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A B S T R A C T   

The formalization of dependencies between datasets, taking into account specific hypotheses 
about data properties, is a constantly relevant task, which is especially acute when it comes to 
small data. The aim of the study is to formalize the procedure for calculating optimal estimates of 
probability density functions of parameters of linear and nonlinear dynamic and static small data 
models, created taking into account specific hypotheses regarding the properties of the studied 
object. The research methodology includes probability theory and mathematical statistics, in
formation theory, evaluation theory, and stochastic mathematical programming methods. The 
mathematical apparatus presented in the article is based on the principle of maximization of 
information entropy on sets determined as a result of a small number of censored measurements 
of “input" and “output" entities in the presence of noise. These data structures became the basis 
for the formalization of linear and nonlinear dynamic and static models of small data with sto
chastic parameters, which include both controlled and noise-oriented input and output mea
surement entities. For all variants of the above-mentioned small data models, the tasks of 
determining the optimal estimates of the probability density functions of the parameters were 
carried out. Formulated optimization problems are reduced to the forms canonical for the sto
chastic linear programming problem with probabilistic constraints.   

1. Introduction 

As Pierre-Simon Laplace wrote at the beginning of the 19th century: “Probability theory is common sense expressed in calcula
tions." This idiom well defines the essence of machine learning [1–5]. It is possible to create machine learning algorithms without 
relying on the probability theory and Bayesian inference, but only knowledge of these scientific disciplines will ensure the clarity, 
validity and effectiveness of the created constricts. However, in machine learning, any theories are built on rather shaky ground, since 
machine learning is not abstract mathematics, but the science of applying learning algorithms to real data. Any mathematical theory is 
based on axioms and conditions (for example, in statistics, one of the cornerstone conditions is “independence and the same distri
bution of training examples in the sample"). In the context of real data, these conditions may be fulfilled to a limited extent or not at all. 
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Despite this, machine learning and statistical inference [6–9] are closely related and focused on solving practically equivalent 
problems. Thus, machine learning is focused on creating algorithms that train from data and automatically derive general patterns 
from individual examples, and statistical inference is focused on estimating the parameters distribution and testing hypotheses based 
on observations (that is, also obtaining general conclusions from individual examples). What then is the difference between these two 
branches of science? Currently, there is no unanimously recognized answer. Some say [10,11] that in statistics the goal is usually 
inference about whether the hypothesis is true or how the variables are related, and in machine learning the goal is prediction or 
generation [12,13]. It should also be noted that in machine learning, as a rule, more complex models are used, while in traditional 
statistics, models are usually simpler, but due to this, they are also more interpretable. 

1.1. Related work and motivation 

In classification and regression problems (and many other typical machine learning problems), you need to define a model to 
describe the relationship between input data X and output data Y as a function Y = F(X). An ordinary model has parameters that are 
selected during training, so y can be interpreted as a function of the input х and the parameters α: y = f(x,α). Since there are usually 
many parameters, α is a vector, not a number. The general idea of stochastic modelling is that instead of a point, the model should 
predict a conditional probability distribution p(y|x) on a set Y for a defined value x ∈ X. Since the stochastic model also has parameters, 
it is presented as p(y|x, α). With this interpretation, we allow the model to “doubt" when forecasting. We do not lose anything: the 
probability distribution p(y|x, α) contains more information than the point estimate f(x,α). The function p(y|x, α) is defined ∀y ∈ Y, so 
we can quantify the error of the model: the lower the probability that the model characterizes the “true" у, the greater the error. Thus, 
the loss function can be determined naturally. 

Suppose that each х stochastic variable у is normally distributed, and the mathematical expectation of the distribution is a function 
х to be determined (if we achieve this, we can calculate the probability of any value of у for х and α). At the same time, for each 
educational example: the smaller the probability of the true value of у for defined х and α, the higher the prediction error for this 
example. Accordingly, we describe the loss function simply: we need to maximize p(y|x,α). The procedure for finding values of pa
rameters α, at which the data probability (likelihood) p(y|x, α) is maximal, is known as the Maximum Likelihood Estimation (MLE) 
method [14–18]. However, we postulated that we use a normal distribution. Is this choice justified? The Central Limit theorem [19] 
states that if a stochastic quantity у is the sum of a set of independent stochastic factors, and each factor makes a vanishingly small 
contribution to this sum, then the quantity у is approximately normally distributed, which indicates the combinatorial nature of the 
normal distribution. However, even from this definition, we can conclude that everything is far from clear for small data. 

We have already mentioned the hypothesis that a data sample summarizes Independent and Identically Distributed (IID) values 
[20–23], characteristic of both machine learning and mathematical statistics. For a large test sample, such an estimate will be quite 
accurate. However, there are exceptions, even with a large size sample (initial and test) and formal compliance with IID, the quality 
assessment will have a high error. This can happen when the impact of individual instances on the quality metric is comparable to the 
combined impact of all other instances (this is typical for unbalanced classes or strong outliers). In cases where it is obvious that the IID 
hypothesis is limited, other approaches are used [24–29]: Markov chains, autoregressive models, stochastic decision trees, etc. 
However, there are borderline cases where it is not clear whether IID training can be applied or not. The above information allows us to 
state that the formalization of dependencies between datasets, taking into account specific hypotheses regarding data properties (for 
example, a small data phenomenon), is a constantly relevant task of machine learning. This study is devoted to the development of the 
author’s concept of response to these challenges. 

1.2. Scientific research attributes 

The object of the study is the process of restoring dependencies between data sets determined as a result of a small number of 
censored measurements of “input" and “output" entities in the presence of interference. 

The subject of study includes probability theory and mathematical statistics, information theory, evaluation theory, and stochastic 
mathematical programming methods. 

The purpose of the study is to formalize the procedure for calculating optimal estimates of probability density functions of pa
rameters of linear and nonlinear dynamic and static small data models, created taking into account specific hypotheses regarding the 
properties of the studied object. 

The objectives of the study are. 

- based on the target data structures, formalize linear and nonlinear dynamic and static small data models with stochastic param
eters, among which there are both controlled and interference-oriented measurements of “input" and “output" entities;  

- formalize the procedure for determining optimal probabilistic characteristics for certain types of small data models with stochastic 
parameters;  

- to study the structural features of probability density functions of controlled parameters and interferences as part of formalized 
options for implementing stochastic small data models;  

- demonstrate the functionality of the proposed mathematical apparatus with examples and justify its adequacy in the process of 
discussing the obtained results. 

