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Autoantibodies against aquaporin-4 (AQP4-Ab) and myelin oligodendrocyte glycoprotein

(MOG-Ab) are associated with rare central nervous system inflammatory demyelinating

diseases like neuromyelitis optica spectrum disorders (NMOSD). Previous studies have

shown that not only antibodies, but also autoreactive T-cell responses against AQP4 are

present in NMOSD. However, no study has yet analyzed the presence of MOG reactive

T-cells in patients with MOG antibodies. Therefore, we compared AQP4 and MOG

specific peripheral T-cell response in individuals with AQP4-Ab (n= 8), MOG-Ab (n= 10),

multiple sclerosis (MS, n = 8), and healthy controls (HC, n = 14). Peripheral blood

mononuclear cell cultures were stimulated with eight AQP4 and nine MOG peptides

selected from previous studies and a tetanus toxoid peptide mix as a positive control.

Antigen-specific T-cell responses were assessed using the carboxyfluorescein diacetate

succinimidyl ester proliferation assay and the detection of granulocyte macrophage

colony-stimulating factor (GM-CSF), interferon (IFN)-È and interleukin (IL)-4, IL-6, and

IL-17A in cell culture supernatants. Additionally, human leukocyte antigen (HLA)-DQ and

HLA-DR genotyping of all participants was performed. We classified a T-cell response

as positive if proliferation (measured by a cell division index ≥3) was confirmed by the

secretion of at least one cytokine. Reactivity against AQP4 peptides was observed

in many groups, but the T-cell response against AQP4 p156-170 was present only

in patients with AQP4-Ab (4/8, 50%) and absent in patients with MOG-Ab, MS

and HC (corrected p = 0.02). This AQP4 p156-170 peptide specific T-cell response

was significantly increased in participants with AQP4-Ab compared to those without

[Odds ratio (OR) = 59.00, 95% confidence interval-CI 2.70–1,290.86]. Moreover, T-cell

responses against at least one AQP4 peptide were also more frequent in participants

with AQP4-Ab (OR = 11.45, 95% CI 1.24–106.05). We did not observe any significant

differences for the other AQP4 peptides or any MOG peptide. AQP4-Ab were associated

with HLA DQB1∗02 (OR = 5.71, 95% CI 1.09–30.07), DRB1∗01 (OR = 9.33, 95% CI
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1.50–58.02) and DRB1∗03 (OR = 6.75, 95% CI = 1.19–38.41). Furthermore, HLA

DRB1∗01 was also associated with the presence of AQP4 p156-170 reactive T-cells

(OR = 31.67, 95% CI 1.30–772.98). To summarize, our findings suggest a role of

AQP4-specific, but not MOG-specific T-cells, in NMOSD.

Keywords: neuromyelitis optica spectrum disorder, aquaporin-4, myelin oligodendrocyte glycoprotein, antibody,

T-cell

INTRODUCTION

Autoantibodies targeting the aquaporin-4 (AQP4) water channel
protein and the myelin oligodendrocyte glycoprotein (MOG)
are associated with a broad spectrum of human central nervous
system (CNS) demyelinating diseases (1, 2).While AQP4-specific
antibodies target the AQP4 water channel protein expressed
on astrocyte end-feet processes causing a severe astrocytopathy
called neuromyelitis optica (NMO) (3, 4), MOG-specific
antibodies target the extracellular N-terminal immunoglobulin
variable (IgV)-domain of MOG expressed on myelin-forming
oligodendrocytes (2, 5, 6). Autoantibodies against AQP4 (AQP4-
Ab) have emerged as highly sensitive and specific biomarker for
the diagnosis of NMO (3). However, not all patients presenting
with clinical features suggestive of an NMO-disease phenotype
are positive for AQP4-Ab (7), and a significant proportion of
those seronegative patients harbor antibodies to MOG. This
created a diagnostic uncertainty reflected in the pathogenetically
undefined category of NMO spectrum disorders (NMOSD)
proposed in 2015 (1, 2, 8).

Several lines of evidence suggest that autoreactive CD4+

T lymphocytes are key players in the pathogenesis of Ab-
associated demyelinating CNS diseases. First, passive transfer
models using AQP4-specific human IgG are not considered
pathogenic without T-cell induced disruption of the blood brain
barrier (BBB) (9–11). The exact relevance of T-cell independent
pathogenicity of a high affinity rodent monoclonal AQP4-Ab
(12) remains to be determined, as serum AQP4-Ab in human
NMOSD patients are polyclonal, with a wide range of affinities
and often much lower antibody titers (9, 10, 13–15). The serum
concentration of AQP4-Ab is many times higher than in the
cerebrospinal fluid (CSF) (13, 16–18), and peripheral B cells
have the capacity to produce AQP4-Ab in vitro (19, 20). Thus,
it is supposed that these antibodies are produced outside the
CNS and that T effector cells might initiate CNS inflammation
leading to BBB disruption and entry of antibodies (6, 9–11, 21–
23). Local activation of CD4+ T-cells in the CNS is indispensable
for providing an inflammatory microenvironment that also
enables the initiation of CNS inflammation orchestrating BBB
breakdown, lesion location and formation and thus facilitates
Ab-mediated disease propagation (6, 11, 23). Second, AQP4-Ab
and MOG-Ab are class-switched complement-fixing antibodies
depending on T-cell help to be generated emphasizing the pivotal
role of antigen-specific T-cell responses. Finally, there is ample
evidence that activated T-cells are enriched at lesion sites (11, 24,
25) and that the pathogenic effectors are CD4+ T-cells of either
T helper (Th)-1 lineage producing pro-inflammatory interferon
(IFN)-È or of Th17 lineage producing pro-inflammatory

interleukin (IL)-17A (26, 27). Moreover, NMOSD patients also
display a higher proportion of Th17 cells or cytokines like
IL-6 (28–34).

