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a b s t r a c t 

The advancement in high-throughput sequencing technologies and systems biology approaches have rev- 

olutionized our understanding of biological systems and opened a new path to investigate unacknowl- 

edged biological phenomena. In parallel, the field of human microbiome research has greatly evolved and 

the relative contribution of the gut microbiome to health and disease have been systematically explored. 

This review provides an overview of the network-based and translational systems biology-based studies 

focusing on the function and composition of gut microbiota. We also discussed the association between 

the gut microbiome and the overall human physiology, as well as hepatic diseases and other metabolic 

disorders. 

© 2019 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Abbreviations 

ALD alcoholic liver disease; 

BCAA branched chain amino acids; 

CCL CC chemokine ligand; 

cFBA community Flux Balance Analysis; 

CASINO Community And Systems-level Interactive Optimization; 

COMETS Computation Of Microbial Ecosystems in Time and Space;

dFBA dynamic Flux Balance Analysis; 

DM diabetes mellitus; 

DMMM Dynamic Multi-species Metabolic Modeling; 

FLYCOP FLexible sYnthetic Consortium Optimization; 

MCM Microbial Community Modeler FXR, farnesoid X receptor;

GEM, genome-scale metabolic model; 

HCC hepatocellular carcinoma; 

IL interleukin; 

MAPK mitogen-activated protein kinase; 

MCM Microbial Community Modeler; NAFLD, non-alcoholic

fatty liver disease; 

NASH non-alcoholic steatohepatitis; 

NASH non-alcoholic steatohepatitis; 
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F- κB nuclear factor- κB; 

CFA short-chain fatty acids; 

2DM type 2 diabetes mellitus; 

GR5 transmembrane G protein-coupled receptor 5 (also

known as GPBAR1); 

LR toll-like receptor. 

. Introduction 

The human gastrointestinal tract is inhabited by a complex mi-

robial community comprising more than a trillion cells of ap-

roximately 1800 genera [1] . There is increasing evidence that

his diverse microbial habitat has an important contribution to

he metabolism of dietary components and overall regulation of

ealth status. This has triggered a large amount of scientific inter-

st into the investigation of microbiota and derived products, and

he recognition of metabolic links, especially along the liver and

ut bidirectional relationship [2 , 3] . 

The human host benefits from the metabolism of the mi-

roorganisms in the human gut, such as degradation of di-

tary indigestible carbohydrates and peptides which are conse-

uently absorbed by the host and serve as an energy source.

he main end products of bacterial metabolism are short-chain

atty acids (SCFAs, namely acetate, propionate, and butyrate),
under the CC BY-NC-ND license. 
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Fig. 1. Recent systems biology studies elucidate the close connection between gut microbiota and liver. Upper part of the figure reflects the healthy state of liver-gut axis. 

Alterations in the microbial composition and impaired intestinal barrier elucidated as pathogenic factors in various types of liver diseases by recent systems biology studies. 

(NAFLD/ALD, non-alcoholic fatty liver disease/alcoholic liver disease; NASH, non-alcoholic hepatosteatosis; HCC, hepatocellular cancer). 
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ranched-chain amino acids (BCAAs, namely leucine, isoleucine,

nd valine), tryptophan-derived metabolites (mainly indoles and

ryptamine) and trimethylamine, whose association with human

hysiology and various diseases have been increasingly shown by

ecent studies [4–6] . Furthermore, the microbiota is also involved

n the regulation of bile acids, which in turn, can modulate glucose

nd lipid metabolism through FXR and TGR5 signaling [7] . Diet,

enobiotics, the intestinal environment and microbiota composi-

ion affect metabolism of microbiome-derived metabolites; thus,

dentifying their exact roles in human physiology is challenging [8] .

The gut microbiota also plays a crucial role in the overall health

f the body through the maintenance of intestinal mucosal in-

egrity, the synthesis of essential amino acids and vitamins, the

ioconversion of dietary complex molecules, the biotransforma-

ion of oral drugs, and the production of hormones and neuro-

ransmitters [9–11] . An imbalanced gut microbiome, with the con-

ribution of host genetic characteristics and environmental fac-

ors (e.g. diet, drugs), may lead to the development of a range of

mmune-mediated diseases and conditions including diabetes mel-

itus (DM), obesity and various types of liver diseases ( Fig. 1 ). 

