azelaic (C9), and sebacic

acids (C10). C4 accounted for with the majority of (42%, range 34.7%– 44.1%) of DCAs

detected in urine while C6—C9 each represented >10% of total urine DCA (Fig 1A). C5, C3,

and C10 accounted 6%, 3% and 2% of total urine DCA, respectively.

Urine dicarboxylic acid species differ in CH compared with AD

The mean (+ standard deviation) total amount of DCA species in urine was 6.68 ± 3.92 μg/mL

and 7.86 ± 4.54 μg/mL for CH and AD clinical groups, respectively. Urine DCA levels before

and after logarithmic normalization are shown in Supplementary S1 Table & S2 Table. While

there was no significant difference between the total amount of DCA species, for some individ-

ual acids mean levels were significantly higher in the AD group compared to the CH group

(Fig 1B): pimelic, p = 0.0033; suberic, p = 0.0175; azelaic, p = 0.0010; and sebacic acids,

p = 0.0051. To normalize between urine samples, levels of individual DCA species were
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expressed as a percentage of total DCA species. Mean proportions of succinic (p = 0.0113) and

glutaric acids (p = 0.0087) were significantly lower in AD compared to CH. On the other

hand, mean proportions of pimelic (p = 0.0035), suberic (p = 0.0161), and azelaic acids

(p = 0.0022) were significantly higher in AD compared to CH (Fig 2A). The accuracy of the

clinical group classification was enhanced when we combined the sum of metabolic process

DCAs and the sum of oxidized products of longer chain fatty acids, as illustrated by lower p

values (sum of C4 and C5: p = 0.0059; sum of C7 through C9: p = 0.0004), Fig 2B.

When we further sub-classified the CH group based on CSF amyloid and total Tau levels to

distinguish those CH individuals at higher risk of developing AD, we identified three groups

using pattern of CH-NAT, CH-PAT, and AD. Examination showed that the DCA group that

was higher in AD is mainly derived from the breakdown of unsaturated fatty acids while the

DCA group that was lower in AD is composed of components of the TCA cycle. Therefore, we

combined these DCA groups separately and evaluated differences among CH-NAT, CH-PAT

and AD (Fig 3).

Table 1. Demographic, clinical, and CSF/urine biomarkers.

Clinical Classification AD All CH CH CH

(n = 25) (n = 76a)

CSF Aβ42/Tau Classification NAT PAT

(n = 45a) (n = 31)

Mean Age ± SD (Range) 79.2 ± 7.31 (62–91) 78.0 ± 6.45 (63–91) 77.3 ± 6.79 (63–90) 79.1 ± 5.88 (68–91)

% Female 58.3% 65.8% 66.7% 64.5%

Smoking (0, past 1; present 2) 0.64 ± 0.49 0.54 ± 0.53 0.45 ± 0.5 0.66 ± 0.54

ApoE Genotype

2/2 0 0 0 0

2/3 0 18.3% 17.1% 20%

2/4 0 2.8% 0 6.7%

3/3 66.7% 57.7% 68.3% 43.3%

3/4 33.3% 21.1% 14.6% 30%

4/4 0 0 0 0

BMI 25.45 ± 4.92 26.63 ± 5.03 26.81 ± 5.55 26.38 ± 4.24

Education in Years 14.75 ± 2.71 16.55 ± 2.53�� 16.51 ± 2.39�� 16.61 ± 2.75�

CSF Aβ42 ± SD (95% CI) [pg/mL] 536.9 ± 236.5 (437.0–

636.8)

759.1 ± 306.5�� (689.0–

829.1)

915.4 ± 247.6��� (841.0–

989.8)

532.1 ± 234.6 (446.0–618.1)

Total Tau ± SD (range) [pg/mL] 417.1 ± 169.9 (345.3–

488.8)

261.2 ± 148.5��� (227.3–

295.2)

187.1 ± 71.05��� (165.7–

208.4)