While the high diagnostic value of AQP4-Ab as hallmark
serologic marker in NMOSD has been shown and AQP4-
specific T-cells have been examined in NMOSD patients
(31, 35–38), the role of MOG-Ab or MOG-specific T-cells
is less clear. Since MOG-Ab can be found in up to 50%
of AQP4-Ab seronegative NMOSD patients, it is possible
that MOG-specific T-cells could play a role in NMOSD
development. So far there is no published information about
MOG-specific T-cells in NMOSD and related conditions. Until
now all studies focused on MOG-specific T-cell responses
from MS patients (39–41) or in experimental autoimmune
encephalomyelitis (42–44).

Here, we aimed to analyze the T-cell reactivity in response to
selected eight AQP4 and nine MOG peptides and their possible
restriction to a particular human leukocyte antigen (HLA)-
DQ and HLA-DR genotype, and to examine the functional
phenotype of autoreactive CD4+ T-cells in patients with AQP4-
Ab or MOG-Ab.

MATERIALS AND METHODS

Patients and Control Subjects
Eight NMOSD patients with AQP4-Ab, 10 patients with
MOG-Ab, 8 patients with MS and 14 healthy controls (HC)
were included in this study. NMOSD and MS was diagnosed
according to recently published criteria (1, 45, 46). Within
the MOG-Ab positive group, one patient also fulfilled
the 2015 diagnostic criteria for NMOSD (1), 8 of the
other 9 patients had related clinical presentations (three
bilateral and one unilateral monophasic optic neuritis, one
recurrent optic neuritis, one monophasic and one recurrent
myelitis, one acute demyelinating encephalomyelitis with
recurrent optic neuritis and one recurrent demyelinating
disease) and one patient fulfilled the diagnostic criteria
for MS.

Demographic and clinical data of all participants are shown in
Table 1.

All samples were collected between 2008 and 2018
at the Clinical Department of Neurology Innsbruck
and at the Section for Neuroimmunology and MS
Research (NIMS), Department of Neurology, University
Hospital Zurich and stored at the Neurological Research
Laboratory Innsbruck.

The study was approved by the local Ethics Committee
of Medical University of Innsbruck, Austria (study number
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TABLE 1 | CD4+ T-cell proliferation with a cell division index ≥ 3 of T-cell cultures after stimulation with AQP4 or MOG peptides.

AQP4-Aba MOG-Abb MS HC p-valuec p-value correctedd

Number 8 10 8 14

Female: male 8: 0 5: 5 7: 1 12: 2

Age (y)e 54 (20–77) 38 (14–53) 47 (24–63) 38 (22–58)

Duration (y)e 4 (0–13) 0 (0–17) 21 (4–34) n.a.

Acute relapse 4 (50%) 3 (30%) 0 (0%) n.a.

Relapsese 4 (1–20) 1 (1–4) n.a n.a.

EDSSe 2 (1–7) 1.5 (1–3) 2 (0–7.5) n.a.

Treatment 6 (75%)f 4 (40%)g 6 (75%)h n.a.

Ab titer 2,560 (40–40,960) 320 (160–10,240) 0 (0–40) 0 (0)