The composition, functions, and interactions of the intestinal

icrobiota have been systematically studied by using novel tech-

ologies to elucidate the underlying mechanisms that might ac-

ount for the pathological processes, with the purpose of pre-

ention, diagnosis, and treatment of diseases [12] . The ultimate

oal of this new era is to achieve personalized medicine, which

ill provide the most compatible treatment for a specific patient

y increasing the efficacy of treatments, whilst reducing the ad-

erse effects and health expenses. Therefore, data integration and

nowledge discovery capabilities of novel bioinformatics method-

logies have emerged as game-changing tools for the discovery of

iomarkers and drug targets, as well as the development of effi-

ient treatment strategies such as diet interventions and fecal mi-

robial transplantation. [13 , 14] 
o  
From this perspective, we reviewed state-of-the-art systems bi-

logy studies in the context of how environmental changes affect

icrobiota function and composition, and in turn how this is as-

ociated with human physiology and liver diseases. Here, we: (1)

escribe the synthetic gut microbe studies that have evaluated the

acterial composition and microbiota-derived metabolites under 

arying conditions in human intestine; (2) summarize the systems

iology studies elucidating the role of altered gut microbiota on

uman metabolism in healthy and obese subjects and diabetic pa-

ients, as well as the role of microbiota on drug biotransformation;

nd (3) outline the novel studies that provide evidence for the in-

erplay between microbiota and hepatic diseases, including non-

lcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD),

iver cirrhosis, and hepatocellular carcinoma (HCC), and its possible

iagnostic and therapeutic potential. 

. Systems biology approaches in understanding gut microbial 

ommunities 

Advances in omics technologies have enabled gains in mecha-

istic insights of the human liver and gut microbiota in health and

isease states. Omics technologies in microbiome studies are com-

rehensively described elsewhere [15] , and are described briefly in

ox 1 . However, omics technologies, as a reductionist approach,

ave focused on describing complex biological systems in their

implest levels through concrete individual statements, but pre-

icting the behavior of many interacting parts of systems has

een highly improbable. Therefore, holistic approaches are neces-

ary to make predictions for studying cellular and systemic func-

ions ( Fig. 2 ). The development and analysis of integrative biolog-

cal networks can be used to make further predictions about the

ystem-level properties through the use of genome-scale metabolic

odels (GEMs) [16] . GEMs are the stoichiometric reconstructions

f the entire metabolism within a cell or tissue, which provide
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Fig. 2. Interactions between human gut and liver have been deciphered by various omics technologies. Systems biology methodologies integrate high-throughput omics data 

to develop high-quality translational research and personalized medicine. 
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a link between genomic information and associated biochemical

reactions [17] . GEMs have been presented and continuously re-

fined to compile all gene–protein–reaction–metabolite associations

with transport processes to simulate the complex relationship be-

tween the genotype and phenotype of an organism [18] . Systems

biology-based studies that employ biological networks including

GEMs, transcriptional regulatory, protein-protein interaction, sig-

naling and co-expression networks in understanding the human

liver physiology in healthy and diseased states have been exten-

sively reviewed elsewhere [2] . 

Synthetic gut microbe networks decipher population interac-

tions in multiple microbial species. Computational metabolic mod-

eling of interspecies interactions predicts how members of the gut

flora promote each other for growth and/or compete for space and

nutrients [19] . Microbial relationships at different taxonomic levels

have been simulated by using extended constraint-based metabolic

flux analysis (e.g. OptCom, cFBA, CASINO, MMinte, SteadyCom)

[20–24] . However, the dynamic equilibrium of the human micro-

biome challenges the methods that allow the prediction of inter-

actions based on steady-state assumption. Similarly, the majority

of flux prediction methods rely on a maximization of the biomass

or ATP, but this is not the case for all members of the microbial

community. Dynamic modeling frameworks (e.g. dFBA, DyMMM,

d -optCom, COMETS, MCM, BacArena, FLYCOP) have been devel-

oped to achieve more realistic simulations of microbial ecosystems

[25–31] . An overview of various community modeling frameworks

is presented in Tables 1 and 2 . A compilation of studies that il-

lustrates environmental alterations on behaviors of gut microbial

communities (with 4 or more species) is detailed in this review

paper. 

Bacteria in the human gut microbiome inhabit the same phys-

ical location and connect instantly with each other. The sharing

of a common living space with all microbial partners is regulated

via metabolic cross-feeding. Predictions of metabolite production

levels within the representative communities of human gut mi-

crobiota members have rendered efficient estimations of the hu-

man gut microbiota. For instance, applying a spatial and tempo-

ral multi-scale modeling approach (namely BacArena) to a sam-

ple group of seven bacteria of the human gut showed the impor-

tance of the different location-based densities of mucus glycans in

terms of niche formations and ultimately, the habitat topology on

the whole. The approach also demonstrated the multi-member ex-

change of SCFAs as a contributing factor to the concentration val-

ues of community members, which were in line with previously

published experimental findings [30] . 

