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Simple Summary: This study investigates brain network modifications related to tumor grade
and location using resting-state functional magnetic resonance imaging and graph theory. We
demonstrated that low-grade gliomas (LGG) lead to increased efficiency of the surrounding functional
network, while high-grade gliomas (HGG) seem to disrupt brain connectivity in remote areas.
Tumor location appears to influence the pattern of reorganization, including the recruitment of
the contralateral hemisphere. Overall, LGG may show more favorable connectivity changes than
HGG. If confirmed by future studies, the ability to discriminate between ‘maladaptive’ (detrimental)
and ‘adaptive’ (beneficial) functional reorganization based on graph theory metrics may provide
biomarkers to select patients for surgery and monitor recovery.

Abstract: Brain tumors lead to modifications of brain networks. Graph theory plays an important
role in clarifying the principles of brain connectivity. Our objective was to investigate network
modifications related to tumor grade and location using resting-state functional magnetic resonance
imaging (fMRI) and graph theory. We retrospectively studied 30 low-grade (LGG), 30 high-grade
(HGG) left-hemispheric glioma patients and 20 healthy controls (HC) with rs-fMRI. Tumor location
was labeled as: frontal, temporal, parietal, insular or occipital. We collected patients’ clinical data from
records. We analyzed whole-brain and hemispheric networks in all patients and HC. Subsequently, we
studied lobar networks in subgroups of patients divided by tumor location. Seven graph-theoretical
metrics were calculated (FDR p < 0.05). Connectograms were computed for significant nodes. The
two-tailed Student t-test or Mann–Whitney U-test (p < 0.05) were used to compare graph metrics and
clinical data. The hemispheric network analysis showed increased ipsilateral connectivity for LGG
(global efficiency p = 0.03) and decreased contralateral connectivity for HGG (degree/cost p = 0.028).
Frontal and temporal tumors showed bilateral modifications; parietal and insular tumors showed
only local effects. Temporal tumors led to a bilateral decrease in all graph metrics. Tumor grade and
location influence the pattern of network reorganization. LGG may show more favorable network
changes than HGG, reflecting fewer clinical deficits.
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1. Introduction

Brain tumors are disruptive lesions that lead to functional modifications of brain net-
works, known as functional reorganization or plasticity [1]. Short- and long-range effects
have been shown using task-based and resting-state fMRI in patients with gliomas [2],
possibly representing an adaptive phenomenon to compensate for tumor-induced clinical
deficits. A better understanding of functional reorganization could optimize neurosur-
gical resection of brain tumors and tailor targeted therapies that enhance recovery [3].
Conversely, functional modifications induced by focal lesions may fail to compensate for
lost functions or may even be detrimental. For example, right-hemispheric activation in
left-sided stroke patients has been associated with failure of perilesional reorganization and
a worse outcome [4]. When a focal lesion invades eloquent brain areas, the damage can trig-
ger disinhibition of nearby neural networks, creating a permissive environment that may
lead to compensatory (adaptive) or detrimental (maladaptive) plasticity [5]. Knowledge of
plasticity dynamics and causative factors is lacking in the literature, despite being necessary
for the highlighting of candidates for reorganization and also for the distinguishing of
adaptive from maladaptive plasticity, which is a prerequisite for clinical implementation.
Tumor pathology and location likely influence the network dynamics and may help to
distinguish different types of plasticity. Classically, plastic changes have been described in
low-grade gliomas (LGG) with a progressive timeline [6] from intra-tumoral and perile-
sional reorganization to activation of contralateral homologues. Some evidence supports
the compensatory nature of plastic changes in LGG [7]. On the other hand, reorganization
in high-grade gliomas (HGG) has not yet been demonstrated to be clinically meaningful.
The location of a lesion may directly influence the magnitude of functional changes. For
example, damage to brain regions important for communication between subnetworks
(connectors) causes greater effects than damage to peripheral areas [8]. According to this
model, damage to specific brain areas should lead to greater network changes.

Graph theory is applied to fMRI to study the architecture and complexity of func-
tional networks [9,10] with relevant clinical applications [11]. Newly diagnosed gliomas
demonstrated globally altered functional connectomic profiles in previous studies [12],
while distributed changes of the functional connectome have been shown in glioblastoma
patients after surgery [13]. Graph theory metrics can describe how efficient, integrated
and connected a network is, quantifying properties such as small-worldness, expression
of efficient information segregation and integration at low wiring and energy costs [14]
(Supplementary Table S1).