Tetanus toxoid 8/8 (100%) 10 (100%) 8 (100%) 14 (100%) 0.999 ns

AQP4 p11-30 2/8 (25%) 1/7 (14%) 4/8 (50%) 1/14 (7%) 0.121 ns

AQP4 p61-80 1/8 (13%) 0/7 (0%) 2/8 (25%) 2/14 (14%) 0.570 ns

AQP4 p63-76 2/8 (25%) 0/7 (0%) 2/8 (25%) 3/14 (21%) 0.557 ns

AQP4 p91-110 2/8 (25%) 1/7 (14%) 1/8 (13%) 3/14 (21%) 0.905 ns

AQP4 p139-153 2/8 (25%) 1/7 (14%) 2/8 (25%) 2/14 (14%) 0.878 ns

AQP4 p156-170 4/8 (50)* 0/7 (0%) 0/8 (0%) 0/14 (0%) 0.001 0.02

AQP4 p211-230 0/8 (0%) 0/7 (0%) 0/8 (0%) 0/14 (0%) 0.999 ns

AQP4 p281-305 1/8 (13%) 1/7 (14%) 1/8 (13%) 2/14 (14%) 0.999 ns

AQP4 overall 7/8 (88%) 3/7 (43%) 4/8 (50%) 4/14 (29%) 0.066 ns

MOG p1-20 1/5 (20%) 2/10 (20%) 1/8 (13%) 4/14 (29%) 0.846 ns

MOG p35-55 1/5 (20%) 3/10 (30%) 3/8 (38%) 4/14 (29%) 0.926 ns

MOG p64-80 2/5 (40%) 2/10 (20%) 2/8 (25%) 3/14 (21%) 0.841 ns

MOG p81-96 0/5 (0%) 2/10 (20%) 0/8 (0%) 2/14 (14%) 0.453 ns

MOG p99-107 0/5 (0%) 0/10 (0%) 1/8 (13%) 4/14 (29%) 0.167 ns

MOG p119-130 0/5 (0%) 0/10 (0%) 1/8 (13%) 2/14 (14%) 0.523 ns

MOG p181-195 0/5 (0%) 0/10 (0%) 2/8 (25%) 2/14 (14%) 0.300 ns

MOG p186-200 1/5 (20%) 0/10 (0%) 1/8 (13%) 0/14 (0%) 0.237 ns

MOG p205-214 0/5 (0%) 1/10 (10%) 3/8 (38%) 5/14 (36%) 0.216 ns

MOG overall 2/5 (40%) 4/10 (40%) 5/8 (63%) 7/14 (50%) 0.834 ns

aAQP4-Ab positive patients fulfilling the current diagnostic criteria for neuromyelitis optica spectrum disorders (NMOSD).
bPatients with MOG-Ab (one NMOSD, three bilateral and one unilateral monophasic optic neuritis, one recurrent optic neuritis, one monophasic and one recurrent myelitis, one acute

demyelinating encephalomyelitis with recurrent optic neuritis, one recurrent demyelinating disease and one MS).
cSignificance of group differences was analyzed using the Chi-square test, *significant difference to HC group.
dP-values were adjusted for 20 comparisons using Bonferroni’s correction for multiple comparisons.
eData are shown as median (range).
f Immunomodulatory or immunosuppressive treatment with rituximab (2) or azathioprine (2).
g Immunomodulatory or immunosuppressive treatment with rituximab (2) or plasma exchange (2).
h Immunomodulatory or immunosuppressive treatment with rituximab (1), interferon-β (1), natalizumab (2), azathioprine (1) and teriflunomide (1). Due to limited sample availability not

all AQP4-Ab or MOG-Ab positive patients were investigated for T-cell reactivity against AQP4 or MOG peptides. Ab, antibody; AQP4, aquaporin-4; CDI, cell division index; CFSE,

carboxyfluorescein succinimidyl ester; HC, healthy controls; MOG,myelin oligodendrocyte glycoprotein; MS, multiple sclerosis; n.a., not applicable/available; ns, statistically not significant

after correction for multiple comparisons.

AN3041) and University of Zürich, Switzerland (KEK ZH
2013-0001) and all patients or their caregivers and controls gave
written informed consent.

AQP4-Ab and MOG-Ab Detection Assays
Serum AQP4-Ab were analyzed using live cell-based
immunofluorescence assays as described previously (47).
Serum MOG-Ab were analyzed using recombinant live
cell-based immunofluorescence assays with HEK293A cells
transfected with full-length MOG (human MOG α-1 EGFP
fusion protein) as described previously (47). Sera were

tested at dilutions of 1:20 and 1:40 and MOG-Ab positivity
was titrated with serial dilutions with a threshold of 1:160
to define MOG-Ab positivity. Isolated IgM reactivity was
excluded using IgG constant chain (Fc)-specific secondary
antibodies (48, 49).

T-Cell Epitope Mapping Using the CFSE
Proliferation Assay
Peripheral blood mononuclear cells (PBMC) were isolated by
density gradient centrifugation over Histopaque 1077 (Sigma-
Aldrich, St. Louis, MO, USA) according to the manufacturer’s
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FIGURE 1 | AQP4 and MOG peptides used for CD4+ T-cell stimulation. (A) Topological map of the human AQP4 protein (323 aa). Eight selected AQP4 peptides

corresponding to intracellular (I), extracellular (E), and transmembrane (T) sequences of human AQP4 used for CD4+ T-cell stimulation are highlighted in red. Below,

seven AQP4 determinants (blue) and further down one overlapping AQP4 determinant (aqua) are represented within a human AQP4 topological diagram using TOPO2

transmembrane protein display software (http://www.sacs.ucsf.edu/TOPO2/). (B) Topological map of the human MOG protein (218 aa). Nine selected MOG peptides

corresponding to intracellular (I), extracellular (E), and transmembrane (T) sequences of human MOG used for CD4+ T-cell stimulation are highlighted in red. Below on

the left, eight MOG determinants (blue) and on the right, one overlapping MOG determinant (aqua) are represented within a human MOG topological diagram using

TOPO2 transmembrane protein display software (http://www.sacs.ucsf.edu/TOPO2/). AQP4, aquaporin-4; MOG, myelin oligodendrocyte glycoprotein.