368.9 ± 165.8 (308.0–429.7)

Urine Total Protein ± SD (95% CI) [μg/

mL]

182.7 ± 95.8 (142.3–223.2) 136.9 ± 72.62� (120.3–153.5) 135.6 ± 78.27� (112.1–159.1) 138.9 ± 64.75 (115.1–162.6)

Creatinine ± SD (95% CI) [μg/mL] 1218.0 ± 720.4 (913.4–

1522)

1025.9 ± 550.5 (900.1–1152) 1019.4 ± 558.3 (851.6–1187) 1035.4 ± 548.0 (834.5–

1236)

Albumin ± SD (95% CI) [μg/mL] 37.80 ± 25.44 (27.06–

48.55)

25.97 ± 31.86�� (18.64–

33.30)

24.25 ± 23.21�� (17.19–

31.30)

28.42 ± 41.49� (13.20–

43.64)

UACR ± SD (95% CI) [mg/g] 34.75 ± 23.21 (24.95–

44.55)

28.66 ± 38.51� (19.80–37.52) 29.34 ± 45.06�� (15.64–

43.04)

27.69 ± 27.30 (17.68–37.71)

(a), for measures involving albumin, one value for CH is missing, so the n decreases by 1 in CH and CH-NAT

�p < 0.05

��p < 0.01

���p < 0.0001 versus AD.

https://doi.org/10.1371/journal.pone.0231765.t001
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Multivariable analysis of urinary DCA changes for C4/C5 and adjustment

for multiplicity

Of the candidate confounders age, sex, smoking status, and Stroop Interference score,

only smoking status was close to being a significant independent predictor of C4/C5

(p = 0.07). With smoking status included as a covariate and using the Tukey-Kramer adjust-

ment for multiplicity, there was a significant difference between CH-NATs and CH-PATs

(p = 0.04), and between CH-NATs and AD (p = 0.0004), but not between CH-PATs and AD

(p = 0.26).

Fig 1. Distribution and changes in urine DCA in clinical groups. A) Total DCA was determined for all clinical groups, and we calculated the levels of each DCA as a

percentage of the total of all species measured in urine. B) DCA intergroup comparison of each species (C3-C10), and of the sum of the major species that decrease (C4

+C5), and species that increase (C7+C8+C9) for CH (n = 76) compared with levels in AD (n = 25). �p< 0.05, ��p< 0.01, and ���p< 0.001.

https://doi.org/10.1371/journal.pone.0231765.g001

Fig 2. Changes in urine DCA in clinical groups. A) Violin plot and 1-way Anova with Fishers’s LSD of C4+C5 in CH-NAT, CH-PAT, and AD. B)

Violin plot and 1-way Anova with Fishers’s LSD of C7+C8+C9 in CH-NAT, CH-PAT, and AD. �p< 0.05; ns not significant.

https://doi.org/10.1371/journal.pone.0231765.g002
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Multivariable analysis of urinary DCA changes for C7-C9 and adjustment

for multiplicity

For C7-C9, only age was close to being a significant independent predictor (p = .10). With age

included as a covariate and using the Tukey-Kramer adjustment for multiplicity, the compari-

son between CH-NATs and AD was highly significant (p = 0.0002) whereas the comparisons

between CH-PATs and CH-NATs and between CH-PATs and AD were not significant

(p = 0.09 and 0.12, respectively).

Predictive ability of DCAs for clinical and CSF classification

We tested how well a multinomial logistic model predicted membership to CH-NAT,

CH-PAT, and AD groups based on C7-C9 DCAs. The model correctly predicted group for 46

of 101 (45.5%) individuals based on their C7_C9 values: 36 of 44 CH-NAT (82%) but only 2 of

32 CH-PAT (6%) and 8 of 25 AD (32%). Specificity for CH-NAT, CH-PAT, and AD was 42%

(24/57), 86% (59/69), and 84% (64/76), respectively.