The main contribution. The mathematical apparatus presented in the article is based on the principle of maximization of 
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information entropy on sets determined as a result of a small number of censored measurements of “input" and “output" entities in the 
presence of noise. These data structures became the basis for the formalization of linear and nonlinear dynamic and static models of 
small data with stochastic parameters, which include both controlled and noise-oriented input and output measurement entities. For 
all variants of the above-mentioned small data models, the tasks of determining the optimal estimates of the probability density 
functions of the parameters (taking into account the variants of both the normalized and the interval representation of the corre
sponding probabilities) were carried out. Formulated optimization problems are reduced to the forms canonical for the stochastic 
linear programming problem with probabilistic constraints. This made it possible to present solutions in an analytical form. We note 
that the formalization of the mentioned optimization problems with an orientation towards maximizing the information entropy 
guarantees obtaining the best solutions in the conditions of the maximum uncertainty of both the stochastic controlled parameters and 
measurement noises of the models created. 

The highlights of the study are.  

- linear and non-linear dynamic and static small data models,  
- a lexicographic technique for bringing a nonlinear dynamic stochastic small data model to a linear form,  
- analytically formalized probabilistic characteristics of small data models with stochastic parameters,  
- analytical description of the structural features of optimal probability densities functions of stochastic small data models 

parameters. 

2. Materials and methods 

2.1. Statement of the research 

Suppose that as a result of a controlled experiment, the results of measurements of the investigated process were obtained in the 
form of a matrix of stochastic input parameters X with dimension (n×m) and a vector of stochastic output parameters y with length n, 
where n is the number of measurement sessions, m is the number of input parameters. 

The connection of the “input" and “output" entities is characterized in the first approximation by a static small data model of the 
form 

w=F(X + μ,α) + ξ, (1)  

where F is a deterministic n-dimensional vector function; α is a vector of controlled parameters of length m, formed by independent 
stochastic components of αj ∈ [α−

j ,α+
j ] = Аj, j = 1,m; М = (μij) is a matrix with dimension (n × m), which models the measurement 

errors of the “input" entity, where μij ∈ [μ−
ij , μ+

ij ] = Мij are independent stochastic elements, i = 1, n, j = 1,m; ξ = (ξі) is a vector of 
length n that models the measurement errors of the “output" entity, where ξі ∈ [ξ−і , ξ

+
i ] = Ξі are independent stochastic components, 

i = 1, n. 
The linear version of the static model [1] will be represented as 

w=(X + μ)α + ξ. (2) 

The discrete dynamic model of the investigated process with finite memory s summarizes the results of accurate measurements of 
the “input" entity (parameter x[k]) and the results of measurements of the “output" entity (parameter у[k]), which are determined with 
additive interference ξ[k], where k ∈ T, T = [s, s + n], and n is the number of measurement sessions. 

We present the discrete dynamic small data model for the above interpretation of the studied process based on the Volterra 
polynomial [30,31] as 

w[k] =
∑R

l=1

∑s

(m1 ,…,ml)=0

(

v(l)[m1,…,ml]
∏l

r=1
x[k − mr]

)

+ ξ[k]. (3) 

Expression [3] is a discrete functional version of the Volterra polynomial of the R th degree with impulse characteristics mr, v(l), and 
mr ∈ [0, s], r ∈ [1, l]; v(l)[m1,…,ml] = 0 ∀mr > s. 

Stochastic functions v(l)[m1,…,ml] with independent ordinates that take values in the range of 

V(l) =

[

b(l)
− exp

(

− a(l)
−

∑l

i=1
mi

)

, b(l)
+ exp

(

− a(l)
+

∑l

i=1
mi

)]

, (4)  

where a(l)
± , b(l)± are constants. 

Let’s perform the lexicographic ordering [32] of the {m1,…,ml} variables to move to the linear form of the discrete dynamic model 
of the studied process (at the current stage, it is non-linear, due to the non-linearity of relation [3]). The resulting sets are reindexed 
from 0 to tl = (s + 1)l

− 1 (according to the lexicographic rule). Let’s enter the local index j(l) ∈ [0, tl] and the sequence 

{m1,…,ml}→j(l). (5) 
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On this basis, we introduce the indexing of the stochastic parameters corresponding to the values of the impulse weighting 
functions v(l)[m1,…,ml] from Ref. [3] as 

α(l)
j(l)→v(l)[m1,…,ml]. (6) 

For j(l) ∈ [0,tl], we generalize the obtained values as a vector α(l) = {α(l)
0 ,…,α(l)

tl }, the components of which take values in the interval 
A(l)(j(l)) = [α(l)

− (j(l)),α(l)
+ (j(l))], where (according to Ref. [4]): 

α(l)
−

(
j(l)
)
= b(l)

− exp
[
− j(l)a(l)

−

]
, α(l)

+

(
j(l)
)
= b(l)

− exp
[
− j(l)a(l)

+

]
. (7) 

By analogy with [5], let’s perform a lexicographic ordering of the variables {k − m1,…,k − ml}, where k there is a fixed parameter, 
and the indices {m1,…,ml} take values in the interval [0,s]. For each value k, we reindex the obtained sets according to Ref. [5] {k − m1,

…,k − ml}→(k, j(l)). Then the products of variables x[k − mr] for a fixed value k mentioned in expression [3] form the vector 

x(l)[k] =
{

x(l)k,0,…, x(l)k,tl

}
= x(l)[s+ k], k ∈ [0, n]. (8) 

Taking into account the lexicographic transformations described above, expression [3] can be represented in linear form as 

w[k] =
∑R

l=1
〈α(l), x(l)[k]〉 + ξ[k],w[k] = w[s+ k], ξ[k] = ξ[s+ k], k ∈ [0, n]. (9) 

Let the measurements of the entities “input" and “output" take place at moments s+ k, k ∈ [0,n], during the censored interval Τ = [s,
s + n]. In the context of the model [3], the results of the measurement of the “output" entity are embodied in vectors w = {w[0],…,

w[n]}, ξ = {ξ[0],…,ξ[n]}. In the context of expression [8], the results of the measurement of the entity “input" are embodied in a matrix, 
the rows of which consist of vectors X(l) = [x(l)(k),k∈ [0,n]], l ∈ [1,R], and a block matrix Х = [Х (1),…,X(R)] of dimension (n + 1)× u, 
where u =

∑R
l=1(tl + 1). We form a block vector of stochastic controlled parameters α = {α(1),…, α(R)} of length R. Let’s summarize the 

material of the paragraph by presenting a nonlinear dynamic model of the studied process [3] with stochastic initial parameters 〈α, ξ〉 
in a linear form as 

w=Xα + ξ. (10) 

Note that although models [2,10] are structurally close, the process of formation of all their component parameters is funda
mentally different (see section material). 

