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Abstract

Background: Haplotype phasing is animportant step in many bioinformatics workflows. In cancer genomics, it is
suggested that reconstructing the clonal haplotypes of a tumor sample could facilitate a comprehensive understanding
of its clonal architecture and further provide valuable reference in clinical diagnosis and treatment. However, the
sequencing data is an admixture of reads sampled from different clonal haplotypes, which complicates the
computational problem by exponentially increasing the solution-space and leads the existing algorithms to an
unacceptable time-/space- complexity. In addition, the evolutionary process among clonal haplotypes further
weakens those algorithms by bringing indistinguishable candidate solutions.

Results: To improve the algorithmic performance of phasing clonal haplotypes, in this article, we propose
MixSubHap, which is a graph-based computational pipeline working on cancer sequencing data. To reduce the
computation complexity, MixSubHap adopts three bounding strategies to limit the solution space and filter out false
positive candidates. It first estimates the global clonal structure by clustering the variant allelic frequencies on
sampled point mutations. This offers a priori on the number of clonal haplotypes when copy-number variations are
not considered. Then, it utilizes a greedy extension algorithm to approximately find the longest linkage of the locally
assembled contigs. Finally, it incorporates a read-depth stripping algorithm to filter out false linkages according to the
posterior estimation of tumor purity and the estimated percentage of each sub-clone in the sample. A series of
experiments are conducted to verify the performance of the proposed pipeline.

Conclusions: The results demonstrate that MixSubHap is able to identify about 90% on average of the preset clonal
haplotypes under different simulation configurations. Especially, MixSubHap is robust when decreasing the mutation
rates, in which cases the longest assembled contig could reach to 10kbps, while the accuracy of assigning a mutation
to its haplotype still keeps more than 60% on average. MixSubHap is considered as a practical algorithm to reconstruct
clonal haplotypes from cancer sequencing data. The source codes have been uploaded and maintained at https://
github.com/YixuanWang1120/MixSubHap for academic use only.
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Background

Modern canceration theory summarizes that tumor het-
erogeneity is one of the key results of tumor proliferation
and evolution [1]. Any macroscopic tumor tissue is con-
sidered as an admixture of cancerous and non-cancerous
cells, where the cancerous cells, in many cases, could
be further clustered into multiple sub-clones, according
to their somatic mutational events [2, 3]. These somatic
mutations, interacting with germline variations, often
underlie different deleterious selective advantages, which
may further contribute to drug resistance, tumor recur-
rence and metastasis, and many other phenotypes [4-6].
For example, it is observed that the presence of multiple
sub-clones could be associated with poor clinical out-
comes in a group of chronic lymphocytic leukemia cases
[7]. 1t is also reported that the clonal competition for
predominance occurs spontaneously in multiple myeloma
cases and the heterogeneous clonal mixtures may shift
predominant clones with therapeutic selection [8]. Not
only in blood cancer cases, similar conclusions could be
drawn in many other cancer types, such as esophageal
adenocarcinoma [9], lung adenocarcinoma [10] and renal
clear cell carcinoma [11]. It is now a popular opinion
that a comprehensive understanding on tumor hetero-
geneity benefits clinical diagnosis and potential precision
treatments.

Genomic analysis on tumor heterogeneity has two lev-
els: genotype level and haplotype level. The genotype-level
bioinformatics pipelines differentiate homozygous muta-
tional events, including loss of heterozygosity (LOH),
from heterozygous ones [12—14], and then cluster them
into sub-clones [3, 15]. On this basis, the haplotype level
analysis requires locating each heterozygous mutation
on the corresponding chromosomal sequence of alle-
les, named haplotype, whose computational problem is
often called haplotype phasing. Actually, haplotype phas-
ing has already been an important step in many bioin-
formatics workflows besides cancer research [16], but
its importance in cancer genomics is recently empha-
sized [17]. Understanding haplotype heterogeneity is
suggested not only to elucidate a series of critical genome-
to-transcriptome events, e.g. gene fusion transcripts and
their driver partners [18], but to facilitate the studies on
the interactions among different germline and somatic
variations, e.g. two-hit events and allelic amplifications
[4, 5, 17]. Such results could significantly benefit down-
stream analyses and studies in many fields, including dis-
ease association studies [6, 19], clinical decision-support
with electronic medical record data [20-22], drug and
treatment designs and improvements [23, 24], etc.