Urine DCAs correlated with CSF and MRI biomarkers of AD

To determine if urinary DCA species may relate to brain degeneration, we looked at correla-

tions between DCA and CSF Aβ42 and Tau protein levels. The scatter plots (Fig 4) show that

glutaric acid positively correlated with Aβ42 (r = 0.23; p = 0.0186) while azelaic acid negatively

correlated with Aβ42 (r = -0.26; p = 0.0101). We found positive correlations with CSF Tau for

azelaic (r = 0.22, p = 0.0276) and sebacic acids (r = 0.20; p = 0.0476) individually, and for the

sum of C7-C10 (r = 0.20; p = 0.0499).

We tested whether the breakdown species C7 through C10 could be linked to the hippo-

campal volume by magnetic resonance imaging (MRI). Fig 5 shows a negative correlation

between the percentage of breakdown species and hippocampal volume (left: r = -0.47;

p = 0.0056, right: r = -0.49; p = 0.0040, total: r = -0.48; p = 0.0041, A-C). In contrast, we found

no correlation between the combined C7-10 DCAs with the lateral occipital lobe volume,

selected as a control region that is marginally affected in Alzheimer’s disease.

Fig 3. Changes in energy versus oxidative DCA species in clinical groups. A) Individual line graphs and the means (± 95% CI) of C4+C5 and C7+C8+C9 in

urine from CH-NAT study participants. B) Separate line graphs and the mean (± 95% CI) of C4+C5 and C7+C8+C9 in urine from CH-PAT study participants. C)

Individual line graphs and the means (± 95% CI) of C4+C5 and C7+C8+C9 in urine from CH-NAT study participants.

https://doi.org/10.1371/journal.pone.0231765.g003
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Discussion

A non-invasive test with wide applicability is needed for early screening and diagnosis of AD

pathology. Our strategy to analyze specific molecular components in urine stems from the

major loss of brain volume and the decrease in energy capacity that are characteristic of AD.

Females lose 9% and males 5.6% of brain tissue mass during AD progression [33]; losses of this

degree from a brain of over 1.2 Kg should be noticeable, but the tissue loss occurs over many

years. The excess metabolites have to leave the body and urine is the major mode of excretion.

Fig 4. Correlation of urine DCA with CSF markers. A) Correlation of the proportion of (% Total) of C5 (glutaric

acid) with CSF Aβ42. B) Correlation of the percentage of C9 (azelaic acid) with CSF Aβ42. C) Correlation of the percent

C9 (azelaic acid) with CSF total Tau.

https://doi.org/10.1371/journal.pone.0231765.g004

Fig 5. Correlation of urine DCA levels with brain volumes. Top graphs. Correlations of C9 levels in urine with left (A), right (B), and total hippocampal

(C) volume for CH individuals. Middle graphs: Correlations of the sum of DCAs (C7+C8+C9) that increase in urine with left (D), right (E), and total

hippocampal volumes for CH individuals (F). Bottom graphs: Correlations of the sum of DCAs (C7+C8+C9) that increase in urine with left (G), right

(H), and total lateral occipital volumes (I) for CH individuals.

https://doi.org/10.1371/journal.pone.0231765.g005
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However, several challenges exist and must be addressed. Could the long duration of neurode-

generation and the variability of urine production, coupled with contributions to urine from

the entire body, make it difficult to assign any such change to AD pathology? Our hypothesis

is that the predominant neurodegenerative process is unique to brain, such that known brain-

enriched lipids might be identified in the urine, and their changing amounts will indicate their

origin by their correlation with CSF and brain biomarkers of AD. Another consideration is

which lipids to choose from the complex mixtures that may originate from brain tissues. For

example, Montine and colleagues reported increased lipid oxidation in CSF from AD patients

by measuring oxidative products [47], but the changes in urine F2-isoprostanes were not reli-

able [47]. We chose to examine urine excretion of DCAs to test if known features of AD

pathology (energy metabolism and tissue integrity) can be recognized. These DCAs have not

been quantified previously in urine from AD patients and are end-products of β- or omega-

oxidation on unsaturated fatty acids (UFAs) [48]. Higher levels of oxidized DCAs are detected

in urine of rodents and humans with metabolic syndromes or pathological conditions, or

when treated with xenobiotic drugs [49, 50].