instructions and aliquots at a concentration of 1–2 × 107

cells/ml freezing medium (50% Roswell Park Memorial Institute
(RPMI) 1,640 medium, 40% fetal calf serum (FCS), 10%
dimethyl sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO, USA)
were cryopreserved in liquid nitrogen until use. After thawing
adopting a warm and slow processing method as recommended
previously (50) to ensure high viability, isolated PBMCof patients
and controls at a concentration of 2 × 107 cells/ml were
stained with 0.4µM carboxyfluorescein diacetate succinimidyl
ester (CFSE; Life Technologies, Carlsbad, CA, USA) following
the manufacturer’s instructions and cells were cultivated in
X-Vivo 15 growth medium (Lonza, Basel, Switzerland). For
the expansion of antigen-specific T-cells, PBMC were exposed
to 20µg/ml of selected AQP4 and MOG peptides. Eight
AQP4 and nine MOG peptides were selected based on their
encephalitogenicity in animals and/or their immunodominance
in humans, in particular AQP4-specific T-cell responses of PBMC
from NMOSD patients and MOG-specific T-cell responses of
PBMC from MS patients (Figure 1, Table 2; (21, 22, 31, 35–
41, 43, 51–56). Peptide lengths varied from 9 to 25 amino acids
(aa) and were synthesized by Peptides & Elephants (Potsdam,
Germany). As positive control, 5µg/ml tetanus toxoid pool
(TTX; Peptides&Elephants, Potsdam, Germany) and as vehicle
control, DMSO (Sigma-Aldrich, St. Louis, MO, USA) was used.
Since DMSO was used to dissolve the peptides at a maximum
of 35% (v/v) in Dulbecco’s phosphate-buffered saline (DPBS;

Sigma-Aldrich, St. Louis, MO, USA), a 35% DMSO/65% DPBS
mix was added at an equal volume to match the volume of
added peptide solution. Moreover, a second positive control
with the strong mitogen phytohaemagglutinin (PHA; Sigma-
Aldrich, St. Louis, MO, USA) was included. Wells from PHA-
stimulated cells were evaluated on day 4 for color change of
the medium (from red to yellow) indicative of a high metabolic
and proliferative activity and by dilution of the CFSE staining
using flow cytometry. Cells were seeded at a density of 2 x 105

cells/200 µl in tissue culture test plates 96U (TPP, Trasadingen,
Switzerland), each six wells per condition. After eight days, cells
were re-stimulated with half the amount of respective peptides
(10µg/ml per peptide) or vehicle and positive control and 100 µl
of the supernatant were replaced with fresh medium containing
20 U/ml IL-2 (Peprotech, Hamburg, Germany), and supernatants
were stored at −80◦C for later cytokine analyses. After a further
3 days, PBMC were harvested and the proliferation of CD4+ T-
cells in response to single peptides was analyzed via the dilution
of the CFSE staining using flow cytometry. For flow cytometry
analysis, PBMCwere stained with Peridinin-Chlorophyll-Protein
(PerCp)-anti-CD3 (SK7), phycoerythrin (PE)-anti-CD8 (SK1)
and allophycocyanin (APC)-anti-CD4 (SK3) antibodies (all BD
Bioscience, Franklin Lakes, NJ, USA) and analyzed on an Accuri
C6 flow cytometer (BDBioscience, Franklin Lakes, NJ, USA). The
gating strategy is shown in Figure 2. For analysis of a positive
T-cell proliferative response, the cell division index (CDI) was
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TABLE 2 | AQP4 and MOG peptides used for CD4+ T-cell stimulation.

Peptide Sequence aa Mr References

AQP4 peptides

11–30 GKCGPLCTRENIMVAFKGVW 20 2,209 (31, 36)

61–80 GTEKPLPVDMVLISLCFGLS 20 2,119 (31, 36)

63–76 EKPLPVDMVLISLC 14 1,556 (31)

91–110 ISGGHINPAVTVAMVCTRKI 20 2,067 (36)

139–153 PSVVGGLGVTMVHGN 15 1,423 (31, 51)

156–170 AGHGLLVELIITFQL 15 1,623 (31)

211–230 SMNPARSFGPAVIMGNWENH 20 2,215 (31, 36)

281–305 EDNRSQVETDDLILKPGVVH

VIDVD

25 2,805 (37)

MOG peptides

1–20 GQFRVIGPRHPIRALVGDEV 20 2,216 (39, 52)

35–55 MEVGWYRPPFSRVVHL

YRNGK

21 2,591 (39, 42, 52)

64–80 EYRGRTELLKDAIGEGK 17 1,934 (52)

81–96 VTLRIRNVRFSDEGGF 16 1,865 (52)

99–107 FFRDHSYQE 9 1,227 (53)

119–130 FYWVSPGVLVLL 12 1,392 (41, 43)

181–195 TLFVIVPVLGPLVAL 15 1,550 (41)

186–200 VPVLGPLVALIICYN 15 1,583 (41)

205–214 RLAGQFLEEL 19 1,174 (54)

Eight AQP4 and nine MOG peptides corresponding to intra-, extracellular and

transmembrane domains of human AQP4 and MOG were selected based on their

encephalitogenicity in animals and/or their immunodominance in humans.

Aa, number of amino acids; AQP4, aquaporin-4; MOG, myelin oligodendrocyte

glycoprotein; Mr, molecular weight.

calculated as follows, whereby a CDI ≥ 3 was considered as
significant proliferation:

CDI :

CD4+CFSE− cells stimulated with either AQP4 or MOG peptides or TTX (%)

vehicle−treated CD4+CFSE− cells (%)

Evaluation of Cytokine Secretion Using
ELISA
For the evaluation of cytokine secretion of autoreactive T-cells
in response to either AQP4 or MOG peptides, commercial
ELISA kits specific for human granulocyte-macrophage-colony-
stimulating factor (GM-CSF) and IFN-È (BioLegend; San Diego,
USA) and for human IL-4, IL-6, and IL-17A (Thermo Fischer
Scientific, Waltham, MA, USA) were purchased and cell culture
supernatants collected after 11 days (72 h after re-stimulation)
were analyzed following the manufacturer’s instructions. The
stimulation index (SI) was calculated as follows, whereby a SI ≥
3 was considered as significant secretion:

SI :

secreted cytokines of PBMC stimulated with either AQP4 or MOG peptides or TTX (pg/ml)

secreted cytokines of vehicle−treated PBMC (pg/ml)

HLA Typing by Sequence-Specific Primers
(PCR-SSP-HLA Typing)
Since binding of peptides to major histocompatibility complex
(MHC) molecules of antigen presenting cells (APC) is an
important prerequisite for T-cell responsiveness, an HLA-
DQ und -DR type determination was performed using
polymerase chain reaction with sequence-specific primer (PCR-
SSP) technique according to the manufacturer’s instructions
(Olerup SSP, Stockholm, Sweden).

Statistical Analysis
The primary hypothesis of this study was that T-cell responses
are associated with auto-antibody responses, i.e., AQP4-specific
T-cells are increased in participants with AQP4-Ab and MOG-
specific T-cells are increased in participants with MOG-Ab.
This hypothesis was tested for nominal data (i.e., proliferation
with a CDI ≥ 3) using the Chi-square test (with Fisher’s exact
test and Bonferroni’s correction for multiple comparison for
subgroups). Statistical significance was defined as two-sided
p < 0.05 after Bonferroni’s correction for multiple comparisons
(i.e., the number of different peptides used). According to
recently published recommendations to avoid the overuse and
misinterpretation of p-values, the analysis of all secondary and
other endpoints focused on estimates (common odds ratio,
OR) and 95% confidence intervals (CI) (57). Statistical analyses
were performed using IBM SPSS software (IBM SPSS Statistics;
Version 24.0. Armonk, NY: IBM Corp.), GraphPad Prism 8
(GraphPad Software, La Jolla, CA) andOpenMetaAnalyst (http://
www.cebm.brown.edu/openmeta/).

RESULTS

AQP4-Ab Are Associated With
AQP4-Specific CD4+ T-Cell Reactivity

We adopted a cell division analysis procedure based on the
quantitative dilution of the fluorescent dye CFSE to investigate
the CD4+ T-cell autoreactivity of individuals with AQP4-Ab,
MOG-Ab, MS and HC against selected AQP4 peptides. All
participants showed a positive CD4+ T-cell proliferative response
with a CDI ≥ 3 to the positive control TTX (Figures 3,
4A and Table 1). T-cell proliferation with a CDI ≥ 3 for
at least one AQP4 peptide was observed in the majority of
patients with AQP4-Ab (88%), 43% of patients with MOG-Ab,
50% of MS patients and 29% of HC. These proliferative T-
cell responses against at least one AQP4 peptide were more
frequent in participants with AQP4-Ab as compared to HC
(OR = 17.50, 95% CI 1.60–191.89) or all AQP4-Ab negative
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FIGURE 2 | Gating strategy for the identification of proliferated CD4+CFSE− T-cells. PBMC stimulated with single AQP4 and MOG peptides or the vehicle control

DMSO and the positive control TTX were analyzed after 11 days in culture. (A) Gating of lymphocytes according to empirical values of size (FSC) and granularity (SSC)

followed by (B) gating of CD3+ T-cells is shown. (C) Dilution of the CFSE staining due to proliferating of CD4+ T-cells in response to an AQP4 peptide. (D–F) Gating of

proliferated CD4+CFSE− T-cells. Representative scatter plots of proliferated CD4+CFSE− T-cells in response to the vehicle control DMSO (D), to the positive control

TTX (E), and to an AQP4 peptide (F) are depicted. APC, allophycocyanin; AQP4, aquaporin-4; CFSE, carboxyfluorescein succinimidyl ester; DMSO, dimethyl

sulfoxide; FSC, forward scatter; MOG, myelin oligodendrocyte glycoprotein; PBMC, peripheral blood mononuclear cells; PerCP, peridinin-chlorophyll-protein; SSC,

side scatter; TTX, tetanus toxoid.

participants (OR = 11.45, 95% CI 1.24–106.05; Figure 5).
Amongst the different AQP4 peptides, a statistically significant
response was only seen for AQP4 p156-170: T-cell proliferation
with a CDI ≥ 3 was observed in 4/8 (50%) of patients with
AQP4-Ab but in none of the other groups (corrected p-value
0.02). Proliferative T-cell responses against AQP4 p156-170 were
significantly more frequent in participants with AQP4-Ab as
compared to HC (OR= 29.00, 95% CI 1.30–648.44) or all AQP4-
Ab negative participants (OR = 59.00, 95% CI 2.70–1,290.86;
Figure 5).

The clinical presentation of the 4 patients who had increased
T-cell reactivity to AQP4 p156-170 were not substantially
different from the other AQP4-Ab NMOSD patients. All four
cases (all female, age 20–53 years, disease duration 0.4–13.2
years) had a relapsing NMOSD disease course (2–8 relapses),
three of them were treated with rituximab and the fourth patient
was under high-dose corticosteroids before the initiation of

rituximab treatment. Two of the four patients had a relapse at
the time of blood sampling, one of them before the initiation of
rituximab treatment.