Starting from this background, we studied the network modifications of left-hemispheric
LGG and HGG versus healthy controls (HC) by applying graph theory to resting-state fMRI,
with the following objectives: (1) compare the network modifications induced by tumors
of different grades with respect to HC; (2) compare left vs. right-hemispheric network
changes; (3) compare the network modifications induced by tumors of different locations
with respect to HC. We selected only left-hemispheric tumors to be able to study ipsilateral
and contralateral tumor effects in a uniform population. We investigated patients’ language
performance as an example of left-lateralized function through the Boston Naming Test
and neurologic/neurosurgical assessment of aphasia to identify possible clinical correlates
of network changes. We hypothesized that tumors of different grades and locations would
demonstrate characteristic intra-hemispheric and interhemispheric functional connectivity
changes. Particularly, we hypothesized that HGG would display predominant regional
modifications due to neurovascular uncoupling, while LGG would demonstrate both
ipsi- and contralateral changes suggestive of reorganization. We also hypothesized LGG
networks to be more integrated and connected than those of HGG, possibly reflecting better
clinical performance.
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2. Materials and Methods
2.1. Patients

This retrospective cross-sectional study was approved by the institutional review board
and conducted in agreement with the Helsinki declaration. Informed consent was waived
due to the retrospective design. We reviewed the archive of our institution from January
2016 to September 2021 to select patients with the following inclusion criteria: newly
diagnosed left-hemispheric glioma (World Health Organization 2016 classification [15]);
no prior surgery or other treatment; resting-state data acquired with the same protocol
and therefore comparable; absence of tumor-related or patient-related artifacts including
drop-out from hemorrhagic tumor components and motion. We applied these inclusion
criteria to increment the homogeneity of our groups, excluding non-glioma tumors, and to
limit the effect of susceptibility (from prior surgery or hemorrhagic tumor components)
and motion artifacts on fMRI and brain connectivity measures. Twenty HC were included
for comparison. Tumors were labeled according to their location in the brain (frontal,
temporal, parietal, insular, occipital). Patients underwent presurgical cognitive testing
with the Boston Naming Test [16]. Additionally, we reviewed the clinical records of our
patients and collected clinical data regarding the presence of aphasia on neurologic and/or
neurosurgical examinations performed before surgery and three months after surgery.

2.2. MRI Acquisition

MRI was performed using a 3T scanner (Discovery 750 W, GE Healthcare, Milwaukee,
WI, USA) with 24-channel head coils. Resting-state fMRI was acquired with single-shot
gradient echo EPI (TR/TE = 2500/32 ms, section thickness = 4 mm, matrix = 64 × 64,
FOV = 240 mm, acquisition volume = 160, scanning duration = 6 min 55 s). fMRI cover-
age matching anatomical scans, including FLAIR (TR/TE = 10,000/106 ms, TI = 220 ms,
matrix 256 × 256), T1 postcontrast (TR/TE = 600/20 ms, matrix 256 × 256), and 3D
T1-weighted anatomic images using a spoiled gradient recalled-echo sequence (SPGR)
(TR/TE = 22/4 ms, matrix 256 × 256, section thickness = 1 mm), were acquired as routine
clinical scans. During the fMRI scan, subjects were instructed to relax, fixate on a central
cross and try clear their mind clear during the scan. BrainWave RT (Medical Numerics), a
real-time software on the GE scanners, was applied for quality control, including artifactual
signal fluctuation and head motion.

2.3. Functional Connectivity Analysis

Pre- and post-processing of functional and structural data was performed through the
CONN toolbox [17], implemented in SPM (SPM 12, The Wellcome Centre for Human Neu-
roimaging, UCL Queen Square Institute of Neurology, London, UK) and MATLAB (R2021b
(9.11), The MathWorks Inc., Natick, MA, USA) packages. The default pre-processing for all
patients included: functional realignment and estimation of motion parameters; slice-timing
correction; outlier detection and head motion correction; direct normalization of functional
and structural data to MNI space plus segmentation of all data to gray matter, white matter
and cerebrospinal fluid; functional smoothing with a full-width-half-maximum (FWHM) of
6 mm; denoising with linear regression and temporal band pass filtering between 0.01 and
0.1 Hz; detrending. For denoising, CSF and WM nuisance regression were also included.
The co-registered anatomical and functional images in MNI space were parcellated into
136 regions of interest (ROI) (136 parcels) using automated anatomical labeling—AAL atlas
(the default atlas of CONN toolbox). All co-registered anatomical and functional images
were inspected for the transformation of the tumor area to MNI space to ensure correct
anatomical parcellation via the atlas. All the steps of our pipeline were monitored by
two board-certified neuroradiologists to confirm the correct transformation to the standard
space, correct segmentations and correct ROI fitting. Any necessary adjustments were
carried out before proceeding to the following steps. A summary of the pipeline used for
this study is presented in Figure 1.
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Figure 1. Schematic representation of the pipeline used for patient recruitment, data processing
and analysis.