Benefiting from the second generation sequencing tech-
nology, tens of thousands of cancer patients have been
sequenced, and the cancer sequencing data have been
accumulating rapidly as well, which greatly promotes the
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studies on clonal heterogeneity and expansion [25] and
the developments of related computational approaches
[26]. Nowadays, tumor heterogeneity analyses are almost
built up on cancer sequencing data. Although the existing
approaches differ in models, algorithms, and the eval-
uation standards for “well suited’} based on our best
knowledge, the core algorithms may be roughly divided
into two categories: the phylogenetic model-based meth-
ods and model-free ones. The phylogenetic model-based
methods, just as the name implies, usually focus on the
computational problem of inferring phylogenetic trees
that describe clonal expansion and evolution [27-32]:
TrAp proposed an expanded algorithm from a brute-
force algorithm for sub-clonal deconvolution, which
generated the evolutionary tree(s) by comprising the max-
imum number of first-generation trees [27]. PhyloWGS
established a probabilistic model for phylogeny inference,
which incorporated the information of variant allele fre-
quencies and the estimations of allelic amplifications and
LOHs [28]. BitPhylogeny designed a graphical model, and
then it adopted two strategies, which were a Markov chain
Monte Carlo (MCMC) sampling and a maximum pos-
terior method on expected adjusted rand, to solve the
possible phylogenies [29]. SPRUCE utilized a bounded
enumeration strategy to search the solution space of can-
didate perfect phylogenies which were consistent with the
given data set [30]. Canopy improved the statistical frame-
work and was capable of handling the data sequenced
from temporally and/or spatially separated samples from
the same patient to reconstruct tumor phylogeny [31].
A recent published method further addressed the lack
of methods for tumor deconvolution and phylogenet-
ics of diverse classes of structural variations at base-pair
resolution [32].

On the other hand, it is argued that the specific features
of tumor evolution may challenge the direct applications
of classical phylogenetic models [33]. One of the key issues
occurs when classical phylogenetic approaches require a
priori on the number of sub-clones, which is an unknown
parameter for cancer sequencing data. To overcome such
issues, the model-free methods often focus on the clonal
structures with the maximum likelihood on global variant
allelic frequencies [3, 34—38]: THetA designed a convex
optimization algorithm to solve the maximum likelihood
mixture decomposition, which optimized the multinomial
probability [34]. PhyloSub proposed a series of topologi-
cal constraint rules to limit the possible phylogenies that
were able to explain the frequency changes [35]. PyClone
introduced a Bayesian clustering method, which inte-
grated the estimations on cellular prevalences, normal-cell
contamination and segmental copy-number changes [36].
SciClone adopted a variational Bayesian mixture model to
provide a global estimation of clonal architecture across
all of the given copy-number neutral regions [3]. TITAN
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established a graphical model to estimate sub-populations
based on copy number alterations and loss of heterozygos-
ity events [37]. Automate learning was also incorporated
for deconvolution of genomic mixtures, where the RNA
expression data was involved in addition to improve the
performance [38]. In general, there is no clear bound-
ary between the two categories, and several comprehen-
sive reviews compared the advantages among the existing
approaches [26, 33].

However, most of the existing approaches are not able
to deepen the analyses to haplotype level efficiently. When
multiple haplotypes are considered, the evolutionary pro-
cess should be represented by a set of parallel phyloge-
netic trees rather than possible single phylogenies, which
is different from the hypothesis on which most of the
existing methods, the phylogenetic model-based meth-
ods or model-free ones, rely [3, 28-30, 32, 34, 36-38].
For those methods considering concurrent evolutionary
processes, haplotype phasing algorithms are needed to
locate heterozygous mutations prior to inferring clonal
structure [27, 31, 35]. Moreover, phasing multiple haplo-
types is also a quite challenging computational problem
because the solution space of possible haplotypes is expo-
nentially increased along with the increasing of sub-
clones. For example, for k sub-clones each with # het-
erozygous variation sites, the solution space of 2k clonal
haplotypes (allelic imbalance events are not considered)
reaches O (2(2"_1)”) [39]. The polyploid phasing problem
has already been suggested as an NP-hard problem [39-
44], hence probabilistic algorithms and heuristic strate-
gies are commonly used to approximate optimization
solutions, such as Gibbs sampling [39], greedy binning
algorithm [41], branch-and-bound scheme by maximum
likelihoods [42], semi-definite programming [43], sparse
tensor decomposition [44], etc.
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Different from polyploid haplotypes, the haplotypes of
multiple sub-clones from the same sample always imply
the information of its clonal structure. Thus, to enhance
the efficiency of the existing computational pipeline, e.g.
[17], we consider to incorporate the priori of clonal struc-
ture to bound the solution space, and then polish the
clonal structure with estimated clonal haplotypes. To
achieve this, in this article, we propose MixSubHap, a
computational pipeline for phasing clonal haplotypes as
well as estimating clonal structure. To reduce the com-
putation complexity, MixSubHap adopts three bounding
strategies to limit the solution space and filter out false
positive candidates. It first estimates the global clonal
structure by clustering the variant allelic frequencies on
sampled point mutations. This offers a priori on the num-
ber of clonal haplotypes when copy-number variations
are not considered. Then, it utilizes a greedy extension
algorithm to approximately find the longest linkage of
the locally assembled contigs. Finally, it incorporates a
read-depth stripping algorithm to filter out false linkages
according to the posterior estimation of tumor purity and
the estimated percentage of each sub-clone in the sample.