The functional phenotype of proliferating T-cells was
characterized by investigating the secretion of the cytokines
IL-4, IL-6, IL-17A, GM-CSF, and IFN-È into cell culture
supernatants of the CFSE proliferation assay using ELISA.
Cytokine concentrations of IL-4 and IL-17A after stimulation
with AQP4 peptides, but not after stimulation with TTX,
were below the detection limit of ELISA. Quantitative and
qualitative values for GM-CSF, IFN-È, or IL-6 levels are
shown in Figures 3, 4B–D. A comprehensive analysis of all
proliferative and cytokine responses to any AQP4 peptide
and p156-170 is shown in Figure 5. From this figure it is
evident that overall these responses are increased in AQP4-
Ab positive patients as compared to HC or all AQP4-Ab
negative participants.
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FIGURE 3 | CD4+ T-cell reactivity to AQP4 peptides in participants with AQP4-Ab (n = 8), MOG-Ab (n = 7), MS (n = 8) and HC (n = 14). (A) CD4+ T-cell proliferation

after challenging with respective AQP4 peptides and the positive control TTX. The cut-off value of a CDI ≥ 3 is indicated by a gray dashed line. Secretion of GM-CSF

(B), IFN-γ (C) and IL-6 (D) after challenging with respective AQP4 peptides and the positive control TTX. The cut-off SI ≥ 3 is indicated by a gray dashed line.

AQP4-Ab, aquaporin-4 antibody positive; CDI, cell division index; GM-CSF, granulocyte-macrophage-colony-stimulating factor; HC, healthy controls; IFN, interferon;

IL, interleukin; MOG-Ab, myelin oligodendrocyte glycoprotein antibody positive; MS, multiple sclerosis; SI, stimulation index; TTX, tetanus toxoid.
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FIGURE 4 | CD4+ T-cell reactivity to AQP4 peptides in participants with AQP4-Ab (n = 8), MOG-Ab (n = 7), MS (n = 8) and HC (n = 14). (A) percentage of

participants with positive CD4+ T-cell proliferation (CDI ≥ 3) after challenging with respective AQP4 peptides and the positive control TTX. Percentage of participants

with positive secretion (SI ≥ 3) of GM-CSF (B), IFN-γ (C) and IL-6 (D) after challenging with respective AQP4 peptides and the positive control TTX. The 95%

confidence intervals are indicated by the error bars. AQP4-Ab, aquaporin-4 antibody positive; CDI, cell division index; GM-CSF,

granulocyte-macrophage-colony-stimulating factor; HC, healthy controls; IFN, interferon; IL, interleukin; MOG-Ab, myelin oligodendrocyte glycoprotein antibody

positive; MS, multiple sclerosis; SI, stimulation index; TTX, tetanus toxoid.
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FIGURE 5 | Significant CD4+ T-cell reactivity to AQP4 peptides. Forest plot displaying Mantel-Haenszel common odds ratio estimates (symbols) with asymptomatic

95% CI (horizontal lines) for response to AQP4 peptides. (A) Reactivity against at least one AQP4 peptide, comparison of patients with AQP4-Ab (n = 8) vs. HC (n =

14). (B) Reactivity against at least one AQP4 peptide, comparison of patients with AQP4-Ab (n = 8) vs. all AQP4-Ab negative participants (n = 29). (C) Reactivity

against AQP4 p156-170, comparison of patients with AQP4-Ab (n = 8) vs. HC (n = 14). (D) Reactivity against AQP4 p156-170, comparison of patients with

AQP4-Ab (n = 8) vs. all AQP4-Ab negative participants (n = 29). AQP4-Ab+, aquaporin-4 antibody positive; AQP4-Ab-, aquaporin-4 antibody negative, CDI, cell

division index; CI, confidence interval; GM-CSF, granulocyte-macrophage-colony-stimulating factor; HC, healthy controls; IFN, interferon; IL, interleukin.

No Association of MOG-Ab With
MOG-Specific CD4+ T-Cell Reactivity
In a next step, we analyzed the CD4+ T-cell autoreactivity of
patients with AQP4-Ab, MOG-Ab, MS and HC against selected
MOG peptides. All participants showed a positive CD4+ T-cell
proliferative response with a CDI≥ 3 to the positive control TTX.
We observed no statistically significant differences after challenge
with the different MOG peptides between groups (Figures 6, 7A
and Table 1). T-cell proliferation with a CDI ≥ 3 for at least one
MOGpeptide was observed in 40% of AQP4-Ab positive patients,
40% of MOG-Ab positive patients, 63% of MS patients and 50%
of HC.

The functional phenotype of proliferating T-cells was
characterized by investigating the secretion of the cytokines
IL-4, IL-6, IL-17A, GM-CSF, and IFN-È into cell culture

supernatants of the CFSE proliferation assay using ELISA.
Cytokine concentrations of IL-4 and IL-17A after stimulation
with AQP4 peptides, but not after stimulation with TTX,
were below the detection limit of ELISA. Quantitative and
qualitative values for GM-CSF, IFN-È, or IL-6 levels are shown in
Figures 6, 7B–D.