2.2. Probabilistic characteristics of a small data model with stochastic parameters 

In this section, we will focus on the analytical formalization of the probability density functions of the parameters of models [1,10]. 
The presentation format of these models proposed in Section 2.1 allows for two levels of formalization of the probabilistic charac
teristics of their parameters.  

- at the level of probability density functions (PDD level),  
- at the level of probabilities of parameter values falling into the corresponding intervals (PHI level). 

We formalize the probabilistic characteristics of the static (SM) and dynamic (DM) variants of the small data model with stochastic 
parameters at the PDD level. Accordingly, the controlled parameters and interferences in the composition of the small data model will 
be interpreted as stochastic quantities, the values of which belong to the corresponding intervals on which there are probability density 
functions of the form 

PSM(α)=
∏m

i=1
pi(αi), αi ∈ Аi; (11)  

PDM(α)=
∏R

l=1

∏tl

i=1
p(l)

i

(
α(l)

i

)
; (12)  

V(μ)=
∏n

i=1

∏m

j=1
vij
(
μij

)
, μij ∈ Мij; (13)  

Q(ξ)=
∏n

i=1
qi(ξi), ξi ∈ Ξi, (14)  

where expressions [13,14] characterize the measurement interferences of the “input" and “output" entities, respectively. 
A natural way to evaluate functions [11]-(14) is to process the results of measurements of the “input" and “output" entities, as well 
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as taking into account a priori information presented in the form of probability density functions P0(α), V0(μ), Q0(ξ). Stochastic small 
data models generate sets of W stochastic vectors [1,10]. They correspond to the measurement results summarized by the vector у. To 
estimate the probability density functions [11]-(14), we characterize sets of stochastic elements of the vector w by moments m(k) =

{M(w(k)
1 ),…,M(w(k)

n )}, where k is the order of the moments, and 

M
(

w(k)
i

)
=

∫

α∈А,μ∈M,ξ∈Ξi

(Fi[X + μ, α] + ξi)
kP(α)V(μ)Q(ξ)dαdμdξ, i= 1, n. (15) 

Let’s limit ourselves to k = 1, that is, the mathematical expectation of the components of the vector w. We apply operation [15] to 
expression [1], which characterizes SM: M(w) = w =

∫

α∈А,μ∈M,ξ∈Ξ
(F[X + μ, α] + ξ)P(α)V(μ)Q(ξ)dαdμdξ. Let’s apply operation [15] to 

expression [10], which characterizes DM: M(w) = w = X
∫

α∈А
αP(α)+

∫

ξ∈Ξ
ξQ(ξ)dξ. 

Now let’s examine the probabilistic characteristics of static and dynamic small data models with stochastic parameters at the PHI 
level. This means that both SM, DM parameters are continuous stochastic quantities whose belonging to the corresponding intervals is 
characterized by certain probabilities. Controlled parameters α = {α1,…, αm} take values in intervals А = {А1,…,Аm} with proba
bilities p = {р1, …, pm}, pj ∈ [0, 1], j = 1,m, respectively. Similarly, measurement interferences of entity “input" μij take values in 
intervals Мij with probabilities vij, vij ∈ [0,1], i = 1, n, j = 1,m, and measurement interferences of entity “output" take values in in
tervals Ξi with probabilities qi, qi ∈ [0,1], i = 1, n. We will also mention the corresponding a priori probabilities: p0

j , w0
ij, q0

i , i = 1, n, j =

1,m. 
The studied small data models reproduce a set W of vectors w generating stochastic values of controlled parameters and in

terferences with probabilities p, v, q, respectively. Let us characterize the set generated by the models using first-order quasimomentum 
vectors: 

α=α− + Lαp, μ = μ− + Lμ ⊗ V, ξ = ξ− + Lξq, (16)  

where Lα = diag[(α+
i − α−

i )|i = 1,m], Lμ = diag[(μ+
ij − μ−

ij )|i = 1, n,j = 1,m], Lξ = diag[(ξ+i − ξ−i )|i = 1, n], and the sign ⊗ symbolizes the 
element-by-element multiplication operation. 

Substitute quasi-average values [16] into expression [1], which characterizes SM, and obtains w̃ = F[X + (μ− + Lμ ⊗ V), α− +

Lαp] + ξ− + Lξq. Substitute quasi-average values [16] into expression [10], which characterizes DM, and obtains 

w̃=Xα + Lα + ξ− + Lξq. (17) 

Therefore, when studying stochastic small data models at the PDD level, the corresponding probability density functions should be 
estimated. When choosing the PHI level, the vectors that characterize the corresponding probability distributions are subject to 
evaluation. For both levels, it is appropriate to introduce the likelihood functional as a measure of the quality of the estimates of the 
probability density functions. Let us focus on the analytical formalization of such a functional. 

Let’s determine the compatible probability density functions of the controlled parameters and the interferences of the small data 
model, taking into account their independence: Φ(α,μ,ξ) = P(α)V(μ)Q(ξ). Taking into account the given a priori probabilities P0(α), 
V0(μ), Q0(ξ), we introduce the logarithmic likelihood ratio of the form φ(α,μ,ξ) = ln P(α)

P0(α) + ln V(μ)
V0(μ) + ln Q(ξ)

Q0(ξ). The resulting function is a 
deterministic function of stochastic arguments. In the context of the PHI level, the analogue of the function φ(α, μ, ξ) is the function φ(p,
V,q) = ln p

p0 + ln V
V0 + ln q

q0, where p0, V0, q0 are the a priori probabilities. 
We define the desired likelihood functional based on Shannon’s information entropy [33] as 

H[P(α),V(μ),Q(ξ)] = − L[P(α),V(μ),Q(ξ)] =

=

∫

α∈А,μ∈M,ξ∈Ξ

φ(α, μ, ξ)Φ(α, μ, ξ)dαdμdξ=
∫

α∈А

P(α)ln P(α)
P0(α) dα+

∫

μ∈М

V(μ)ln V(μ)
V0(μ) dμ+

∫

ξ∈Ξ

Q(ξ)ln
Q(ξ)
Q0(ξ)

dξ.