Finally, the average timeseries within each ROI were estimated. ROI-to-ROI connectiv-
ity matrices represent the connectivity between one of the 136 ROIs to the remaining ROIs.
These matrices show the degree of functional connectivity between each pair of ROIs, with
each element defined as the Fisher-transformed bivariate correlation coefficient between a
pair of ROIs BOLD timeseries [17]. ROI-to-ROI connectivity matrices were obtained for
three conditions of whole-brain ROIs, only left and only right hemisphere ROIs for each
HGG, LGG and HC group. Graph theory analyses on each ROI-to-ROI matrix were con-
ducted using the Louvain Algorithm in CONN toolbox. All ROI-level graph measures are
based on nondirectional graphs with nodes (ROIs) and edges (supra-threshold connections).
For each patient, a threshold of z > 2 and p < 0.05 was set to compute a graph adjacency
matrix by thresholding the associated ROI-to-ROI matrix. From the resulting graphs, we
then computed graph-theoretical measures to address the topological properties of each
ROI within the graph, as well as of the entire network of ROIs [14]. Seven graph-theoretical
metrics were calculated applying two-sided FDR correction (p < 0.05): global/local effi-
ciency (representing the global and local connectivity of each ROI), betweenness centrality
(showing the ratio of a time that a node is part of the shortest path between any two pairs
of nodes in a graph), cost (proportion of edges from a node), average path length (the
shortest distance between the current node and all other nodes), clustering coefficient
(ratio of connected nodes to all neighboring nodes) and degree (the number of nodes
to which the selected node was connected). A detailed description of these metrics is
available elsewhere [14] and summarized in Supplementary Table S1. We used the above
graph-theoretical metrics to evaluate the connectedness and integration of every node in
the regional (local) and global networks. We considered the small-worldness of functional
graphs to be the combination of high local clustering and short path length as well as high
global/local efficiency and low cost [14].

2.4. Statistical Analyses

The Jarque–Bera test with chi-squared distribution and two degrees of freedom was
used to confirm the normality of our data before applying any statistical comparisons [18].
The two-tailed Student t-test (in case of normal distribution) or Mann–Whitney U-test
(in case of non-normal distribution) was employed to compare graph-theoretical metrics
(p < 0.05) in the study groups for the global whole-brain network, left and right hemispheric
networks. The first analysis was conducted with averaged graph-theoretical measures
for each network (whole-brain and hemispheric network analysis). To account for tumor
location effects, another analysis was repeated for subgroups of patients divided by location
labels (lobar network analysis): for patients with a specific tumor location, we evaluated
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the nodes belonging to that location label in the whole-brain network. For example, nodes
belonging to the frontal lobe were compared in patients with frontal lobe LGG, HGG and
HC. Seed-to-ROI connectivity diagrams (connectograms) were generated on CONN by
applying two-sided multi-comparison correction (FDR, p < 0.05). We used significant areas
from prior analyses as seeds, while source ROIs from the connectivity matrices served as
targets. The total number of significant connections in the connectograms were compared in
HGG, LGG and HC through the two-tailed Student t-test (p < 0.05). Clinical data regarding
language function for LGG and HGG patients were also compared through the two-tailed
Student t-test (p < 0.05). A summary of the study workflow is provided in Supplementary
Figure S1. To evaluate any potential confounding effects of tumor size and patients’ age
on graph theory results, we conducted a regression and a covariance analysis. Tumor size
was evaluated by a neuroradiologist as the product of perpendicular diameters on MRI
axial slices. In the case of LGG, the lesion was measured as a hyperintense abnormality on
FLAIR images; in HGG, the contrast-enhancing component of the tumor was measured on
post-contrast T1-weighted images [19].

3. Results
3.1. Patients

The imaging archive revision identified 245 patients with brain tumors and resting-
state data acquired with the same protocol between January 2016 and September 2021.
Following our inclusion criteria, 66 patients were excluded due to right-sided tumors,
65 patients were excluded due to prior surgery or treatment, 30 patients were excluded due
to pathologic diagnosis other than glioma (21 metastases, 7 lymphoma, 2 radiation necrosis)
and 10 patients were excluded due to motion artifacts or the presence of hemorrhagic tumor
components, leading to drop-out artifacts on fMRI. Seventy-four patients with gliomas
in the left hemisphere (32 LGG; 42 HGG) were selected based on our inclusion criteria.
Four patients were excluded due to poor fMRI quality during the data processing phase
(interpreted as excessive noise from motion or other artifacts). Ten patients were excluded
due to technical failure of image co-registration to the standard space (Figure 1).