HLA Association of AQP4-Specific T-Cell
Reactivity
Figure 8 shows the overall frequencies of HLA-DQB1, HLA-
DRB1 and HLA-DRB3 alleles in participants with AQP4-
Ab, MOG-Ab, MS, and healthy controls. The following HLA
genotypes were overrepresented in participants with AQP4-Ab
(n= 8) compared to those without AQP4-Ab (n= 31): DQB1∗02
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FIGURE 6 | CD4+ T-cell reactivity to MOG peptides in participants with AQP4-Ab (n = 5), MOG-Ab (n = 10), MS (n = 8) and HC (n = 14). (A) CD4+ T-cell proliferation

after challenging with respective MOG peptides and the positive control TTX. The cut-off value of a CDI ≥ 3 is indicated by a gray dashed line. Secretion of GM-CSF

(B), IFN-γ (C) and IL-6 (D) after challenging with respective MOG peptides and the positive control TTX. The cut-off value of a SI ≥ 3 is indicated by a gray dashed

line. AQP4-Ab, aquaporin-4 antibody positive; CDI, cell division index; GM-CSF, granulocyte-macrophage-colony-stimulating factor; HC, healthy controls; IFN,

interferon; IL, interleukin; MOG-Ab, myelin oligodendrocyte glycoprotein antibody positive; MS, multiple sclerosis; SI, stimulation index; TTX, tetanus toxoid.
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FIGURE 7 | CD4+ T-cell reactivity to MOG peptides in participants with AQP4-Ab (n = 5), MOG-Ab (n = 10), MS (n = 8) and HC (n = 14). (A) Percentage of

participants with positive CD4+ T-cell proliferation (CDI ≥ 3) after challenging with respective MOG peptides and the positive control TTX. Percentage of participants

with positive secretion (SI ≥ 3) of GM-CSF (B), IFN-γ (C) and IL-6 (D) after challenging with respective MOG peptides and the positive control TTX. The 95%

confidence intervals are indicated by the error bars. AQP4-Ab, aquaporin-4 antibody positive; CDI, cell division index; GM-CSF, granulocyte-macrophage-colony-

stimulating factor; HC, healthy controls; IFN, interferon; IL, interleukin; MOG-Ab, myelin oligodendrocyte glycoprotein antibody positive; MS, multiple sclerosis; SI,

stimulation index; TTX, tetanus toxoid.
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FIGURE 8 | (A) HLA allele frequency (in% with 95% confidence intervals indicated by the error bars) of participants with AQP4-Ab (n = 8), MOG-Ab (n = 9), MS (n =

8) and HC (n = 14). (B) Forest plot displaying Mantel-Haenszel common odds ratio estimates (symbols) with asymptomatic 95% CI (horizontal lines) for the different

HLA alleles in participants with AQP4-Ab (n = 8) vs. all AQP4-Ab negative participants (n = 31). HLA alleles DQB1*02, DRB1*01 and DRB1*03 were overrepresented

in participants with AQP4-Ab. (C) Forest plot displaying Mantel-Haenszel common odds ratio estimates (symbols) with asymptomatic 95% CI (horizontal lines) for the

different HLA alleles in participants with MOG-Ab (n = 9) vs. all MOG-Ab negative participants (n = 30). AQP4-Ab, aquaporin-4 antibody positive; HC, healthy

controls; HLA, human leucocyte antigen; MOG-Ab, myelin oligodendrocyte glycoprotein antibody positive; MS, multiple sclerosis.
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(OR = 5.71, 95% CI 1.09–30.07), DRB1∗01 (OR = 9.33, 95% CI
1.50–58.02) and DRB1∗03 (OR= 6.75, 95% CI 1.19–38.41).

The four study participants reactive with AQP4 p156-
170 peptide 156–170 had the following HLA genotypes: Nr.
1 (DQB1∗02, DQB1∗05, DRB1∗01, DRB1∗03, DRB3∗01), Nr.
2 (DQB1∗03, DQB1∗05, DRB1∗10, DRB1∗11, DRB3∗02), Nr.
3 (DQB1∗02, DQB1∗06, DRB1∗07, DRB1∗15, DRB4, DRB5),
and Nr. 4 (DQB1∗03, DQB1∗05, DRB1∗01, DRB1∗04, DRB4).
However, only HLA DRB1∗01 was associated with the presence
of AQP4 p156-170 reactive T-cells (OR = 31.67, 95%
CI 1.30–772.98).

DISCUSSION

In this study we analyzed peripheral blood T-cell responses to
AQP4 and MOG peptides in individuals with AQP4-Ab, MOG-
Ab, MS, and HC. We identified significantly increased AQP4-
specific CD4+ T-cell reactivity to AQP4 peptide 156–170 in 4 of
8 AQP4-Ab positive NMOSD patients, but in none of the other
groups. In contrast, we could not detect any significant disease-
specific T-cell response to other AQP4 or MOG peptides. AQP4
peptide 156–170 has already been described as a T-cell epitope in
NMOSD patients (31) and is also one of the most important B-
cell epitopes recognized by AQP4-Ab (14, 15, 58, 59). Three other
immunodominant T-cell epitopes/peptides of the AQP4 protein
have been described by Varrin-Doyer et al. (31), which were also
included in our study. However, we and other authors could not
confirm immunodominance for these particular determinants
(38, 60). The possible reasons for this discrepancy could be
explained by the different methods used (CFSE, 3H-thymidine
incorporation proliferation assays, cytokine secretion) and the
different genetic background, i.e., HLA associations of the study
populations. Several studies have identified over-representation
of HLA-DPB1∗0501, HLA-DRB1∗0301, or HLA-DRB3 in NMO
patients (31, 61–63). However, only DRB1∗0301 but not any
of the other HLA alleles was overrepresented in our study
population, indicating differences in the genetic background. In
contrast, we found an overrepresentation of HLA-DQB1∗02 and
HLA-DRB1∗01 in our study.