Methods

Suppose that we are given a set of paired-end sequenc-
ing data with mapping information, and the outputs
of the proposed pipeline include both the number of
sub-clones and the haplotypes of each sub-clone. The
given data is first pre-processed: a read is retained if
it brings at least one point mutations, while a read-
pair is retained if it brings at least two point muta-
tions. Each read-pair that passed the filter is then col-
lapsed to a much shorter sequence, named VPE as in
[45], by extracting the sites with point mutations from
this read-pair, as shown in Fig. 1. A VPE consists of

Ref:

..ACGGAATAGCCATACCGGGGTTACGGGTTTTCCA...
Read: ...ACGGTATAGCGATACCGGGGTTCCGGATTTTCCA...

oo

VPE: T G

i i+l

sites with variants

VPE information extracted from sequencing data

Fig. 1 Extracting a VPE from a pair of mapped reads. When a read-pair is mapped to the reference genome, the corresponding VPE consists of the

Vo

2 i3




Wang et al. BMIC Medical Genomics 2019, 12(Suppl 1):27

only the sites with variants from the corresponding read-
pair. In the current stage of this research, the struc-
tural variations, including the allelic imbalance events
on point mutations, are temporarily not considered.
According to these reads (VPEs), the variant allelic fre-
quency (VAF) of each variant is calculated. We adopt
a model-free method to provide a priori of the clonal
structure according to global variant allelic frequencies.
A series of model-free method could achieve this. Here,
we incorporate SciClone [3], a popular method, into the
proposed pipeline.

MixSubHap consists of three major components:
assembling local VPEs, expanding local contigs and itera-
tively stripping clonal read-depth. The flowchart is shown
in Fig. 2.

e Assembling local VPEs: As the first component, a
divide-and-conquer strategy is adopted to assemble
the VPEs to multiple groups of contigs. Different
from assembling reads, VPEs are first clustered by
starting sites, and then for each cluster, the VPEs
with the same starting site are processed together to
form a small set of contigs. Note that, multiple reads
whose mapping positions are slightly different may
collapse to the same VPE sequence if they bring the
same variants. In addition, several constraints which
imply the inheritance principle across sub-clones are
applied. The details of these constraints are further
discussed in Discussion section.

e Expanding local contigs: To link the contigs across
different clusters, an efficient greedy algorithm is
conducted. An undirected weighted graph is
established. Each vertex represents a variant site. An
edge exists between two vertexes if at least one VPE
supports the linkage of them. The edges are weighted
according to the likelihoods of possible linkage
modes. The greedy algorithm first generates a
maximum spanning tree on the sub-graph that
consists of the vertexes from the founding clone.
Here, the estimation of founding clone is provided by
SciClone. Moreover, the computation is also
simplified by the inheritance constraint, which limits
the linkage mode in all of the descendant sub-clones.

e Stripping each clonal read-depth: For the variants do
not occur in the founding clone, different genotypes
are brought by different sub-clones. In these cases, the
likelihoods are interfered by allelic clonal haplotypes.
To filter out the bias on the likelihoods, a thickness
stripping algorithm is designed. According to the
VAFs and the estimations on clonal structure, the
VPEs that have higher probabilities of sampling from
other sub-clones are removed, and then the spanning
tree is extended based on the corrected edge weights.
The parental haplotypes guide the clonal haplotypes
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of its descendants. When the tree is traversed, the
clonal haplotypes are then reconstructed.