High-level methodological examination of microbial metabolic

exchanges allows further discovery of microbial metabolic relation-

ship factors relating to ecological stability and vulnerability. For in-
tance, in silico interactions between Escherichia sp., Akkermansia

uciniphila, Subdoligranulum variabile , and Intestinibacter bartlettii

nd their extracellular environment were evaluated with the con-

ept of synthetic lethality analysis based on the flux balance anal-

sis to elucidate the possible effect of metformin treatment on

ut microbiota composition in patients with type 2 diabetes mel-

itus. Authors observed that Escherichia sp. and S. variabile were

ble to contribute to the production of short-chain fatty acids un-

er aerobic and anaerobic conditions, and Escherichia sp . withstood

ost nutrient deficiency out of all species studied [32] . In an-

ther study, the growth interdependencies of Desulfovibrio piger

etween 8 other microbial species under distinct metabolic limi-

ations (oxygen, chondroitin sulfate, and fructose) were evaluated

sing the MMinte framework. In this study, D. piger growth was

ependent if Bacteroides ovatus, Bacteroides thetaiotaomicron, Bac-

eroides caccae, Clostridium symbiosium or Escherichia coli were un-

er the absence of oxygen, but no dependence was observed if

xygen was available [23] . Similarly, a recent metabolic model-

ased approach of pairwise interactions of 11 gut bacteria sug-

ested that cross-feeding behavior varied under different nutrient

nd atmospheric conditions of the gastrointestinal tract. For in-

tance, the mutualistic interactions of Lactobacillus plantarum un-

er anoxic conditions were abolished in the presence of oxygen

33] . Overall, these results may suggest that microbes rely on

ach other more when they are under poor nutrient and oxygen

vailability. 

The commensal behavior of the intestinal microbes might be al-

ered with the production and consumption of extracellular com-

ounds under different diet conditions. The computational frame-

ork CASINO demonstrates the multifaceted anabolic and catabolic

nteractions amongst food intake, gut microbiota and host. The

odel, which accomplishes predictions in line with human val-

es, reveals that various amino acid and SCFA levels, in addition

o the microbiota composition, are impacted by microbial genome

iversity and diet [22] . Likewise, metabolic flux arrangements in

ccordance with steady state boundaries can be estimated by using

he SteadyCom optimization framework. Following an assembly of

our E. coli double auxotrophic mutants, the framework was tested

n a microbiota representation containing microbes from the phyla

irmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. With

ittle need for constraints other than diet perturbation, SteadyCom

ccordingly generates predictions of abundance fluctuations, which

re backed up by experimental gut microbiota representations [24] .

Integration of omics data onto the metabolic models is a novel

ethodology for a definitive understanding of microbial functions

nd dynamics. A pioneer study from Shoaie et al., simulated the in-

eractions between relevant representatives ( B. thetaiotamicron, Eu-

acterium rectale and Methanobrevibacter smithii ) of the human gut
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Table 1 

Summary of community modeling frameworks (steady-state) using genome-scale metabolic models. 

Name 

Programming 

languages Definition Research organism Availability Reference 

SteadyCom MATLAB Prediction of the flux distributions 

and maximum growth rate of a 

community (independent from 

number of organisms) in a 

time-averaged approach 

1. Bacteroides thetaiotaomicron 

2 . Eubacterium rectale 

3. Faecalibacterium prausnitzii 

4. Enterococcus faecalis 

5. Lactobacillus casei 

6. Streptococcus thermophilus 

7. Bifidobacterium adolescentis 

8. E. coli 

9. Klebsiella pneumoniae 

https://github.com/ 

maranasgroup/SteadyCom 

Chan et al. [24] ., 

MMinte Python A compartment-based simulation of 

microbial interactions from an 

association network and assessment 

of 16S rDNA data 

1. Desulfovibrio piger 

2. Bacteroides thetaiotaomicron 

3. Bacteroides caccae 

4. Bacteroides ovatus 

5. Eubacterium rectale 

6. Marvinbryantia 

formatexigens 

7. Collinsella aerofaciens 

8. E. coli 

9. Clostridium symbiosium 

www.github.com/ 

mendessoares/MMinte 

Mendes-Soares 

et al. [23] ., 

CASINO MATLAB An optimization algorithm which 

incorporates the systems-level 

topology with iterative organism-level 

and multi-level optimization to 

predict metabolic interactions within 

the microbial communities 

1. Bifidobacterium adolescentis 

2. Bacteroides thetaiotaomicron 

3. Eubacterium rectale 

4. Faecalibacterium prausnitzii 

6. Lactobacillus reuteri 

– Shoaie et al. [22] ., 

cFBA Python A methodology which predicts 

community metabolic activities at a 

balanced growth rate by using a 

simplified multi-objective 

optimization approach 

E. coli http://cbmpy.sourceforge.net/ Khandewal et al. 

[21] ., 

optCom UNIX/ 

LINUX 

A pioneer multi-level and 

multi-objective optimization 

formulation to describe species- and 

community-level fitness analysis of 

microbial communities. 

1. Geobacter sulfurreducens 

2. Clostridium cellulolyticum 

3. Clostridium cellulolyticum 

4. Methanococcus maripaludis 

– Zomorrodi et al. 