We first studied the urine levels of glutaric and succinic acids that are integral to the Krebs

cycle, since energy loss and mitochondrial dysfunction are established in AD pathology [31,

32]. The lower levels of both of these DCAs in urine that we observed in AD compared to CH

support our hypothesis. The combined C4 and C5 levels were also numerically lower in

CH-PATs than in CH-NATs; though not significant, the distribution was convincingly mid-

way between CH-NAT and AD levels. The significant positive correlation between glutaric

acid (C5) levels in urine and CSF Aβ42 levels supports our hypothesis that the reduction in glu-

taric acid reflects a loss of energy capacity resulting from AD neurodegeneration at least par-

tially and, importantly, this change starts in the pre-symptomatic CH-PAT phase when

individuals are clinically indistinguishable from CH-NATs. These data suggest succinic and

glutaric acid levels in urine offer a potential screen for the reduction in brain energy capacity

in early AD pathology.

We next tested if the oxidized DCAs [51] [adipic (C6), pimelic (C7), suberic (C8), azelaic

(C9), and sebacic acids (C10)] might represent loss of brain tissue by comparing their levels

with CSF and brain MRI biomarkers if AD. We hypothesized that the vulnerable double bonds

in the brain-enriched UFAs would be increasingly oxidized and their break down products

excreted in greater amounts in urine as the AD pathology and its tissue loss progress. Our find-

ings suggest that C6 is not altered but levels of C7 through 10, individually and combined in

C7-10, are increased in AD compared to CH. Especially interesting was that the combined

measure of C7-9 DCAs was increased in CH-PATs compared to CH-NATs, mainly from the

rise in azelaic acid (C9 DCA). The higher level of C9 also weakly correlates with the AD CSF

biomarkers: negatively with Aβ42 and positively with CSF Tau. An independent measure of

AD, a lower hippocampal volume, also correlated with the higher urine levels of the oxidized

C7-9 panel. This combined match between C7-9 and the AD biomarkers in CSF and brain

MRI support the hypothesis that the C7-9 excretion is linked in part to the neurodegenerative

loss of brain in AD.

Limitations

While our study has significant implications for AD research, limitations of this exploratory

report are worth discussion. As an exploratory study, there were no a priori group differences

for which specific hypothesis testing was done because we have no knowledge on differences

that would be clinically meaningful; our study is a hypothesis-generating, first step in address-

ing that. Distinguishing AD from physiological variations in urine lipids is a challenge, since
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variation in urine composition can arise from many factors, in particular diet, hydration, time

of collection, and kidney disease, for which a number of correction approaches have been used

[52]. Further, microalbuminuria is known to occur with cognitive decline [44–46]. We chose

to collect “spot” urine samples rather than the 24-hour collections that average changes

throughout the day, because we intend that any future test in clinical practice must implement

a simple collection process. To reduce effects from physiological variables in our study, we col-

lected urine “spot” samples after a 12 hour overnight fast, excluded the one individual that had

proteinuria (> 300 μg/mL), and normalized individual DCA levels to the total amount of

DCAs measured, in units of percent. Specificity of clinical or biochemical correlation will

require replication by other labs, testing in different populations, longitudinal studies, and

matching with other biomarkers and clinical outcomes, including brain pathology. Finally, the

complex sample preparation and GCMS methods have more variability than simpler assays

such as ELISAs. These initial results of C3-10 DCAs may encourage further research of addi-

tional urine lipid species. Our methods section reports our reproducibility within different

preparations of the same sample, as well as for samples taken on consecutive days from the

same individuals. These current methods are not conducive, however, to widespread adoption

or for good inter-laboratory reproducibility, and simplified methods are needed; this is a tech-

nical issue that can be overcome now that a pathological marker has been identified.