Assembling local VPEs

Let V denote the set of given variant sites. VPEs are
defined as the information which contain the base states
of all the mutated sites along with their actual positions in
reads and relative positions in set V. When extracting VPE
information, it is necessary to ensure that the number of
mutations brought by the read or read-pair is not less than
two. Sequencing reads that contain only one mutation do
not reflect the interrelationship between mutations and
do not provide useful information for haplotype recon-
struction, thus we do not take such information into
consideration. It is assumed that each sequence library
is well prepared and the insert-size obeys a normal dis-
tribution with a small variance. Therefore, libraries with
different lengths are introduced, more variant sites can be
extracted correctly.

In general, the rare somatic mutations on cancer suscep-
tibility genes may reach 10,000, which is a huge challenge
for the computational capability of ordinary computer. At
this time, the computational complexity is too high due to
the large amount of variants. Therefore, the MixSubHap
uses the Dividing and Assembling strategy to process the
VPE information. The strategy appropriately clusters the
length of the division and designs the connection ways,
so that the resulting short chains can accurately exhibit
fragments of the sub-clonal haplotypes. To achieve this,
the VPE is first mapped to the reference by mapping the
base state of corresponding variant against the reference
according to its actual position. After that, the aligned
VPE are divided into M groups according to its starting
position, then the algorithm processes group by group.
Assume that the number of sub-clones I is known, then
the number of haplotypes is determined, which is 27, and
the total number of variants is N. The process consists of
the following steps:

e Sorting the VPEs via the starting positions.

e Constructing initial short chain groups. VPE
alignments at the same starting position are
processed together to form a group of short chains.
Specifically, this is an integer programming problem,
where the goal of the programming is that the
cardinality of a set of short chains (the number of
short chains in the group) is minimal, and the
constraint of the programming is that the short-chain
group must be able to support all the corresponding
VPEs, carrying the maximum number of variant sites.
During solving this, the greedy strategy is used to
minimize the number of short chains, and at the
same time to support all the VPE information of this
group. In order to ensure that the ambiguity chain
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Extracting VPEs from
sequencing data

A 4

Assembling local VPEs to
linked the chain groups

A 4

Expanding local contigs

<

A

Iteratively stripping clonal
read-depth to extend the
spanning tree N

If the spanning
tree contains all
of the VPEs

Reconstructing the clonal
haplotypes

\ 4

End

The flowchart of MixSubHap

Fig. 2 The flowchart of the proposed pipeline

does not produce redundant, we add each VPE into a

e According to the principle of inheritance, arrange all

short chain group only when the VPE not contained
in the existing short chains, otherwise, the VPE
remains in the candidate set and the short chain
group retains the same.

short chain groups and keep qualified arrangement.
Process VPEs whose starting sites are p (p € N), then
process group by group, until all VPEs are

processed.



Wang et al. BMIC Medical Genomics 2019, 12(Suppl 1):27

Until now, all the VPEs are rationally and effectively
connected, and a large number of short chain groups car-
rying haplotype information are formed. Next, we will
present a reasonable and efficient strategy to further con-
struct the haplotypes of each sub-clone.

Expanding local contigs

According to the hypothesis of linear evolution mode
between tumor sub-clones (see in Discussion), we know
that, once the connection mode of a pair of variants from
the founding clone Sy is fixed in the tumor evolution-
ary process, the differentiation of subsequent sub-clone
S, i € {1,2,...,I — 1} will inherit the same connection
without any change. In the same way, once the connec-
tion between a pair of variants from sub-clone S; at any
level is confirmed, it will not change in its descendant
clone S; (i < j). According to the linear evolution mode,
the mutation sites in the clones are separated layer by
layer. Thus, the parental clonal haplotype structure can be
used as a known condition to guide the construction of
the descendant clonal haplotypes.

In order to recognize the clonal haplotypes efficiently
and accurately, MixSubHap algorithm first clusters all
the variant sites according to the VAF of each site.
The variants in the same cluster are from the same
sub-clone [3], and then the clustering results are con-
sidered as the basis to initialize the clonal haplotypes.
The clustering method used in this paper is SciClone ver-
sion 1.1.0 [3], which is reported to be relatively accurate in
clustering the somatic mutations by clonal structure.