[20] ., 
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y using genome-scale metabolic models based on transcriptome

ata [34] . The models predicted that B. thetaiotaomicron produced

ore butyrate with E. rectale and more acetate with M. smithii,

hich resulted in more methane production of M. smithii . Predic-

ions of the secreted SCFA profiles with in silico evaluations in dif-

erent combinations of gut ecosystems were comparable with the

xperimental data of germ-free mice [34] . Nutrient cross-feeding

etween Bifidobacterium adolescentis and Faecalibacterium praus-

itzii has also been explored by different groups and findings con-

istently indicate that SCFAs are modulated by environmental con-

itions, as well as microbial interactions [35 , 36] . 

. Role of altered gut microbiota on human metabolism 

To date, data from observational and comparative studies have

ighlighted that gut microbiota metabolism and the human liver

re closely connected with each other via enterohepatic circulation,

nd the results of this bidirectional relation have been linked to

verall health and disease [37–39] . The holistic approaches of sys-

ems biology have been gaining attention in medical management

o promote health and prevent disease, which in turn renders pos-

ible the practice of predictive, preventive, personalized and par-

icipatory (P4) medicine [40] . Examples of systems biology studies

ighlighting the effect of environmental factors (e.g. diet, drugs)

n the microbiota and the subsequent impact on host health are

ncluded in this section. 
.1. Health and microbiota 

Understanding the role of the microbiota on well-being and

isease necessitates the use of data mining and integration ap-

roaches as part of the current comprehensive view towards sys-

ems biology. As a seminal example, Price et al. analyzed the per-

onal and multi-omics longitudinal data of 108 individuals and em-

loyed a correlation network to define related markers of health

nd disease. The authors identified several relationships between

pecific taxa and metabolites, as well as negative correlation of mi-

robiome α-diversity with some immune response proteins [41] .

n another study, statistical analysis of an early school-age co-

ort of Dutch children revealed that environmental factors (espe-

ially breastfeeding duration and dietary habits) influenced micro-

ial composition with a significant enterotype association. High di-

tary fiber consumption and low plasma insulin levels were cor-

elated with Bacteroide s and Prevotella enterotypes, but not with

ifidobacterium enterotype, which has a lower microbial diversity

nd association with a shorter breastfeeding duration [42] . 

The essential role of diet in well-being or complex diseases has

ained importance and landmark computational studies have eval-

ated the association of microbiota profiles with disease devel-

pment [43 , 44] . Mardinoglu et al. reconstructed a generic mouse

etabolic reaction GEM, together with 28 tissue-specific and 4

unctional GEMs for the small intestine, colon, liver and white adi-

ose tissues based on proteomics and transcriptomics data from

onventionally raised and germ-free mice. The authors simulated

https://github.com/maranasgroup/SteadyCom
http://www.github.com/mendessoares/MMinte
http://cbmpy.sourceforge.net/
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Table 2 

Summary of community modeling frameworks (dynamic) using genome-scale metabolic models. 

Name 

Programming 

languages Definition Research organism Availability Reference 

FLYCOP Python A novel spatiotemporal modeling 

approach to explore multiple 

consortium configurations through 

stochastic local search process 

1. E. coli 

2. Synechococcus elongatus 

3. Pseudomonas putida 

https://github.com/ 

beatrizgj/FLYCOP 

Beatriz García-Jiménez 

et al. [31] ., 

BacArena R A rule-based spatial and temporal 

multi-scale modeling approach which 

combines FBA with individual-based 

modeling 

1. Anaerostipes caccae 

2. Bacteroides 

thetaiotaomicron 

3 . Blautia producta 

4. E. coli 

5. Clostridium ramosum 

6. Lactobacillus plantarum 

7. Bifidobacterium longum 

8. Akkermansia muciniphila 

9. Pseudomonas aeruginosa 

https://github.com/euba/ 

BacArena 

Bauer et al. [30] ., 

MCM UNIX/ 

LINUX 

A dynamical framework for modeling 

microbial communities, which 

combines genome scale metabolic 

reconstructions with environmental 

variables and arbitrary reaction 

kinetics 

E. coli http://www.zoology.ubc. 

ca/MCM 

Louca and Doebeli [29] , 

COMETS UNIX/ 

LINUX 

A multi-scale modeling framework 

that integrates spatiotemporal 

dynamics of microbial community 

with stoichiometric models 

1. E. coli 

2. Salmonella enterica 

3. Methylobacterium 

extorquens 

https://github.com/ 

segrelab/comets 

Harcombre et al. [28] ., 

d-optCom UNIX/ 

LINUX 

A multi-level and multi-objective 

simulation of microbial communities 

that incorporates the dynamic 

information of biomass concentrations 

and shared metabolites 

1. E. coli 

2. Geobacter sulf urreducens 

3. Rhodoferax ferrireducens 

4. Shewanella oneidensis 

– Zomorrodi et al. [27] ., 

DyMMM MATLAB A pioneer dynamic framework to 

integrate GEMs (add-on to the COBRA 

toolbox) 

1. Geobacter sulf urreducens 

2. Rhodoferax ferrireducens 

https://sourceforge.net/ 

projects/dymmm/ 

Zhouang et al. [26] ., 
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the effect of the microbiota on host metabolism and highlighted

that the gut microbiome leads to a depletion of host glutathione

synthesis, in addition to regulating host amino acid and lipid

metabolism [45] . 