Energy and amyloid removal

Amyloid change remains a cornerstone of AD pathology and reasons for its accumulation in

AD brain are widely explored. Studies by Fila and colleagues suggest that immune cells utilize

omega-3 fatty acids for energy generation and enhanced removal of amyloid [53]. Moreover,

omega-3 fatty acids also stimulate signaling pathways [54]. Given the decrease in omega-3

fatty acids in CSF in our previous study [55] concomitant with the increase of their oxidative

breakdown products in urine of AD study participants in the present study, we propose that

immune processes that enhance amyloid removal, cell signaling pathways that enhance neuro-

nal function, and the basic energy requirements of the brain may be compromised in AD.

Signaling and brain function

Recent studies have shown that lysine succinylation is a post translational modification (PTM)

that is evolutionarily conserved, is regulated by histone deacetylases [56] that are implicated in

AD progression [57]. The importance of succinylation ranges from coupling metabolism with

protein function in the nervous system [58, 59], association with energy regulation and several

cellular metabolic processes including glucose metabolism [56, 60, 61]. Histone proteins that

may directly regulate gene expression via chromatin reorganization are subject to acetylation

and succinylation as a major post translational modification process [62]. Thus, alterations in

succinate that we describe in our clinical groups suggest that these important succinylation

pathways may be compromised in AD.

Biochemical and clinical implications of the interaction of DCAs changes

Our studies show diametrically opposed changes in two groups of DCAs in urine (Fig 6).

While energy-related C4/C5 are higher and oxidatively derived C7/C8/C9 are lower in cogni-

tively healthy study participants, the opposite levels are present in the urine from AD partici-

pants. Functionally, these two groups of DCAs also have opposite effects. For example,

succinate is a cofactor in energy metabolism via the TCA cycle while azelaic acid is known to

inhibit several TCA enzymes and mitochondrial electron transport proteins. If the clearance of

amyloid via autophagocytosis, the repair of post mitotic neurons, and other processes required
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for maintaining a healthy brain require energy, a higher C4/C5 and lower C7/C8/C9 is desirable.

On the other hand, a lower C4/C5 and a higher C7/C8/C9 will favor the accumulation of amyloid,

resulting in brain dysfunction that characterizes AD pathology. The implications of our study are

that strategies that increase C4/C5 and decrease C7/C8/C9 can enhance cognitive function or

diminish AD progression. Evidence in support of this comes from studies showing that dietary

supplementation with TCA components can prevent cognitive decline [63] and prevent amyloid

toxicity [64]. Examination of strategies that regulate these two groups of DCAs is now warranted.

Determining the ratios of these two DCA classes may also be a useful diagnostic tool.

Overall, we justify an aggressive pursuit of this approach, since our data provide multiple

lines of support for the hypothesis that urine DCAs mirror the neurodegeneration of early

pathology and reflect two different pathophysiological processes of AD: loss of energy and

brain tissue. Urine C4 and C5, and C7-9 are promising tools to quantify a decrease in brain

energy capacity and/or loss of brain tissue respectively. These new urine biomarkers may help

screen individuals as we age and suggest urine may hold value as a source of insight to health

versus early AD.
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while the second group (C7+C8+C9) is derived from the oxidative breakdown of long-chain unsaturated fatty acids. A balance between energy production or signaling

and oxidative breakdown classifies CH-NAT, CH-PAT, and AD. Energy producing DCAs are the dominant species in CH-NAT (A), there is equilibrium between these

species in CH-PAT (B), and oxidatively-generated DCA species become prominent in AD (C). Measures that prevent the shift from C4/C5 to C7/C8/C9 may be useful in
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