MixSubHap algorithm mainly generates a maximum
spanning tree based on the short chain groups we
obtained. Let M be the set of all variants, and <p,', pj) rep-

resent two adjacent allelic sites, p;,p; € M. LetH;i’p"
represent the connection mode between the p;th vari-
ant site and the pjth variant site from the sub-clone S.
A stands for the same base as the reference genome,
while B stands for a base different from the reference
genome, namely B stands for a mutation. Therefore, for
any two sites from the same sub-clone, possible values for
Hg’;’"” are {(4,A), (B,B)}or{(A,B), (B,A)}.For the found-
ing clone Sy, according to the short chain groups, we can
get many different values of Hg(;’P ’ and add these differ-
ent values respectively to the corresponding coverage of
variant pair (pi, pj). In order to separate the sub-clones
layer by layer, variant pair (p,', pj) from every sub-clone
and the corresponding coverage level c(ij) are used to
estimate the clonal haplotypes. For variant pairs, the cov-
erage of each pair and the probability of various pos-
sible connection modes between the two variants are
calculated together. According to the probabilities of var-
ious connection patterns, the corresponding undirected
weighted graphs are established. When calculating the
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coverage level Cij) of allelic sites <p,', pj), only short chain
groups are considered. Let F(i,j) represent the set of
short chains containing both allelic sites (p,', pj>. |F (i, j)|
represents the number of chains in this set. We set the
connection probability of {(4,A), (B,B)} to be positive
and set the connection probability of {(4,B), (B,A)} to
be negative. Let G represent a weighted undirected graph
where the variant sites are the vertexes of the graph. Here,
we set the coverage threshold Cov, with a default value of
2. If |F(i,j)| > Cov, there will be an edge between variants
(p,', pj) and the weight of edge will be the probability of the
connection. The formula of weight is:

Wiy =f (bpi by A) = f (bpi» by, B)

N pup) = 30 1) = (bpiby)
reF (i)
Where, NP, (pi» pj) represents the number of chains
across allelic sites (pi, pj> corresponding to the connec-
tion mode (bp,, by,). by, and by, respectively indicate the
base states of the variant site p; and p;. r(p;, pj) repre-
sents alleles for variant site p; and p;. There are four
kinds of joint states for allele p; and pj, where (by,, by,) €
{(A,B), (B,A), (A,A), (B,B)}. I(.) is the indicator function.
When r(pi, pj) = (by;, bp/.) is true, the function value is 1,
0 otherwise. For variant site p;, consider the sequencing
error and alignment error of each site €.
Let

N4 (i pj) = NAA pi pj) + NB’B(Pi;Pj)
N (pi,pj) = N*P(pi, p) + NP (pi )
Two connection probabilities of the paired variant sites

(pi.pj) are,

) 2 Ag, _ B(p. 1.
f(hp,,bp,,A): ((1 €) +e)><N (pi>pj) + 2€ x (1 —€) x N°(p;, pj)

|F (i, )

(@ —e?+€?) x NB(pi,py) +2¢ x (1 — €) x N (v, p))
|FG, ]

Where W5 > 0 indicates that the connection mode
of allelic sites (pi, p;) is HQ)’A /Hf(;B ; otherwise, Wiy < 0
indicates that the connection mode of allelic sites (pi, p;)
is H?O'B/Hf(;A. The greater the absolute value of W, ;,
the higher the reliability of the corresponding connection
pattern.

After constructing the undirected weighted graph G of
the founding clone is constructed, the number of ver-
texes in the graph is N,. All the vertexes in the graph
G are all derived from variant sites in the founding
clone Sp. The algorithm selects a vertex, whose base
state is known, as the starting point sp for construct-
ing the sub-clonal haplotypes and generating the ini-
tial maximum spanning tree T corresponding to graph
G. The processing steps are as follows, as shown in
Fig. 3:

F(bpi by, B) =
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C GraphG~

d Extension Tree 7

Fig. 3 Extension of Tree T" Construction Process

Extension of Tree T" Construction Process

e Find all variant sites connected to sp from graph G;

e Select the corresponding edge of max ( ‘ W) D as
one edge of the maximum spanning tree T;

e According to the positive or negative of the edge
weight, the state of another variant connected to sp
can be determined and these variants will be
considered as new known vertexes;

e Conduct the second step successively for other
unkonwn variants and repeat adding border process
to maximum spanning tree T till all the variants have
appeared in T or cannot be added any more.