The resulting functional is interpreted both as a measure of the distance between probability density functions and as a measure of 
the degree of invariance of functions P(α), V(μ), Q(ξ) concerning the observer. Taking into account the fact of independence of pa
rameters α, μ, ξ established by expressions [11]-(14), we redefine the functional L[P(α),V(μ),Q(ξ)] as 

L[P(α),V(μ),Q(ξ)] = −
∑m

j=1

∫

α∈А

pj
(
αj
)
ln

pj
(
αj
)

p0
j
(
αj
) dαj − −

∑n

i=1

∑m

j=1

∫

μij∈Мij

vij
(
μij
)
ln

vij
(
μij
)

v0
ij
(
μij
) dμij −

∑n

i=1

∫

ξi∈Ξi

qi(ξi)ln
qi(ξi)

q0
i (ξi)

dξi.. (18) 

Based on the analytical form of the functional [18], we define the likelihood function as 

L(p,V, q)= −
∑m

j=1
pj ln

pj

p0
j
−
∑n

i=1

∑m

j=1
vij ln

vij

v0
ij
−
∑n

i=1
qi ln

qi

q0
i
. (19) 

The quality of estimating the probability density functions using the functional [18] or the components of the probability vector 
[19] increases as the estimates approach the maximum value of [18]. Let’s develop this concept into the statement of the 
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corresponding optimization problem with the objective function 

L[P(α),V(μ),Q(ξ)]→max, (20)  

where the functional L[P(α),V(μ),Q(ξ)] is described by expression [19]. 
Among the constraints of the optimization problem [20], we note both the condition that the probability density functions must 

belong to the space 

D=P ∪ V ∪ Q, (21)  

where P, V, Q are the spaces of the probability densities of the controlled parameters and measurement interferences of the entities 
“input" and “output" of the small data model, respectively, and the condition that maintains a balance between the k− 1-th power of the 
k-th moment of vector w (the result of modelling) and vector y (the result of measurements). 

Considering that the formalization of the vector w is determined by the type of small data model, the second constraint of the 
optimization problem [20] is represented by the corresponding expressions: 

SM :
(
M
{

F(k)[(X + μ), α] + ξ(k)
})1

k = y, (22)  

DM : (M{Xα + ξ})
1
k = y. (23)  

2.3. Structural features of probability density functions of small data model parameters 

Let us characterize the situation when the model SM is of a power-law type: 

w(t) =
∑R

l=1

∑m

j=1
αl

jx
(l)
j (t) + ξ(t), (24)  

where α = {αj} is a stochastic vector of controlled parameters formed by independent components that take values in intervals Аj =

[α−
j ,α+

j ] with probability density functions p(α) = {pj(αj)}, j = 1,m. 
The measurement of the entities “input" and “output" is carried out at moments {ti}, i = 1, n. The result of measuring the entity 

“input" is a set of matrices {X(l)}, l = 1,R: X(l) =

⎛

⎜
⎜
⎜
⎝

x(l)
1 (t1) … x(l)

m (t1)
⋮ ⋱ ⋮

x(l)
1 (tn) … x(l)

m (tn)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

x(l)
1,1 … x(l)

1,m

⋮ ⋱ ⋮
x(l)

n,1 … x(l)
n,m

⎞

⎟
⎟
⎟
⎠

. The result of the measurement of the 

“output" entity is a stochastic vector w = {w(ti)}, i = 1, n. 
Taking into account what has been introduced, let’s present the model [24] as 

w=
∑R

l=1
X(l)α(l) + ξ, (25)  

where α(l) = {α(l)
j }, j = 1,m; ξ = {ξ(ti)} = {ξi} is a vector of measurement interferences of the “output" entity, whose independent 

components take values from intervals Ξi = [ξ−i , ξ
+
i ] with probability density functions {qi(ξi)}, i = 1, n. A priori information is 

characterized as P0(α) = Q0(ξ) = const. 
Let us formalize the entropy estimation of the probability density functions P(α) = {pj(αj)}, j = 1,m, and Q(ξ) = {qi(ξi)}, i = 1, n, 

in the context of the model [25] and investigate its structural properties. We will use the formulation of the optimization problem [20] 
as a basis. Therefore, we obtain the objective function 

L[P(α),Q(ξ)] = −
∑m

j=1

∫

αj∈Аj

pj
(
αj
)
ln

j

pj
(
αj
)
dαj −

∑n

i=1

∫

ξi∈Ξi

qi(ξi)ln

j

qi(ξi)dqi→max (26)  

and the constraints 

1 −

∫

αj∈Аj

pj
(
αj
)
dαj = 0, j= 1,m; (27)  

1 −

∫

ξi∈Ξi

qi(ξi)dξi = 0, i= 1, n; (28)  
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Φi[p(α), q(ξ)] =
∑R

l=1

∑m

j=1
x(l)il

∫

αj∈Аj

αl
jpj
(
αj
)
+

∫

ξi∈Ξi

ξiqi(ξi)dξi = yi, i= 1, n. (29) 

The structural properties of functions P(α) and Q(ξ) are regulated by their class. To determine the latter in the context of SM, the 
optimization problem [20–22] should be solved, and in the context of DM, the optimization problem [20,21,23] should be solved. In 
both cases, these are stochastic linear programming problems with probabilistic equality constraints [34,35]. Having implemented in 
an analytical form the standard approach to solving such problems (see the authors’ previous work on this topic [33]) we obtained 
optimal probability density functions classified as continuous differential functions, namely: 

p∗
j (αi)∼ β(1)

j exp

(

−
∑R

l=1
β(2)

jl αl
j

)

, q∗
i (ξi) ∼ β(3)

i exp
(
− θ(1)

i ξi

)
, (30)  

where β(1)
j = exp( − 1 − θ(2)j ), β(2)

jl =
∑n

i=1θ(1)j x(l)
ij , β(3)

i = exp( − 1 − θ(3)i ), j ∈ [1,m], i ∈ [1,n]; θ(1), θ(2), θ(3) are the Lagrange multipliers, 

and θ(1) corresponds to constraint [28], and θ(2), θ(3) are correspond to constraints [27,28]. 
For a linear stochastic small data model, the estimation function [30] is always exponential. Empirical data on the “input" and 

“output" entities affect only the form and not the structural properties of the estimation function [30]. For the nonlinear stochastic 
small data model, the structural properties of the estimation function [30] are more diverse but do not leave the class of nonlinear 
continuous functions. 