3.2. Metabolic conditions and microbiota 

The advent of omics technologies enabled the identification of

key traits of microbiota associated with diet and obesity. Combined

analysis of multiple omics data from a longitudinal weight pertur-

bation study revealed that weight changes had extensive molecu-

lar signatures of chronic diseases such as hypertrophic cardiomy-

opathy and insulin resistance [46] . The pathophysiologic role of

adipose tissue on the progression of obesity is well established;

white adipose tissue can be a rational target to prevent obesity

and related disorders. The generation of GEMs for adipocytes and

the integration of gene expression and plasma metabolomics data

onto the model enabled mechanistic explanations of the metabolic

differences between lean and obese individuals. Model predictions

(e.g. decreased glutaminolysis and alterations in the glutamate,

pyruvate, and α-ketoglutarate metabolism) were consistent with

the results from human subjects [47] . Moreover, a recent study re-

vealed that energy-dense diets altered the diversity of the micro-

bial composition and increased mucosa permeability of the ileum

and colon in obese mice with NAFLD. The authors also found that

plasma SCFA levels were correlated with specific groups of bacte-

ria, and specific bacterial taxa associated with disease-associated

factors were also positively correlated with isoacid SCFAs. In ad-

dition, dietary fermentable fibers were found to alter microbiota-

derived signals and regulate the gene expression and metabolic
athways of the liver by reducing host nitrogen and amino acid

omeostasis [48] . 

Diabetes mellitus (DM) is a major public health concern, affect-

ng over 425 million people worldwide [49] . Increasing evidence

ndicates a contributing role of gut microbiome in the pathophys-

ology of DM. An integrative taxonomic and functional analysis of

ultiple meta-omics data revealed that intra- and inter-individual

ariation of microbiota composition in the context of type 1 DM

ere strongly affected by family membership [50] . Similarly, two

arge cohorts of healthy individuals showed that gut microbiome

omposition was more affected by environmental influences (e.g.

ousehold sharing, diet, lifestyle) instead of host genetics [51] . Sev-

ral predictive metagenomic tools described an association with

besity, insulin resistance and T2DM. Gut microbiome 16S rRNA

equencing and metagenomics profiling of T2DM zebrafish model

evealed similar features with human T2DM, such as lower taxa

ichness, higher faecal and plasma fructose and BCAA concentra-

ions, reduced fecal butyrate levels, and altered pathways of amino

cid and sugar metabolism [52] . 

.3. Drug metabolism and microbiota 

The bidirectional interaction of gut microbiota and drug

etabolism have been reported for more than 50 pharmaceuti-

als [53] . Gut microbiome composition has recently been asso-

iated with the efficacy and toxicity profiles of commonly used

rugs, but the extent of this relationship remains largely unknown.

rug–microbe networks serve as a novel step towards revealing

he role of the microbiome in drug metabolism. For instance,

immerman et al. identified 30 human gut microbiome-encoded

https://github.com/beatrizgj/FLYCOP
https://github.com/euba/BacArena
http://www.zoology.ubc.ca/MCM
https://github.com/segrelab/comets
https://sourceforge.net/projects/dymmm/
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nzymes responsible for the biotransformation of 20 drugs to 59

andidate metabolites, which suggests that drug-metabolizing ac-

ivities of human gut microbiota may differ on the basis of in-

erpersonal variation of microbial genomic contents [54] . In an-

ther comprehensive study, screening of more than 10 0 0 marketed

on-antibiotic drugs against the growth of gut bacterial strains re-

ealed that 24% of the drugs showed antibiotic-like effects and

he inhibition of bacterial growth was strongly correlated between

on-antibiotic and antibiotic drugs, which implies antibiotic re-

istance on the basis of gut microbiome composition, after reg-

lar consumption of non-antibiotic drugs [55] . Similarly, a recent

tudy proposed an interplay between decreased Bacteroides frag-

lis increased glycoursodeoxycholic acid – inhibition of intestinal

XR signaling; which might explain how metformin improves hy-

erglycemia. Hence, this study identified glycoursodeoxycholic acid

s a potential target for the treatment of T2D [56] . The findings

f this study are concordant with accumulating evidence that as-

ociates the antihyperglycemic effect of metformin being modu-

ated by gut microbiota, which was recently proven in double-blind

etagenomics and targeted metabolomics research [57] . 