In actual, due to the sparseness of the founding clone
variants and the limitation of the read length of the sec-
ond generation sequencing data, the generated undirected
weighted graph G is often not a connected graph, but
consists of several mutually disconnected subgraphs. Mix-
SubHap algorithm generates an equal number of subtrees
on these subgraphs and identifies the base states, thus
guides the later extension of the spanning tree.

Stripping each clonal read-depth

After the initial maximum spanning tree T is built, the
connection patterns of partial variant sites on the hap-
lotypes have been determined. However, there are a
large quantity of variant sites not included in the initial

maximum spanning tree 7. The connection modes of
these variant sites are relatively complex, including three
types of linkages (B,A), (A4,A), (A, B) with varying pro-
portion of each according to the sub-clone proportion
in the tumor sample. So we adopt the thickness strip-
ping strategy to strip the read depth level by level from
the founding clone to the uppermost layer descendant
sub-clone. The remaining sub-clones can be processed in
accordance with the method of constructing tree in the
founding clone.

Thickness stripping strategy refers to finding the separa-
tion point that identifies the current sub-clone and divides
all the clones into two parts in the direction of alleles.
If sub-clone S; is the first sub-clone which two variants
have been mutated, this sub-clone should be considered
as the demarcation line and the upper parental clone of
this sub-clone should be separated at a mixed ratio. With
the process of evolution, the variant allelic frequency is
decreasing, so the initial value of sub-clone proportion
should be estimated according to the mean of allelic fre-
quency of each sub-clone. After separation, there are only
two types of connection ways between allelic sites for
remaining sub-clones and the weights of the two ways
are the same in positive and negative. So the connection
between the allelic sites can be clearly judged. For the por-
tion of sub-clones to be stripped, they can be separated
from the mixed sequencing data according to the mixed
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ratio of the sub-clones. Set the number of clones to be N,
and then the thickness stripping formula is:

Yot Y o

0<i<Si Sk1<i<SN;

PYwip) = |[F(pipp)| x

1
Popup) =[Foup)| x| 3 5n

Sk41<i<SNj

Adjust the coverage of the allelic site (p,-, pj>, we have
NA(pi’pj) - NA(Pi:Pj) - PA(PDP/)

NE(pi,pj) = N* i pj) = PP (pis )
After separating the data, the new undirected weighted
graph G’ is established by using the same method for the
undirected weighted graph G and the weight calculation
formula becomes

W (pipj) =1 (bpi,bp/,A) — f'(bp,, by;, B)

— 2 +€2) x NA(w: p: _ NB(v: p:
f’(b,,,,bp,,A):(“ % +€°) x NA@i,p)) +2¢ x (1— ) x NE(pi,p))

1\/[7‘(!7:‘,10/) + 1\’173(105,}7/)
(@ —e?+€) x I\/ITB(p,v,p,») +2ex (1—¢€) x ﬁ“(pi,pj)
A/[\A(Pirp/') +1\/1‘\5(Pi,171)
Where !W’ (pi, pj>| > § represents an effective edge
between (pi, p,-) allelic sites. When adding it to the graph
G, the corresponding weight is W’ (p;, p;). The default
value of & is 0.1. When the graph G’ is constructed, it
can basically contain all the variation sites from the ref-
erence sequence. Then the maximum spanning tree 7T is
extended to T’ according to the graph G’ following the
steps in section Expanding local contigs.

In order to finally reconstruct the haplotype that con-
tains the variants as many as possible, it is necessary
to ensure that the extended tree T’ contains more vari-
ants. Lower coverage and higher threshold of coverage
will cause some variation sites be left out. Thus, we auto-
matically adjust to lower coverage threshold and edge
weight threshold to ensure lower false-negative as much
as possible. We adopt depth-first traversal of all vertexes
in extended tree T’ and sort according to the relative posi-
tions in the order of reference sequence. After sorting,
the state set of vertexes is a haplotype of the last sub-
clone. Assuming that all variation sites are heterozygous,
another haplotype of the last sub-clone is easily obtained.
According to the linear evolution relationship among the
sub-clones, the haplotypes of the remaining sub-clones
are obtained by the following formula.

A it =A
B, h2(i+1),j = Band sub(j) < i
A, h2(i+1),j = Band Sub(j) >
Where, i represents the label of sub-clone and j represents
variation site number. sub(j) represents the sub-clone

S by by B) =

haij =

Page 114 of 189

label of the jth variation site, /;; represents the base state
of the jth site from father chain on the ith sub-clone. By
the above formula, we can find base state of the site from
one haplotype corresponding to the paired haplotype.