Some AQP4-specific T-cells (particularly against AQP4
peptides 11–30, 61–80, 63–76, 91–110, 139–153, and 281–305)
were also present in participants with MOG-Ab, MS, and
HC, consistent with previous studies demonstrating antibody
response against linear AQP4 peptides (64). The presence of these
AQP4-specific T-cell responses may reflect unspecific bystander
activation, i.e. T-cell receptor (TCR)-independent activation
of autoreactive T-cells by pro-inflammatory cytokines during
inflammation, and/or epitope spreading (65).

We found no differences in MOG-specific T-cells between
the four different groups with our experimental approach. The
reason for the observed results could be explained by ignorance
of the immune system of the MOG protein (66). In contrast to
the AQP4 protein, which is also highly expressed in the periphery
(67, 68) and hence underlies highly regulated mechanisms of
self-tolerance (69, 70), MOG is only expressed in the CNS at
very low levels (71, 72) and therefore not subject to intense
immune surveillance. This might explain why HC showed lower
response to AQP4 determinants, but in vitro stimulation with

MOG peptides also caused profound T cell response in some
healthy subjects.

Synthetic MOG peptides used in this study may not
accurately represent naturally processed antigen and MHC-
presented peptides in an in vivo setting (73). One of the major
pathogenic mechanisms of MOG-Ab is considered the enhanced
presentation of native MOG protein to T cells via Fc receptor
mediated internalization of the antigen-Ab complex (74–76).
Therefore, it is possible that MOG-reactive T cells can only
be detected using intact MOG protein as the antigen. Indeed,
Bronge et al. were able to identify increased frequencies of IFN-
γ, IL-22 and IL-17A producing MOG-specific T-cells in patients
with MS using bead-bound MOG as the antigen (77).

A major limitation of our study is the small number
of included participants. This number reflects the expected
number for our clinical centers, since NMOSD and MOG-
related disorders are rare with a worldwide prevalence of 1–
4/100,000 comparatively similar in most populations. Other
limitations are that most patients received immunosuppressive
therapy during sample collection related to their severe clinical
presentations. Most AQP4-Ab positive patients (6/8) and 4/10
MOG-Ab positive patients received immunomodulatory or
immunosuppressive treatment at the time of sample collection.
Although B-cell depleting therapy is known to affect T-cell
responses in patients with MS (78), 3/4 AQP4-Ab patients who
had increased T-cell reactivity to AQP4 peptide 156-170 were
treated with rituximab and the fourth patient was under high-
dose corticosteroids before the initiation of rituximab treatment.

Importantly, the detailed characterization of single
peptides, i.e. known “candidate antigens” based on
their encephalitogenicity in animal models and/or their
immunodominance in humans is crucial for a potential use
in antigen-specific tolerance induction therapies (60, 79). For
future studies, the implementation of new unbiased approaches
may provide additional perspectives. These new strategies
differ from previous studies by using combinatorial peptide
libraries, which e.g., cover the entire protein or which allow the
discovery of novel “unknown” antigens (80). Discrepancies to
other studies might be explained by the use of different assays.
We and all other investigators in this field face the issue of very
low precursor frequencies of CNS antigen-specific T cells in
PBMC preparations. However, the CFSE dilution assay used
here is a powerful and sensitive method for directly detecting
proliferation of rare autoantigen-specific human T-cells (31, 81).
Moreover, the late addition of IL-2 during a re-stimulation
step (82–84) offers high sensitivity and specificity. This strategy
effectively increases the sensitivity for rare antigen-specific T-
cells by selectively facilitating the proliferation of T lymphocytes
that express the IL-2 receptor alpha-chain CD25 following
antigen recognition (82, 85). However, even though our culture
conditions promote the survival of mostly proliferating T-cells,
other cells might skew the cytokine response. Indeed, it is well
acknowledged that the key Th17-polarizing cytokine IL-6 is
produced by myeloid cells (monocytes) rather than T-cells.
Furthermore, the timing of sample collection might influence
the relative abundance of the different cytokines and therefore
explain differences to previous studies. Finally, additional factors
such as the TCR avidity or the peptide concentration in different
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assays may play a role for various specificities. The application
of (i) a lower peptide concentration (here used 20µg/ml per
peptide is higher compared to other studies), (ii) the use of
native protein antigens instead of peptides, (iii) purified memory
T-cells instead of PBMC, and/or (iv) the co-culture of T-cells
with autologous APC, e.g., monocytes or EBV-transformed B
cells, may be critical improvements for future experiments.

To conclude, this report investigates AQP4- and MOG-
specific T-cell reactivities in human individuals presenting
with AQP4-Ab and MOG-Ab positive demyelinating diseases.
Our in vitro data corroborates previous findings showing the
involvement of AQP4-specific T-cells in AQP4-Ab positive
NMOSD and confirms the AQP4 peptide 156-170 as specific
T-cell epitope. In contrast, no disease-relevant MOG peptide
was identified. Future confirmatory studies using an unbiased
approach for epitope discovery in larger cohorts may overcome
main limitations of small sample size and the use of a limited
collection of synthetic peptides in this study.
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