Sixty patients with gliomas in the left hemisphere (30 LGG, mean age 40 years,
21 males; 30 HGG, mean age 62 years, 22 males) were therefore recruited for the study.
Additionally, 20 HC (mean age 48 years) were included for comparison. Tumor location
labeling demonstrated the involvement of the left frontal lobe 20/60 (5 HGG, 15 LGG), left
temporal lobe 29/60 (16 HGG, 13 LGG), left parietal lobe 15/60 (11 HGG, 4 LGG) and left
insula 17/60 (5 HGG, 12 LGG) (Figure 2).

No patient showed involvement of the occipital lobe. The Boston Naming Test dis-
played significantly lower scores in HGG vs. LGG patients (p = 0.04). Particularly, HGG
patients displayed BNT values between 24 and 60 points (average 46), while LGG values
ranged between 51 and 60 points (average 56). The presence of aphasia was different
in HGG vs. LGG patients (aphasia in 10/30 HGG vs. 0/30 LGG) in the preoperative
setting and after surgery (aphasia in 12/29 HGG vs. 6/27 LGG). Missing datapoints in the
presurgical cognitive testing (Boston Naming Test) were related to patient compliance and
clinical condition. Missing datapoints in the neurologic/neurosurgical evaluation were
related to conservative treatment (no surgery performed) or loss of patient at follow-up.
Patient demographics and clinical data regarding language function are available in Sup-
plementary Tables S2 and S3. A statistical description of patients’ age and tumor size is
presented in Table S4 and Figure S2.

3.2. Graph Theory Analysis: Whole-Brain and Hemispheric Network Analysis

The left hemispheric network was significantly different in LGG compared to HC
(increased global efficiency p = 0.03). HGG showed significant differences in the right
hemispheric network compared to HC (decreased cost p = 0.028; decreased degree p = 0.028)
(Figure 3).
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Figure 2. Images above: post-contrast 3D T1-weighted MR scans of four patients with high-grade
glioma (image a–d, red arrows). Tumor location was labeled to account for involved lobes as follows:
frontal (a), temporal (b), parietal (c) and insular involvement (d). Images below: FLAIR-weighted
MR scans of four patients with low-grade glioma (image e–h, light blue arrows). Tumor location
was labeled to account for involved lobes as follows: frontal (e), temporal (f), parietal (g) and insular
involvement (h).

Further, LGG showed significant differences in left vs. right hemisphere functional
network (increased global efficiency p = 0.02; decreased local efficiency p = 0.01; decreased
clustering coefficient p = 0.01). No significant differences were found when comparing left
and right hemispheric networks in HC or HGG, and no significant differences emerged from
the comparison of whole-brain networks. Mean values of the significant graph-theoretical
measures for the hemispheric and whole-brain networks are reported in Supplementary
Tables S5–S7.

3.3. Graph Theory Analysis: Lobar Networks Analysis

Detailed results for group comparisons according to tumor location are available in
Tables 1–3.

Table 1. Graph-theory statistics results for gliomas involving the frontal lobe. Significance is reported
as FDR corrected p-value.

Frontal Tumors HGG/Controls p-Value LGG/Controls p-Value HGG/LGG p-Value

Global Efficiency SFG r 0.006
Local Efficiency SFG r 0.045 SFG r 0.045

Betweenness Centrality IFG tri l 0.006 SFG r 0.025 IFG tri l 0.001
SFG l 0.012

Cost SFG r 0.028
Average Path Length SFG r 0.003 SFG r 0.045

SFG l 0.043
Clustering Coefficient SFG r 0.017 MidFG l 0.042

IFG tri l 0.016
Degree SFG r 0.028

HGG = high-grade gliomas; LGG = low-grade gliomas; MidFG l = middle frontal gyrus left; SFG l = superior
frontal gyrus left; SFG r = superior frontal gyrus right; IFG tri l = left inferior frontal gyrus pars triangularis.
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Figure 3. Images above represent the global efficiency of the left hemispheric functional network
in healthy controls (a), patients with low-grade glioma (LGG) (b) and patients with high-grade
glioma (HGG) (c). Blue arrowheads highlight examples of functional connectivity modification in
communities of nodes. Images below represent the cost of the right hemispheric functional network
in healthy controls (d), patients with HGG (e) and patients with LGG (f). Significant modifications
were detected in the left hemispheric network of LGG compared to HC for global efficiency and in
the right hemispheric network of HGG compared to HC for cost. Blue circles highlight examples of
significant functional connectivity modifications in communities of nodes. The size of the red nodes
represents the value of the respective graph theory metric.

Table 2. Graph-theory statistics results for gliomas involving the temporal lobe. Significance is
reported as FDR corrected p-value.