P hoij @ 1,5ub(j) < i
2] = hzl',j,i <sub(j) <I—-1

The construction process is shown in Fig. 4.

Results

To generate simulation datasets, a chromosome is ran-
domly selected from the human reference genome as
a reference sequence. Simulating single point variation,
germline mutation rate is set to 0.1%, and the somatic
mutation rate is 1%. Consider the purity of the tumor sam-
ple: the founding clone Sy and two descendant sub-clone
S1 and Sy, the ratio of them is set to 3 : 5 : 2. Several
parameters, such as coverage, the number of libraries, the
length of read, have impact on the performance of Mix-
SubHap algorithm, only one parameter value was changed
for each experiment.

Varying read length

Three libraries were set with different insert-sizes of
1000 bp, 1500 bp, and 2000 bp, respectively. Three sub-
clonal mixing ratio is 3 : 5 : 2. A priori of sub-clone
haplotype depends on the result of SciClone, whereas the
accuracy of SciClone mainly depends on the library cover-
age and the sequence deviation of VAF. The library used
for computing VAF is called base library. The coverage of
the base library is set to be 100x, the coverage of other
libraries is 50%, and the lengths of the paired-end reads
are 100 bp , 150 bp , 200 bp , and 250 bp .

We have caculated the propotion of the clonal hap-
lotypes we can recognize among all the variants, the
accuracy rate of reconstruction, the longest length of frag-
ment we can assemble, and the number of fragments
assembled. The results are shown in Table 1. MixSub-
Hap shows strong robustness, which can recognize over
90% clonal haplotypes, with the longest assembled frag-
ments longer than 10 kbp under different read lengths.
With the increase of read length, the recognition rate can
be improved steadily.

Analysis on the influence of new library coverage

When selecting libraries and coverage, the base library
and its coverage are generally determined firstly, from
which the pair-end reads information covering at least two
variants are extracted. Then we introduce new libraries
until most of the variant sites are included. When the
library is replaced, the library length is incremented by
500 bp by default. Influence of new library coverage on
the accuracy of haplotype reconstruction and recognition
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rate in sub-clones are shown in Table 2. All the recogni-
tion rate is over 91%, and the longest assembled fragment
is longer than 10077 bp. When the coverage of new library
changes from 20x to 100x, the change of recognition rate
in sub-clone recognition is inconspicuous (less than 1%),
indicating that a minor effect is caused by new libraries.

Analysis on the influence of the number of the libraries
We found that the coverage of the new library almost
had no effect on the accuracy of the clonal haplotype
reconstruction, so the next experiment was performed on
the number of introduced libraries. The coverage of base
library is set to 100x, and the other libraries are all set to
50x, which can reduce the cost of sequencing. The effect
of the libraries number on the recognition accuracy of
sub-clonal haplotypes is shown in the following Table 3.
As can be seen, the base library cannot recoginze the
clonal haplotypes well. The recognition rate is less than
90%, the accuracy is less than 60%, and the longest assem-
bled fragment is shorter than 10kbp. Meanwhile, we can
see that the more libraries introduced to MixSubHap, the
better the algorithm performs. Since the cost of sequenc-
ing sharply increases when the new library is added, we
recommend two libraries with different insert-sizes to
reconstruct the clonal haplotypes.

Table 1 The accuracy of haplotype reconstruction under
different read length

Discussion

The proposed pipeline follows several constraints which
imply the inheritance principle: Suppose that the micro
evolution process of tumor tissue which satisfies the
phylogenetic tree model [35, 45]. Assume that sub-clones
in the tumor samples are in a linear evolution mode, the
somatic mutations in the evolutionary process satisfying
the two hit hypothesis, with the selective advantage, and
the sites having the repair mechanism are not consid-
ered. In another word, one locus varies at most once in
the process of evolution and the mutated site cannot be
recovered. Thus, VAF is an important index to distin-
guish the various sub-clones, following certain inheritance
principles in the process of sub-clone differentiation. For
any variant site of p, VAF V), is the number of reads
supporting the mutation accounted for the proportion
of the site’s sequenced depth, which can be statistically
calculated from the sequencing reads data. We set the col-
lection of sub-clone S; ’s somatic mutation sites to be M;,
among which i € {0,1,...,I — 1} and [ is the total num-
ber of sub-clones. Clone Sy represents sub-clone with the
largest common ancestor characteristics estimated from
sequencing data, called the founding clone. The set of
all the somatic mutations in sequencing samples is M =
(UJ; M;. Let Gf’ represents the genotype of site p on sub-
clone §;, S; represents the descendant clone of S;, where