Now let’s characterize the situation when the model DM is power-law (based on the linear form of the latter defined by expression 
[17]). The problem of optimal estimation of probability density functions of controlled parameters [12] and interferences [14] in this 
case is characterized by the objective function 

L[P(α),Q(ξ)] = −

∫

α∈А

P(α)ln P(α)dα −

∫

ξ∈Ξ

Q(ξ)ln Q(ξ)dξ→max (31)  

and constraints 

1 −

∫

α∈А

P(α)dα= 0, 1 −

∫

ξ∈Ξ

Q(ξ)dξ = 0; (32)  

Φ[P(α),Q(ξ)] =X
∫

α∈А

αP(α)dα +

∫

ξ∈Ξ

ξQ(ξ)dξ = y. (33) 

Note that the functional [33] is an (n + 1)-dimensional function. The optimization problem [31]-(33) is of the same type as the 
optimization problem [26]-(29). Having implemented in analytical form the standard approach to solving such problems, we obtained 
optimal probability density functions classified as continuous-differential functions, namely: 

P∗(α)= exp
(
− 1 − θ(2) − 〈θ(1),Xα〉

)
,Q∗(ξ)= exp

(
− 1 − θ(3) − θ(1) ⊗ ξ

)
, (34)  

where θ(1) is a vector of Lagrange multipliers of length (n + 1), the components of which satisfy the constraint [33]; θ(2), θ(3) are vectors 
of factors whose components satisfy the constraint [32]. 

From the analytical form of expressions [34], we can conclude that optimal probability density functions with Lagrange multiplier 
parameters belong to the exponential type. This conclusion is due to the type of functions [31]-(33). 

Also worth investigating is the version of the implementation SM, where the “input" entity was measured without interference, i.e.: 

w̃=XLαp+Lξq + Λ(α− , ξ− ), (35)  

where Λ(α− ,ξ− ) = Xα− + ξ− . It is also assumed that information about the a priori values of the controlled parameters [35] is available: 
p0, q0. We analytically formalize estimates of probability density functions of these parameters for selected classes of vectors p, q. 

The sought estimates are determined as a result of solving the optimization problem with the objective function 

L(p, q)= −
∑m

j=1
pj ln

pj

p0
j
−
∑n

i=1
qi ln

qi

q0
i
→max (36) 

and constraints aimed at probabilities normalizing and maintaining a balance between the modelled and measured values of the 
“output" entity: 

∑m
j=1pj = 1, 

∑n
i=1qi = 1; 

∑m
j=1xijLj

αpj + Li
ξqi + Λi = yi, i ∈ [1,n], n < m. 

The optimization problem [36] can be classified as a stochastic problem of linear programming, the solution of which is formalized 
in terms of Lagrange functions in compliance with the formulated optimality conditions: 

H
(
p, q, θ(1), θ(2), θ(3))= L(p, q)+ θ(1)

(

1 −
∑m

j=1
pj

)

+ θ(2)

(

1 −
∑n

i=1
qi

)

+
∑n

i=1
θ(3)

i

[

yi −
∑m

j=1
xijLj

αpj − Li
ξqi − Λi

]

. (37) 
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In the context of [37], we obtain the following expressions for the sought optimal probabilities p∗, q∗: 

0≤ p∗
j

(
θ(3))=

p0
j exp

(

−
∑n

i=1
θ(3)

i xijLj
α

)

∑m

j=1
p0

j exp
(

−
∑n

i=1
θ(3)

i xijLj
α

)≤ 1, j= 1,m, (38)  

0≤ q∗
i

(
θ(3))=

q0
i exp

(
− θ(3)

i Li
ξ

)

∑n

i=1
q0

i exp
(
− θ(3)

i Li
ξ

)≤ 1, i= 1, n. (39) 

The values of the Lagrange multipliers {θ(3)
i }, i = 1, n, necessary for the calculation of expressions [38,39] are calculated according 

to Φi(θ(3)) = 1
yi − Λi

∑m
j=1xijLj

αp∗
j (θ

(3))+ Li
ξq∗

i (θ
(3)) = 1. 

Finally, we analytically formalize the estimates of the probability density functions of the controlled parameters of the model [35] 
for selected classes of vectors p, q considering that 

0≤ pj ≤ 1, j = 1,m; 0 ≤ qi ≤ 1, i = 1, n. (40)  

L(p, q)= −
∑m

j=1

[

pj ln
pj

p0
j
+
(
1 − pj

)
ln
(
1 − pj

)
]

−
∑n

i=1

[

qi ln
qi

q0
i
+(1 − qi)ln(1 − qi)

]

→max, (41)  

where p0
j = p0

j /(1 − p0
j ), q0

i = q0
i /(1 − q0

i ), and constraints, which include the conditions [40] and the condition focused on main
taining the balance between the modelled and measured values of the “output" entity: 

∑m

j=1
xijLj

αpj +Li
ξqi + Λi = yi, i ∈ [1, n]. (42) 

We formalize the solution of the stochastic linear optimization problem (41) with constraints [40] and (42) analytically in the form 
of expressions 

0≤ p∗
j

(
θ(3))=

p0
j

(
1 − p0

j
)
exp
(
∑n

i=1
θ(3)

i xijLj
α

)≤ 1, j= 1,m, (43)  

0≤ q∗
i

(
θ(3))=

q0
i

q0
i + (1 − q0

i )exp
(
− θ(3)

i Li
ξ

)≤ 1, i= 1, n. (44) 

The values of the Lagrange multipliers {θ(3)
i }, i = 1, n, necessary for the calculation of expressions (43), and (44) are calculated 

according to (45). 

Φi
(
θ(3))=

1
yi − Λi

∑m

j=1
θ(3)

i xijp∗
j

(
θ(3))+Li

ξq∗
i

(
θ(3))= 1. (45) 

The solution of the system of equation (45) concerning the exponential Lagrange multipliers gi = exp( − θ(3)
i ), i ∈ [1,n], is expressed 

as gk+1
i = gk

i Φi(gk), g0
i > 0∀i ∈ [1,n]. 