. Role of microbiota in hepatic diseases 

In the context that the enterohepatic circulation links the gut

icrobiota and liver through the transport of the intermediate

nd-products of microbial metabolism, efforts to uncover the po-

ential physiological impact of the gut microbiome on liver dam-

ge have lately been increased. In recent years, several lines of hu-

an and animal research indicated that the gut microbiome rep-

esented a significant environmental factor that contributed to the

evelopment of several liver diseases and its progression into end-

tage cirrhosis, as well as cancer [58 , 59] . In addition to prompt-

ng the use of microbiome-based approaches for the diagnosis of

iver diseases, evidence also shows that this may be a primary tar-

et for the treatment of diseases. Taking advantage of the individ-

al gut microbiota makeup, which can be manipulated via a range

f methods, selection of suitable fecal mass transplant donors and

esignation of potential effective pro- and/or prebiotics can be

chieved so as to alleviate the pathologies as well as conceivably

evise personalized therapies for various liver diseases. 

.1. Non-alcoholic fatty liver disease 

NAFLD has been defined as global burden because it is the lead-

ng cause of chronic liver disease and affects around 25% of the

lobal population [60] . The pathogenesis of NAFLD begins with the

imple accumulation of lipid in hepatocytes and progresses to hep-

tocellular damage and inflammation (non-alcoholic steatohepati-

is, NASH), which can progress to cirrhosis [61] . The pathophysi-

logy of NAFLD has not yet been elucidated, but several human

nd animal studies have confirmed the contribution of intestinal

icrobiota as a driver through the compositional changes, altered

icrobiota-derived metabolites, and impaired gut-barrier integrity 

62–64] . A definite understanding of the molecular basis of the gut

nd liver bidirectional relation is a prerequisite for developing non-

nvasive approaches with a robust discriminative ability for deter-

ining the presence and severity of NAFLD, as well as treating

AFLD and NASH by the use of precision pharmacotherapies. 

Despite the common use of advanced fibrosis as the primary

eterminant in predicting liver destruction, its rigorous detection

y way of using markers associated with gut microbiota lacks ex-

ensive and concordant data. For this aim, a study in a biopsy-

roven population of adult patients with NAFLD evaluated the as-

ociation between gut dysbiosis and the severity of NAFLD lesions

y using 16S rRNA gene sequencing of stool samples. Multivariate

nalysis of the results indicated that Bacteroides abundance and
revotella depletion were observed in people with NASH and Ru-

inococcus abundance was associated with fibrosis [65] . Likewise,

ccurate stage prediction of liver disease (from mild/moderate

AFLD to advanced fibrosis) was characterized using a panel of in-

estinal microbiota-derived signatures. Metagenomics of stool mi-

robiome and serum metabolome analysis data were used to build

 random forest classifier model with a set of 40 features, with

hich advanced fibrosis was distinguished by an increased abun-

ance of Proteobacteria and E. coli and a decreased abundance in

irmicutes [66] . Another multiomics study that claims specific gut

icrobiota states signal to pathologic conditions in differing stages

s supported with a metagenomics and metabolomics study of pe-

iatric patients with NAFLD. The findings suggested that a decrease

n Oscillospira coupled with 2-butanone enrichment was found to

e a microbiome signature for NAFLD onset and Ruminococcus,

lautia, and Dorea were significantly increased with NASH progres-

ion [67] . 

Integration of high-quality genome-scale metabolic models 

ith multi-omics data of patients has been of considerable in-

erest in exploring diet–microbiota interactions to understand

he pathogenesis and prevention of NAFLD. In a recent study,

uthors showed the dramatic benefits of an isocaloric low-

arbohydrate/increased protein diet in obese subjects with NAFLD.

he researchers performed in-depth multi-omics profiling (in-

luded plasma metabolomics and liver transcriptomics) after a

hort-term dietary intervention and combined the data with a

enome-scale metabolic model of hepatocytes. They observed

apid and marked reductions in hepatic de novo lipogene-

is, augmented serum b-hydroxybutyrate concentrations compat- 

ble with mitochondrial beta-oxidation, and significant micro-

ial changes toward folate-producing Streptococcus resulting in in-

reased serum folate concentrations. Overall, the results indicated

hat carbohydrate-restricted diets shaped the gut microbiome com-

osition and held potential for the treatment of NAFLD [68] . An-

ther comprehensive study investigated the underlying metabolic

ifferences in NAFLD using systems-level approaches coupled with

ice experiments and a proof-of-concept human study. The inves-

igators integrated the metabolomic measurements of each subject

ith a liver GEM to simulate individual liver metabolism. Their

nalysis revealed that plasma levels of glycine, serine, betaine, and

-acetyl-glycine (precursors for glutathione and NAD + biosynthe-

is) were negatively correlated in subjects with high degrees of

epatic steatosis, and dietary serine supplementation was likely an

ffective treatment strategy [69] . 