Table 2 The accuracy of haplotype reconstruction under
different library coverage

Read Recognition  Accuracy Longest Fragments Library Cov.(Base) Cov. Recognition Accuracy Longest Fragment
length rate rate length num num length num
100bp 91.58% 60.50% 10068bp 4 3 100 20 9161% 60.46%  10077bp 10

150bp 91.84% 60.41% 10092bp 5 3 100 50  92.15% 60.39% 10087bp 20

200bp 91.85% 60.50% 10091bp 5 3 100 80  92.00% 60.63%  10087bp 13

250bp 92.15% 60.39% 10087bp 20 3 100 100 92.16% 60.35%  10091bp 19
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Table 3 The accuracy of haplotype reconstruction under
different number of libraries

Library ~ Cov.(Base) Cov. Recognition Accuracy Longest Fragment
num length num

1 100 50  89.00% 59.80% 9768bp 8

2 100 50 91.93% 60.10%  10097bp 12

3 100 50 92.15% 60.39%  10087bp 20

4 100 50  9248% 60.28%  10091bp 32

i < jIfV, = 1,then p € My and p is a homozygous
mutation, while if V}, = 0.5, then p € My and p is a het-
erozygous mutation. V, and V; are the VAF of variant p
and g, if V,, < Vj, then variant q belongs to the sub-
clone which must be the descendant of the clone variant
p belongs to. In addition, haplotype heterogeneity follows
the inheritance principle that homozygous variation sites
which are different from the reference sequence will not
appear in clone. So ) ; V;,x < 1 and inheritance rela-
tionship in evolution process: If V;,, = 1, then for all

i > i wehave Vy i = 1, while if Vj,; = 0, then for all

i’ < iwehave Vy,; = 0. Among them, V;, indicates
the VAF of variation site p is on the kth haplotype of sub-
clone S;. The reconstruction of clonal haplotypes in tumor
sample must satisfy the inheritance principle among
sub-clones.

In addition, most of algorithms are based on the sec-
ond generation sequencing data using linkage disequilib-
rium of haplotype. Different data input should also be
considered [46]. the proposed pipeline consists of three
components, which are assembling local VPEs, expanding
local contigs and iteratively stripping clonal read-depth.
These components are also prolongable to other types of
sequencing data once the VPEs can be generated. Based
on the second generation sequencing data, the VPEs are
short relative to the sub-clonal haplotype, and the uncer-
tainty is quite large: On the aspect of time complexity,
if the tumor tissue contains # sites, there are 2" haplo-
types. MixSubHap processes VPEs that defines a proper
partition length and connection, the short chains after
partition can be accurately show sub-clonal haplotypes,
and the time complexity is O((2])! xM). Among them,
M is the number of groups divided by the start posi-
tion of the variation sites in VPE and I is the number
of sub-clones. If the VPEs are extended, M may decrease
significantly.

Conclusions

The heterogeneity patterns on haplotypes are suggested
to provide not only comprehensive information on tumor
evolution and micro-environment, but valuable clini-
cal implications as well. Most of the existing methods
investigated the heterogeneity on genotype level, while
the computational methods that facilitate the analyses
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on clonal haplotypes are in urgent needs. In this arti-
cle, we presented MixSubHap, which is a computational
pipeline for reconstructing clonal haplotypes. MixSubHap
is able to identify about 90% on average of the preset
clonal haplotypes under different simulation configura-
tions. Especially, MixSubHap is robust when decreasing
the mutation rates, in which cases the longest assembled
contig could reach to 10kbps, while the accuracy of assign-
ing a mutation to its haplotype still keeps more than 60%
on average. According to the experimental results on the
simulation datasets, we may conclude that the proposed
pipeline is a practical tool working on cancer sequencing
data. On the other hand, we also notice that two compo-
nents of MixSubHuap use the estimation of clonal structure
to reduce the solution space. However, such estimation
provided by the model-free methods yields more or less
errors, especially when the VAFs are close among different
sub-clones. This transferred errors could hurt the accu-
racy on reconstructing clonal haplotypes. Current version
only considers point mutations, which will be further
extended to structural variations and more complicated
cases.
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