3. Results 

We will demonstrate examples of estimating the parameters of static and dynamic stochastic small data models. 
Let there be a static small data model of the form [35] with five stochastic controlled parameters α = {αj}, j = 1,5, which take 

values from the same intervals А = А1 = … = А5 = [0, 00;10, 00]. The available information about the a priori values of the 
controlled variables is summarized by the vector α0 = {1,00;2,00;2,00; 4,00;1,00}. The interference affecting the modelled “output" 
entity y = {y1, y2} is characterized by the vector ξ = {ξ1,ξ2}, the components of which belong to the corresponding intervals Ξ1 = [ −

3,00;3,00], Ξ2 = [ − 6,00;6,00]. The results of the measurements of the “input" and “output" entities are represented by the values 

summarized in the matrix Х =

(
1,80 2, 10 3, 30 2,00 1, 50
4,10 3, 80 3, 00 2,80 1, 90

)

and the vector у = (21,10;32,80). 

Based on the initial data, the quasi-moments [16] for the controlled parameters and interference are described by expressions αj =

10рj, j = 1, 5; ξ1 = 6q1 − 3, ξ2 = 12q2 − 6. Substitute the obtained expressions into the model [35] and obtain w(p,q) = XLαp+ Lξq =

1→, where XLα =

(
0,75 0, 87 1,37 0, 83 0, 62
1,06 0, 98 0,77 0, 72 0, 45

)

, Lξ =

(
0, 25 0, 00
0, 00 0, 31

)

, 1→ = (1, 00 1 ,00). 
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Suppose there are five sets of a priori data: p0
1 = (1,00;1,00;1,00;1,00; 1,00), p0

2 = (0,10;0,20; ,0,30; 0,30;0,10), p0
3 = (0,30;0,

40;0, 10;0, 05; 0, 15), q0
1 = (0, 20;0, 80), q0

2 = (1, 00;1, 00). The a priori set {p0
1, q0

2} is characterized by a uniform distribution of 
stochastic values of controlled parameters and interference. The a priori set {p0

2, q0
1} is characterized by a non-uniform distribution of 

stochastic values of controlled parameters and interference. The a priori set {p0
3, q0

2} is characteristic of the combined distribution, in 
which the stochastic values of the controlled parameters are unevenly distributed, and the stochastic values of the interference are 
uniformly distributed. 

Let’s formulate the problem of estimating the probability density functions of parameters α, ξ for selected classes of vectors p, q 
based on the optimization problem [36] (with normalization of probability values p, q). We obtain the statement of the optimization 
problem T1: 

L(p, q)= −
∑5

j=1

(

pj ln

(
pj

p0
j

))

−
∑2

i=1

(

qi ln
(

qi

q0
i

))

→max,

∑5

j=1
pj = 1,

∑2

i=1
qi = 1, pj, qi > 0∀j ∈ [1, 5], i ∈ [1, 2].

0, 75p1 + 0, 87p2 + 1, 37p3 + 0, 83p4 + 0, 62p5 + 0, 25q1 = 1,

1, 06p1 + 0, 98p2 + 0, 77p3 + 0, 72p4 + 0, 45p5 + 0, 31q1 = 1.

Let us formulate the problem of estimating the probability density functions of parameters α, ξ for selected classes of vectors p, q 
based on the optimization problem (41) (with interval values of probabilities p, q of the form [40]). We obtain the statement of the 
optimization problem T2: 

L(p, q)= −
∑5

j=1

(

pj ln

(
pj

p0
j

))

−
∑2

i=1

(

qi ln
(

qi

q0
i

))

→max,

0≤ pj ≤ 1, j = 1, 5; 0 ≤ qj ≤ 1, i = 1, 2.

0, 75p1 + 0, 87p2 + 1, 37p3 + 0, 83p4 + 0, 62p5 + 0, 25q1 = 1,

1, 06p1 + 0, 98p2 + 0, 77p3 + 0, 72p4 + 0, 45p5 + 0, 31q1 = 1.

Entropy L reaches its maximum at point (p̂j = 0,36p0
j ; q̂i = 0,36q0

i ), j = 1,5, i = 1,2. Fig. 1 visualized the extreme values of p̂, q̂ 
depending on the corresponding a priori data sets p0, q0: {p̂, q̂} = f({p0,q0}). 

Based on the presented in Fig. 1 values, we calculate the optimal estimates p∗ = {p∗j }, j = 1, 5; q∗ = {q∗
i }, i = 1,2, for T1 the 

problem using expressions [38,39] taking into account the following combinations of a priori data sets: AS1 : {p0
1,q0

1}, AS2 : {p0
2,q0

1}, 
AS3 : {p0

3,q0
1}, AS4 : {p0

1,q0
2}, AS5 : {p0

2,q0
2}, AS6 : {p0

3,q0
2}, AS = {ASl}, l = 1,6. The result of calculating the dependence {p∗, q∗, L∗} =

f(AS) is presented graphically in Fig. 2, where the entropy estimate L∗ was determined by expression [37]. 
Corresponding to those presented in Fig. 2 values of {p∗,q∗,L∗}, the values of {α∗,ξ∗}, where α∗ = {α∗

о}, j = 1, 5; ξ∗ = {ξ∗i }, i = 1, 2: 

Fig. 1. Visualization of dependence {p̂, q̂} = f({p0, q0}).  
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{α∗,ξ∗,δ} = f(AS), are presented in Fig. 3. The error δ was calculated using the expression δ =
⃦
⃦α0 − α∗

⃦
⃦ /(

⃦
⃦α0
⃦
⃦ + ‖α∗‖). 

Based on the presented in Fig. 1 values, we calculate the optimal estimates p∗, q∗ for T2 the problem using expressions (43), and (44) 
taking into account combinations of a priori data sets generalized by the AS. The result of calculating the dependence {p∗, q∗, L∗} =

f(AS) is presented graphically in Fig. 4, where the entropy estimate L∗ was determined by expression (41). 
Corresponding to those presented in Fig. 4 value of {p∗,q∗,L∗}, the values {α∗, ξ∗, δ} are presented in Fig. 5. 
Now we will give an example of estimating the density functions of the probability distribution of a dynamic small data model (on 

the example of a non-linear (power-law) type of the latter). We specify the analytical form of the studied model as w[k] =
∑2

i=0v(1)[i]x[k − i] +
∑2

i,j=0v(2)[i, j]x[k − i]x[k − j] + ξ[k], k ≥ 2, where v(1)[i] = v(2)[i, j] if (i, j) > 2. 