Temporal Tumors HGG/Controls p-Value LGG/Controls p-Value HGG/LGG p-Value

Global Efficiency pSTG l 0.010 aSTG l 0.027
Local Efficiency pMTG r 0.044 pSTG l 0.003

Betweenness Centrality pSTG r 0.040 aMTG l 0.030
Cost pMTG r 0.022 aSTG l 0.018 pMTG r 0.031

toMTG r 0.032 pSTG l 0.008
pSTG l 0.032 aMTG l 0.017

aITG l 0.038
Clustering Coefficient aITG r 0.017

pSTG l 0.018
Degree pMTG r 0.022 aSTG l 0.018 pMTG r 0.031

toMTG r 0.032 pSTG l 0.008
pSTG l 0.032 aMTG l 0.017

aITG l 0.038

HGG = high-grade gliomas; ITG = inferior temporal gyrus (l = left; r = right; a = anterior division); LGG = low-
grade gliomas; MTG = middle temporal gyrus (l = left; r = right; a = anterior division; p = posterior di-
vision; to = temporo-occipital); STG = superior temporal gyrus (l = left; r = right; a = anterior division;
p = posterior division).
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Table 3. Graph-theory statistics results for gliomas involving the parietal lobe and insula. Significance
is reported as FDR corrected p-value.

Parietal Tumors HGG/Controls p-Value LGG/Controls p-Value

Global Efficiency AG l 0.0434
Local Efficiency PostCG l 0.0145

Betweenness Centrality PostCG l 0.0051 PostCG l 0.0236
Average Path Length AG l 0.0394

Insular Tumors HGG/Controls p-Value LGG/Controls p-Value
Cost IC l 0.0161

Degree IC l 0.0161

AG l = angular gyrus left; HGG = high-grade gliomas; IC l = insular cortex left; LGG = low-grade gliomas; PostCG
l = post-central gyrus left.

All mean values of the significant graph-theoretical measures for the lobar networks
are reported in supplementary Tables S8–S14. In brief, frontal tumors showed multiple
significant network changes in the left and right hemispheres with both HGG and LGG
(p < 0.05). Right-sided changes were located in the Superior Frontal Gyrus (SFG), while
left-sided changes were localized in the SFG, middle frontal gyrus (MidFG) and Inferior
Frontal Gyrus (IFG) Pars Triangularis.

Temporal tumors showed multiple significant network changes in the left and right
hemispheres with both HGG and LGG (p < 0.05). Right-sided changes were located in
the Superior Temporal Gyrus (STG) posterior division, Middle Temporal Gyrus (MTG)
posterior division, MTG temporo-occipital part and Inferior Temporal Gyrus (ITG) anterior
division. Left-sided changes were located in STG anterior division, STG posterior division,
MTG anterior division and ITG anterior division.

Parietal and insular tumors showed significant network changes in only the left
hemisphere for both LGG and HGG (p < 0.05). Particularly, parietal tumors showed
network changes in the left Postcentral Gyrus and left Angular Gyrus. Insular LGG were
associated with ipsilateral changes, while insular HGG did not produce any significant
network changes (Table 3). Table 4 show increased (green) or decreased (red) mean values
of significant graph metrics from the lobar analysis.

Table 4. Increased (green) or decreased (red) mean values of significant graph metrics.

SFG r HGG/HC LGG/HC pSTG r HGG/HC
Local Efficiency Global Efficiency Betweenness

Clustering Coefficient Betweenness pSTG l HGG/HC LGG/HC
Cost Global Efficiency Local Efficiency

Average Path Length Cost Cost
Degree Degree Clustering Coefficient

SFG l LGG/HC Degree
Average Path Length aSTG l LGG/HC

MidFG l LGG/HC Global Efficiency
Clustering Coefficient Cost

IFG tri l HGG/HC Degree
Betweenness aITG l LGG/HC

Clustering Coefficient Cost
pMTG r HGG/HC Degree

Local Efficiency aITG r LGG/HC
Cost Clustering Coefficient
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Table 4. Cont.

SFG r HGG/HC LGG/HC pSTG r HGG/HC
Degree AG l HGG/HC

aMTG l LGG/HC Global Efficiency
Betweenness Average Path Length

Cost PostCG l HGG/HC LGG/HC
Degree Local Efficiency Betweenness

Betweenness
toMTG r HGG/HC IC l LGG/HC

Cost Cost
Degree Degree

AG l = angular gyrus left; HGG = high-grade gliomas; IC l = insular cortex left; IFG tri l = left inferior frontal gyrus
pars triangularis; ITG = inferior temporal gyrus (l = left; r = right; a = anterior division); LGG = low-grade gliomas;
MidFG l = middle frontal gyrus left; MTG = middle temporal gyrus (l = left; r = right; a = anterior division;
p = posterior division; to = temporo-occipital); PostCG l = post-central gyrus left; STG = superior temporal gyrus
(l = left; r = right; a = anterior division; p = posterior division); SFG = superior frontal gyrus (l = left; r = right).