.2. Alcoholic liver disease 

ALD is damage to the liver caused by excess alcohol intake.

he spectrum of disease ranges from fatty liver, to hepatitis and

irrhosis. Misuse of alcohol affects the composition and function

f gut microbiota, which could initiate or potentiate liver disease

70] . Several animal studies indicated that composition of gut mi-

robiota might be responsible for the consequences of ALD includ-

ng raised liver inflammation, weakened immune system, and al-

erations in microbial metabolism products [71–73] . Correspond-

ngly, shotgun metagenomes of patients with alcohol dependence

nd liver dysfunction were associated with depletion of many com-

ensal gut taxa and community shifts, including the reduction of

ultiple Clostridiales and Bacteroidales members, but enrichment in

ifidobacterium and Lactobacillus and oral-origin microbiota. Molec-

lar changes in the course of ALD encompass bacterial overgrowth

ue to sparsity of the geni Blautia, Lachnospiraceae, Faecalibacterium

nd Roseburia , and raised serum concentrations of endotoxins that

eak from the gut wall in the presence of acetaldehyde [74] . 

Computational modeling and manipulation of the ALD network

rovides the means to form sound estimations regarding the chief
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inflammatory cascades and other molecular interactions active in

this disease. For instance, interactome and transcriptome data of

ALD were used to reconstruct static and dynamic networks that

were consistent with the important role of key signaling pathways

(TLR4, NF- κB, MAPK and apoptosis) in ALD. The findings of this

study allow for the emergence of varied classes of data, enabling

the representation of molecular networks and signaling cascades,

and thus paving the way for new drugs targeting ALD [75] . 

4.3. Liver cirrhosis 

Cirrhosis is scarring of the hepatic tissue, mainly seen at the

late stages of chronic liver disease. Alterations of gut microbiota

composition and function is significant in liver cirrhosis, but the

underlying mechanisms are still unresolved. Disruption of the in-

testinal barrier by the altered gut microbiome and systemic inflam-

mation with bacterial products are the proposed key players in the

advancement and related complications of liver cirrhosis [76] . 

Combined metagenomic and metabolic assays could provide

significant advantages to decipher the physiology of gut micro-

biome in cirrhosis states. For instance, a comparison of fecal mi-

crobiota of patients with cirrhosis and controls revealed a de-

crease in Bacteroidetes and enrichment in Enterobacteriaceae and

Veillonella . This functional diversity resulted in an enrichment in

the metabolism of toxins depredation and nutrient absorption, but

also a depletion of bile acid and cell cycle-related metabolism [77] .

Likewise, a recent meta-omics–based study directly linked micro-

bial dynamics to liver cirrhosis through metabolites by reporting

a significant decrease of bacteria involved in the digestion of non-

starch polysaccharides (e.g. Alistipes sp.HG5, Clostridium thermocel-

lum ) and butyrate-producing bacteria, and a marked increase of

opportunistic pathogens during disease progression. This impaired

homeostasis of the gut may be responsible for the disorganized in-

testinal barrier, which allows endotoxins and pathogens into the

hepatic circulation, resulting in systemic inflammation [78] . 

Systems biology approaches of human gut microbiota are

promising tools for the estimation of disease progression. For

instance, Bajaj et al. described a quantitative index of dysbio-

sis accompanying cirrhosis severity in a comprehensive, well-

characterized population within a range of individuals from

healthy controls to those with end-stage cirrhosis. The cirrho-

sis dysbiosis ratio reflects changes of autochthonous to non-

autochthonous taxa such as the negative correlation with disease

progression as well as endotoxemia; however, the ratio was sta-

ble if disease remained unchanged, which may be useful in clinical

practice to evaluate changes in microbiome accompanying cirrhosis

progression [79] . 

4.4. Hepatocellular carcinoma 

HCC is the most common primary malignancy of the liver. Ac-

cumulating evidence suggests that the gut microbiota has been in-

volved in the pathogenesis of HCC. Advancement of chronic liver

disease to HCC has been linked to inflammatory pathways, which

are activated by the disruption of intestinal mucosa and transloca-

tion of endotoxins to the portal veins as a result of imbalanced gut

microbiota [80] . As novel evidence, a correlation model of the fea-

tures (such as microbiota profile, intestinal permeability, inflamma-

tory status, and circulating mononuclear cells), which possibly link

microbiota with HCC, demonstrated that Enterococaceae, Streptococ-

cus, Bacteroides , and Ruminococcaceae were increased in patients

with HCC, whereas Akkermansia and Bifidobacterium were reduced.

Plasma levels of inflammatory markers (IL8, IL13, CCL3, CCL4, and

CCL5) and circulating monocytes were higher in the HCC group.

These findings propose that replacement of mucosa protective bac-

teria with LPS-producing bacteria is associated with intestinal and
ystemic inflammation and may promote the development of HCC

81] . 

By reason of symptoms being nonspecific in initial stages, there

s an urgent need for novel diagnostic and therapeutic targets for

CC. Alterations of gut microbiota will likely provide a potential

iomarker for the prediction of early stage HCC. A systematic in-

estigation of microbiota in early HCC across a large clinical co-

ort from three different regions of China demonstrated a de-

letion of Akkermansia and butyrate-producing bacteria (e.g. Ru-

inococcus, Oscillibacter, Faecalibacterium, Clostridium IV , and Co-

rococcus ), and enrichment of gram-negative species (e.g. Klebsiella

nd Haemophilus ). The authors proposed 30 biomarkers identified

y random forest models that might be used as non-invasive di-

gnostic tools of HCC through further validation of these results in

ifferent cohorts from different countries and ethnicities [82] . 