Such a model summarizes nine parameters: α0 = α(1)
0 = v(1)[0], α1 = α(1)

1 = v(1)[1], α2 = α(1)
2 = v(1)[2], α3 = α(2)

0 = v(2)[0,0], α4 =

α(2)
1 = v(2)[0,1] + v(2)[1,0], α5 = α(2)

2 = v(2)[0,2] + v(2)[2,0], α6 = α(2)
3 = v(2)[1,1], α7 = α(2)

4 = v(2)[1,2] + v(2)[2,1], α8 = α(2)
5 = v(2)[2,2]. 

The values of the constants [7] are as follows: a(1)
− = a(1)

+ = a(2)
− = a(1)

+ = 0,08, b(1)− = 0,50; b(1)+ = 1,00; b(2)− = 1,00; b(2)+ = 2,00. 
The intervals [6] to which the components of the vector of controlled parameters α = {α1,…, α9} belong are defined as α1 ∈ [0,50;1,
00], α2 ∈ [0,46;0,92], α3 ∈ [0,42;0,85], α4 ∈ [1,00; 2,00], α5 ∈ [0,92;1,84], α6 ∈ [0,85;1,70], α7 ∈ [0,85; 1,70], α8 ∈ [0,79; 1,58], α9 ∈ [0,
72;1,44]. 

Let two sessions of measurement of “input" and “output" entities be implemented. We formalize blocks [9] as 

X(1) =

(
x[2] x[1] x[0]
x[3] x[2] x[1]

)

=

(
x00 x01 x02
x10 x11 x12

)

,

X(2) =

(
x2[2] x[2]x[1] x[2]x[0] x2[1] x[1]x[0] x2[0]
x2[3] x[3]x[2] x[3]x[1] x2[2] x[2]x[1] x2[1]

)

=

(
x00 x01 x02 x03 x04 x05
x10 x11 x12 x13 x14 x15

)

.

Accordingly, the general matrix Х = [Х (1),Х (2)] will look like this: 

Fig. 2. Visualization of dependence T1 : {p∗, q∗, L∗} = f(AS).  

Fig. 3. Visualization of dependence T1 : {α∗, ξ∗, δ} = f(AS).  
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Х =

(
3, 90 1, 90 2, 80 0, 90 1, 60 5, 20 3, 60 1, 90 4, 20
9, 30 3, 90 1, 90 3, 80 8, 50 4, 90 0, 90 1, 60 2, 60

)

.

Let us characterize the interference vectors [0] = ξ0 ∈ [− 3, 00;3,00] ξ[1] = ξ1 ∈ [ − 6,00;6,00]. The measured values of the “output" 
entity are as follows: y[2] = y0 = 18,52; y[3] = y1 = 43,35. 

For the initial values described above, we analytically characterize the estimates of the probability density functions of the model 
parameters in the form of vectors p∗ = {p∗j (αj)}, j = 0,8; q∗ = {q∗

i (ξi)}, i = 0,1, as p∗j (αj) = exp( − 1 − θ(1)j −
∑1

l=0θ(2)l xljαj), q∗
i (ξi) =

exp[ − 1 − θ(3)i − θ(2)i ξi], where the Lagrange multipliers {θ(1)j , θ(2)i , θ(3)l } are determined by the expressions 

Θ(1)
j
(
θ(1), θ(2))=

∫
α+

j

α−
j

exp

(

− 1 − θ(1)
j −

∑1

l=0
θ(2)

l xljαj

)

dαj = 1,

Θ(2)
i
(
θ(3), θ(2))=

∫ξ
+
i

ξ−i

exp
(
− 1 − θ(3)

i − θ(2)
i ξi

)
dξi = 1,

Φi
(
θ(1), θ(2), θ(3))=

∑8

j=0
xij

∫
α+

j

α−
j

exp

(

− 1 − θ(1)
j −

∑1

l=0
θ(2)

l xljαj

)

dαj +

∫ξ
+
i

ξ−i

exp
(
− 1 − θ(3)

i − θ(2)
i ξi

)
dξi = yi.

The Symbolic Math Toolbox of the Matlab software package was used for analytical calculations of the above integrals. The Lev
enberg-Marquardt method from the Matlab software package (https://www.mathworks.com/help/optim/ug/equation-solving- 

Fig. 4. Visualization of dependence T2 : {p∗, q∗, L∗} = f(AS).  

Fig. 5. Visualization of dependence T2 : {α∗, ξ∗, δ} = f(AS).  
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algorithms.html) was used to solve the obtained nonlinear equations. As a result, the following values of the Lagrange multipliers were 
found: 

θ(1) = ( − 10, 048; − 6, 842; − 13, 769; − 1, 545; 11, 275; − 37, 219; − 32, 991; − 15, 080; − 29, 719), θ(2) = (26, .646; 14, 724), θ(3)

= (9, 982; − 2, 792).

Fig. 6 visualized calculated curves p∗
j (α

(1)
j ), j = 0, 2; p∗

j (α
(2)
j ), j = 3,8; q∗

i (ξi), i = 0, 1. 

4. Discussion and future work 

Let’s start the discussion with the analysis of the results visualized in Figs. 2–5. They represent the results of calculating the optimal 
estimates for T1, T2 problems for the common initial data presented at the beginning of Section 3 and the common calculated data 
summarized in Fig. 1. The specificity of the problem T1 was that optimal estimates 〈p∗, q∗〉 for the data presented in Fig. 1 and defined 
combinations of a priori data sets AS were obtained as a result of solving the optimization problem [36] with constraints, including 
oriented to the normalization of probabilities: 

∑m
j=1pj = 1, 

∑n
i=1qi = 1. The specificity of the problem T2 was that the optimal esti

mates 〈p∗, q∗〉 for the data presented in Fig. 1 and the determined combinations of a priori data sets AS were obtained as a result of 
solving the optimization problem (41) with restrictions, including regulating the interval method of determining the corresponding 
probabilities: 0 ≤ pj ≤ 1, j = 1,m; 0 ≤ qi ≤ 1, i = 1, n, (see expression 6.10). Comparative analysis of the presented in Figs. 2, Figs. 4 
and 3, Fig. 5 results allow us to state that the estimates of controlled parameters of the small data model obtained for interval 
probabilities are characterized by a higher value of the conditional entropy maximum than the same type of estimates obtained for 
normalized probabilities. 