No significant difference was found when comparing the total number of significant
connections in the connectograms between HGG, LGG and HC. Nevertheless, the total
number of connections was higher in LGG than HGG in the majority of the cases (60%),
and it was equal in 20%. Only a minority of cases showed higher connections in HGG
than LGG (20%). Connectivity diagrams for significant ROIs are reported in Figure 4 and
supplementary materials (Supplementary Figures S3–S16).
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Figure 4. Example of whole-brain connectivity diagrams generated by seeding of the right superior
frontal gyrus (SFG r) in healthy controls (HC, (a)), left-hemispheric high-grade gliomas (HGG, (b))
and left-hemispheric low-grade gliomas (LGG, (c)). The red square in diagrams (b) and (c) indicates
that there was a significant difference in functional connectivity in this seed for HGG and LGG
compared to HC (a). The color scale of the links represents their statistical significance (p-value FDR
corrected, only links with p < 0.05 are included). Regions of interest (ROI) in the diagrams are labeled
as per the AAL atlas (available in CONN toolbox at https://web.conn-toolbox.org, accessed on
3 March 2022).

Regarding potential confounding effects, the linear regression and covariance anal-
yses showed that the correlation and the covariance of both age and tumor size were

https://web.conn-toolbox.org
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very low among our dependent and independent variables (Age: Covariance < ±0.2,
correlation < ±0.4 and Tumor size: Covariance < ±0.2, correlation < ±0.3).

4. Discussion

We demonstrated that resting-state fMRI and graph-theoretical measures could cap-
ture differences in network dynamics associated with tumor grade and location. Graph-
theoretical measures demonstrated increased global efficiency for the left hemispheric
network in LGG and decreased cost and degree for the right hemispheric network in HGG
(Figure 3). We can highlight two main points of clinical significance for our results: (1) the
evidence of connectivity disruption in distant areas from HGG supports the notion of the
‘whole-brain’ nature of this disease, differently from LGG, which displayed predominantly
local effects within the same hemisphere. (2) By analyzing specific graph-theoretical metrics
which describe the efficiency of information transfer in a network, we found that low-grade
tumors may show more favorable network changes than high-grade tumors, in agreement
with participating patients’ clinical deficits. These findings support the idea that LGG leads
to functional reorganization of the eloquent cortex in the same hemisphere resulting in
increased efficiency of the network. On the contrary, HGG displayed decreased network
connectedness, as well as more profound clinical deficits.

The increased global efficiency of the left hemispheric network in LGG patients points
to higher inter-connectedness of the network compared to HC. Similarly, Derks et al.
described increased connectivity between hubs and non-hubs in glioma patients compared
to healthy subjects. Such network modifications may be related to intra-hemispheric
reorganization, which has been described in LGG, especially in regard to the language
network [6,20]. Functional reorganization in LGG has been attributed to their characteristic
slow pace of growth, which is believed to facilitate the development of plastic changes. In
addition to prior evidence, our results may support the idea of a beneficial intra-hemispheric
reorganization in LGG related to increased global efficiency of the left hemispheric network,
in agreement with our original hypothesis. Indeed, LGG demonstrated significantly better
clinical performance than HGG for language function, which is generally left-lateralized.
When comparing the left vs. right hemisphere in LGG, the left side demonstrated increased
global efficiency, decreased local efficiency and decreased clustering coefficient. These
modifications point to a higher inter-connectedness of the entire left-hemispheric network,
with decreased locality (sub-graphs are less inter-connected within their neighborhood
and more connected to the entire network). Based on these findings, a type of functional
reorganization characterized by the recruitment of additional brain regions within the left
hemisphere may be hypothesized, leading to a shift from locality to global efficiency.

In HGG patients, a decrease in all graph-theory metrics compared to HC was seen
in the left hemisphere (supplementary Table S6), although without reaching statistical
significance. Peritumoral depression of the blood-oxygen level dependent (BOLD) signal
is expected in some high-grade tumors due to neurovascular uncoupling [21,22], with
possible local effects on connectivity [23]. The fact that left-hemispheric functional changes
in HGG did not reach statistical significance in our cohort may be due to relatively small
tumor size and/or it may be related to the limitations of our study. In fact, lobar network
analysis identified significant left- and right-sided changes in both HGG and LGG. This
difference is likely due to the fact that the hemispheric network is averaged across HGG,
while the lobar analysis investigates subgroups of HGG according to their lobar location,
unraveling smaller effects on connectivity that may be otherwise undetected.