. Conclusion and outstanding questions 

The interactions between the gut microbiome and human host

etabolism has received increasing attention in the context of un-

erstanding the potential role of the gut microbiome in health

nd various complex conditions including obesity, DM and liver

iseases. Regardless of the fact that increasing evidence from nu-

erous studies suggest that gut microbiota contributes to overall

ealth and disease, one should be careful whilst interpreting the

esults; (1) the strict description of a healthy microbiota is still

bscure due to the taxonomic composition and the definitive in-

eractions between gut microorganisms shared among healthy in-

ividuals are not yet well-characterized; (2) considering the com-

lex ecosystem of the microbiome is ever-changing, determina-

ion of the relevant measures of functional capacity and stability

re affected by multiple factors including environmental and host-

elated influences; (3) the genes in the microbiome were mapped

o their functions; however, the genetic information may not al-

ays be reflected in the phenotype or may not perform the ex-

ected function; (4) although the taxonomic profile of the hu-

an gut microbiome is not affected in the long term, the dynamic

tructure of the microbiota makes it difficult to predict the out-

ome of dietary interventions, and the long-term results of these

nterventions are unknown; (5) the species-level findings in the

ut microbiota research are not consistent, which may be a conse-

uence of the study-related discrepancies, such as patient cohorts,

omparison groups, definition of disease; (6) the reproducibility of

esults is low and may result in bias in the interpretation of re-

ults because sample collection, sequencing, and analysis of high-

hroughput methodologies are not standardized; (7) systems biol-

gy methodologies have proven to be a valuable tool in individual

ells and tissues, but the computational models for bacteria and

he algorithms developed for understanding microbial communi-

ies are still in their infancy. Nevertheless, through the advance-

ent in high throughput technologies and methods that are used

n system biology-based studies, the effect of the gut microbiome

n human health may be better understood, which could lead to

he development of preventive and personalized treatment strate-

ies. 

earch strategy and selection criteria 

Data for this review were identified by searches of PubMed,

oogle Scholar, and references from relevant articles using

he search terms “microbiome”, “microbiota”, “liver”, “omics”,

biomarker”, “personalized medicine”, and “genome-scale

etabolic model”. Only articles published in English between

010 and 2019 were included, with a preference for those pub-

ished after 2016. 
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ox 1 . Omics technologies in microbiome studies. 

Metagenomics 
Metagenomic studies have already revealed novel insights 

into the diversity, population structure and dynamics of mi- 
crobiota composition [83] . The linked between the func- 
tional genes of gut microorganisms and the pathogenesis of 
metabolic diseases, such as diabetes and obesity, are already 
well established [84] . Integrating omics data with biologic 
networks has been used in the identification of biomark- 
ers for the development of detection and treatment strate- 
gies [85] . Although metagenomics provides useful tools for 
evidence-based studies, these approaches have bottlenecks in 

terms of high-quality annotation, assignment of functional 
information into uncharacterized community structures, and 

interpretation of comparative investigations, regardless of en- 
vironmental conditions [86] . 

Metatranscriptomics 
Actively expressed genes of the human gut microbiome 

enable an understanding of the potential functions of a mi- 
crobial community and dynamic interactions with the host 
[87] . Next-generation sequencing technologies enable the 
identification of mRNA expression profiles, including novel 
non-coding RNAs such as small RNAs associated with central 
biologic processes [88] . The main limitation of this approach 

is the difficulty in the detection of bacterial mRNAs due to 
their short half-life on the order of minutes. In addition, as- 
sembly of non-continuous short-read sequences and repeated 

patterns renders the process even more problematic [89] . 
Metaproteomics 
The determination of a complete profile of gene transla- 

tion products expressed within a microbiome and their post- 
translational alterations is necessary to elucidate the species 
involved in specific functions by assigning proteins to spe- 
cific taxa [90] . Metaproteomics data integrated with compu- 
tational workflows have been used to decipher active path- 
ways in a microbial composition to explore the complex in- 
teractions of the human gut microbiome and the host [91] . 
As a result, metaproteomics provides new knowledge not 
garnered by metagenomics; however, standardized metapro- 
teomics protocols are needed to compare studies and relate 
protein abundances to microbial functions [92] . 

Metabolomics 
Analysis of the biochemical profiles of metabolism simul- 

taneously implies the current physiology of microbial activi- 
ties [93] . Measuring the compositions and concentrations of 
low-molecular-weight compounds in a state of flux is com- 
monly used in the discovery of potential biomarkers and drug 
targets [94] . The identification of metabolite production is 
complicated in the context of mixed microbial communities, 
thus the combination of other omics technologies and stable 
isotope probing techniques with metabolomics has become 
highly useful [95] . 
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