We substantiate the empirically discovered fact that under certain conditions estimates [38,39] may differ from estimates (43) and 

Fig. 6. Calculated dependence of p∗j = f(αj), j = 0, 8; q∗
i = f(ξi), i = 0, 1.  
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(44) in the Shannon entropy metric [36]. We define the entropy H(p, q) as H(p,q) = H(z), z = (p,q) ∈ Rm+n
+ , then we denote the optimal 

estimates [38,39] as z∗1, and the optimal estimates (43), (44) as z∗2. We define the global maximum of entropy as ̂z = argmaxH(z) on the 
set 

Ζ={z : 0≤ z≤ 1}⊃Ζ̃ = {z : 〈p, 1〉, (q, 1)}. (46) 

The entropy defined by expression [36] is geometrically characterized as a concave function with a single (respectively, global) 
maximum at the point ̂z. The entropy value at an arbitrary point z depends on the distance to the point ̂z. We define the distance from 
point z∗1 to point ̂z as Δ(z∗1, ẑ), and the distance from point z∗2 to point ̂z as Δ(z∗2, ẑ). Taking into account the fact that the function [36] is 
concave on the set (46), we can write: 

Δ
(
z∗1, ẑ

)
≥ Δ

(
z∗2, ẑ

)
. (47) 

This inequality turns into strict equality only for z∗1 = ẑ. Here is another interpretation of expression (47): for z ∈ (R(m+n)
+ \ Ζ̃) we 

have H(z∗1) ≤ H(z∗2). Deviation of L∗ values from Fig. 2 from symmetrical values from Fig. 4 are fully included in the presented 
theoretical argumentation and not only testify in favour of the adequacy of the mathematical apparatus presented in Section 3, but also 
allow us to predict the promising direction of further research (analytical formalization of the dependence between the normalized or 
interval presentation of probabilities p, q and the variability of L∗ values). However, we can already say that etalon parameters and a 
priori probabilities are interrelated: with a “successful" choice of them (a set AS2 : {p0

2, q0
1} with an uneven distribution of stochastic 

values of the controlled parameters and interference) a “better" approximation to the etalon parameters is obtained by the value of the 
relative squared error ε, than with an unsuccessful selection of the set (for example, when choosing a set AS3 : {p0

3, q0
1} characterized by 

a combined distribution, in which the stochastic values of the controlled parameters are unevenly distributed, and the stochastic 
interference values are uniformly distributed). 

We will conclude the discussion by commenting on the results presented in Fig. 6. The task of restoring the dependence between 
data sets under specific hypotheses regarding data properties is fully characterized by the proposed dynamic small data model [3] 
based on the Volterra polynomial with stochastic weight functions. The evaluation of the probability densities of the weight functions 
of the controlled parameters and interference, represented in Fig. 6., fully confirmed the hypotheses formulated in Section 3 regarding 
the class of these functions and their dynamic properties. The results of the experiment confirmed that for the linear stochastic dynamic 
small data model, the estimation function [30] is always exponential. Empirical data on the entities “input" and “output" affect only the 
form and not the structural properties of the evaluation function [30]. For the nonlinear stochastic small data model, the structural 
properties of the estimation function [30] are more diverse but do not leave the class of nonlinear continuous functions. 

The direction of further research is an analytical formalization of the dependence between the normalized or interval presentation 
of probabilities p, q and the variability of L∗ values. In addition, this article presents a mathematical apparatus for estimating dynamic 
small data, as well as tools for implementing this evaluation. It would be logical to devote one of the following studies to the evaluation 
of real small data using the formulated methods. Our focus is on dynamic data on real physical processes [36–39]. 

5. Conclusions 

Formalization of dependencies between data sets, taking into account specific hypotheses about data properties, is a constantly 
relevant task. Previously, the authors presented the material [33], in which they proposed an interference-resistant concept for solving 
this problem taking into account small data phenomena. As part of this concept, stochastic small data models were investigated, the 
probabilistic characteristics (parameter’s distribution density functions) of which are maximizing the values of the corresponding 
functionals defined in terms of Shannon entropy. Approaches for evaluating the mentioned functions and studying their properties 
were also proposed. This article is devoted to the development of the concept mentioned above. 

The mathematical apparatus presented in the article is based on the principle of maximization of information entropy on sets 
determined as a result of a small number of censored measurements of “input" and “output" entities in the presence of noise. These data 
structures became the basis for the formalization of linear and nonlinear dynamic and static models of small data with stochastic 
parameters, which include both controlled and noise-oriented input and output measurement entities. For all variants of the above- 
mentioned small data models, the tasks of determining the optimal estimates of the probability density functions of the parameters 
(taking into account the variants of both the normalized and the interval representation of the corresponding probabilities) were 
carried out. Formulated optimization problems are reduced to the forms canonical for the stochastic linear programming problem with 
probabilistic constraints. This made it possible to present solutions in an analytical form. We note that the formalization of the 
mentioned optimization problems with an orientation towards maximizing the information entropy guarantees obtaining the best 
solutions in the conditions of the maximum uncertainty of both the stochastic controlled parameters and measurement noises of the 
models created. 

The functionality of the proposed mathematical apparatus is demonstrated in examples of evaluation of probability density 
functions of parameters of linear and nonlinear (power-law) stochastic static and dynamic small data models. The obtained results are 
included in the theoretical basis of the work and testify in favour of its adequacy. 

Funding 

This work was funded by Researchers Supporting Project number (RSP2024R503), King Saud University, Saudi Arabia (funder: Dr. 

V. Kovtun et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e24708

14

TorkiAltameem). 

Data availability statement 

Most data is contained within the article. All the data are available on request due to restrictions, e.g., privacy or ethics. 

CRediT authorship contribution statement 

Kovtun Viacheslav: Writing – review & editing, Writing – original draft, Visualization, Supervision, Software, Project adminis
tration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Torki Altameem: Validation, Re
sources, Data curation. Mohammed Al-Maitah: Validation, Resources, Data curation. Wojciech Kempa: Validation, Resources, Data 
curation. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgements 

The authors are grateful to all colleagues and institutions that contributed to the research and made it possible to publish its results. 

References 
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