Hemispheric network analysis in HGG showed significant right-sided changes (de-
creased cost and degree). Growing evidence supports the idea of gliomas having a global
effect on brain functioning, with alterations in brain regions remote from the tumor [12].
HGG is considered a ‘whole-brain’ disease, showing widespread involvement of distant
regions even from early stages [24]. The right-hemispheric network in HGG was character-
ized by decreased cost and degree, which are measures of network centrality expressing
the degree of local connectedness of each node (Supplementary Table S1). To a certain
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extent, these network modifications highlight an effect on brain connectivity which may
be characteristic of HGG. Fast-growing tumors may act in a similar way to acute insults
such as stroke, leading to the phenomenon of diaschisis. This phenomenon was originally
described as a loss of excitability, reduced metabolism and/or blood flow in areas remote
to the original lesion [25]. Connectomal diaschisis has been recently described in stroke as
changes in the structural and functional connectome, including disconnections between
and reorganization of subgraphs, involving areas distant from the original lesion [25]. Our
results seem to support a similar effect on functional connectivity driven by the rapid
growth of HGG.

On the other hand, our findings may also point to a certain degree of inter-hemispheric
reorganization in HGG. Although plastic changes have been more extensively described in
LGG [26], previous studies reported functional reorganization in HGG (e.g., in the cerebral–
cerebellar circuits) [27]. Inter-hemispheric language reorganization has been shown in
HGG, including translocation of eloquent language areas [28–30]. In fact, the median age
of glioblastomas at diagnosis is approximately 330 days [31], while brain modifications
related to learning new functions can develop within months [32]. This time window may
be enough to develop significant network modifications.

The effect of tumor location on brain plasticity is rarely investigated. From our dedi-
cated analysis, tumor location appears to be crucial for network changes. While frontal and
temporal tumors showed bilateral functional modifications, parietal and insular tumors
appeared to display only local effects (i.e., functional changes in the left hemisphere). No-
tably, essential functions such as language are primarily lateralized to the left frontal and
temporal lobes [33], while the parietal and insular lobes host secondary language areas [34].
Nenning et al. showed that unilateral tumors are associated with inter-hemispheric reorga-
nization and that the proximity of tumor location is more linked to distributed network
deterioration than anatomical distance [35]. Eloquent regions may act as connectors in the
functional network [8], whose damage leads to deeper and wider modifications of the net-
work organization than peripheral areas, as supported by neuro-computational models [36].
Interestingly, while frontal tumors showed mixed connectivity changes, temporal tumors
led to a decrease in all graph metrics in both LGG and HGG of both hemispheres (Table 4).
Briganti et al. reported a stronger decrease in left hemispheric connectivity in posterior vs.
anterior tumors by studying the language network with a pseudo-resting state [37]. These
results may suggest that lesions in the left temporal lobe have a more detrimental effect on
connectivity than other locations and that beneficial plastic changes may be more likely to
occur with a frontal than a temporal tumor. The presence of a tumor in the left frontal lobe
was associated with significant modification of connectivity at the level of the right SFG in
both LGG and HGG patients vs. HC (Figure 4). However, while the node had increased
global efficiency, local efficiency, degree and decreased average path length in LGG vs. HC,
the opposite was true for HGG vs. HC. As a consequence, the node was more integrated
into LGG than HGG. This finding may support the idea that such right-sided network
modification was more favorable in LGG than in HGG. Despite this promising finding,
connectivity changes in other nodes were less indicative of a specific pattern (Table 4).

The evaluation of whole-brain connectograms, obtained from seeding significant nodes
in the lobar analysis, revealed no single pattern for all patients (Figure 4 and Supplementary
Figures S3–S16). However, in the majority of cases (80%), the same nodes in HGG showed
an equal (20%) or lower (60%) number of significant connections (p < 0.05, FDR corrected)
when compared to LGG. Global attenuation of the resting-state fMRI signal induced by
brain tumors was previously related to remodeling of the neurovasculature [38] and may
also reflect the connectivity impairment caused by tumor invasion. This may partially
justify the lower clinical performance of HGG patients.

This study has some limitations. First, the number of patients was somehow small
due to our inclusion criteria, which required presurgical LGG patients with comparable
resting-state data and the absence of motion and susceptibility artifacts. We also excluded
patients with prior chemotherapy or radiation, further reducing our sample size. We made
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this choice to avoid connectivity modifications caused by the treatment, as documented
in prior studies [39,40], which would have acted as a confounding factor in our analysis.
LGG patients were younger than HGG patients, as expected from different age-specific
incidences. Patient groups according to the location labels were variably unbalanced, limit-
ing the generalizability of our results. Comparison of graph-theoretical metrics in tumors
involving specific eloquent areas was not performed due to the limited number of subjects.
There was a considerable amount of missing BNT data due to patient compliance/clinical
state at the moment of the examination. Therefore, correlations between BNT scores and
specific graph-theory metrics were not performed.

As a final consideration, many variables can potentially affect functional connectivity
in the setting of brain tumors. Tumor growth, local aggressivity and invasion likely
represent drivers of plastic changes [6] and are affected by genetic mutations, as well as
epigenetic alterations. The effect of treatment on connectivity has been clearly demonstrated
by previous studies [39,41]. Although not emerging from our results, the patient’s age may
affect functional changes since brain ageing is related to diminished plastic potential [42].
The patient’s sex may also have an important effect due to well-known differences in
connectivity patterns [43]. Tumor size differences may also affect brain connectivity. Future
studies are called to confirm our findings in the larger population, to further explore the
effects of other patient- and tumor-related variables on brain connectivity, as well as the
clinical meaning of functional changes.

5. Conclusions

We demonstrated that tumors of different grades have different effects on functional
connectivity. While LGG leads to increased efficiency of the surrounding functional net-
work, HGG seems to disrupt brain connectivity in remote areas, recalling the phenomenon
of diaschisis. Tumor location appears to influence the pattern of reorganization, including
recruitment of the contralateral hemisphere. LGG may show more favorable connectivity
changes than HGG. Nevertheless, the effect of brain tumors on connectivity remains com-
plex, with different coexistent network modifications that cannot be ascribed to a single
pattern. As a consequence, the compensatory nature and clinical meaning of functional
changes remain to be fully understood, and no definite conclusions can be drawn at the
current stage. If confirmed by future studies, the ability to discriminate between ‘maladap-
tive’ (detrimental, as seen in HGG) and ‘adaptive’ (beneficial, as seen in LGG) functional
reorganization based on graph theory metrics may provide biomarkers to select patients
for surgery and monitor recovery.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14143327/s1, Figure S1: Summary of the study population
and workflow; Figure S2: Distribution of tumor size and patients’ age for HGG and LGG in our
study; Figure S3: Whole-brain connectivity diagrams of left superior frontal gyrus; Figure S4: Whole-
brain connectivity diagrams of the left middle frontal gyrus; Figure S5: Whole-brain connectivity
diagrams of the left inferior frontal gyrus, pars triangularis; Figure S6: Whole-brain connectivity
diagrams of the right superior temporal gyrus, posterior division; Figure S7: Whole-brain connectivity
diagrams of the left superior temporal gyrus, posterior division; Figure S8: Whole-brain connectivity
diagrams of the left inferior temporal gyrus, anterior division; Figure S9: Whole-brain connectivity
diagrams of the right inferior temporal gyrus, anterior division; Figure S10: Whole-brain connectivity
diagrams of the left middle temporal gyrus, anterior division; Figure S11: Whole-brain connectivity
diagrams of the left superior temporal gyrus, anterior division; Figure S12: Whole-brain connectivity
diagrams of the right middle temporal gyrus, temporo-occipital division; Figure S13: Whole-brain
connectivity diagrams of the right middle temporal gyrus posterior division; Figure S14: Whole-
brain connectivity diagrams of the left post-central gyrus; Figure S15: Whole-brain connectivity
diagrams of the left angular gyrus; Figure S16: Whole-brain connectivity diagrams of the left insular
cortex; Table S1: Summary of graph-theoretical metrics investigated in this study (available at
https://web.conn-toolbox.org, accessed on 3 March 2022); Table S2: Clinical and demographic data
for HGG patients; Table S3: Clinical and demographic data for LGG patients; Table S4: Statistical
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description of tumor size and patients’ age for HGG and LGG in our study; Table S5: Whole brain
network mean values of graph-theory results; Table S6: Left hemispheric network mean values of
graph-theory results; Table S7: Right hemispheric network mean values of graph-theory results;
Table S8: Mean values of significant graph-theory results for gliomas involving the frontal lobe;
Table S9: Mean values of significant graph-theory results for gliomas involving the frontal lobe;
Table S10: Mean values of significant graph-theory results for gliomas involving the temporal lobe;
Table S11: Mean values of significant graph-theory results for gliomas involving the temporal lobe;
Table S12: Mean values of significant graph-theory results for gliomas involving the temporal lobe;
Table S13: Mean values of significant graph-theory results for parietal gliomas; Table S14: Mean
values of significant graph-theory results for insular gliomas.
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