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Abstract: Surface electromyography (sEMG)-based gesture recognition systems provide the intuitive
and accurate recognition of various gestures in human-computer interaction. In this study, an
sEMG-based hand posture recognition algorithm was developed, considering three main problems:
electrode shift, feature vectors, and posture groups. The sEMG signal was measured using an
armband sensor with the electrode shift. An artificial neural network classifier was trained using
21 feature vectors for seven different posture groups. The inter-session and inter-feature Pearson
correlation coefficients (PCCs) were calculated. The results indicate that the classification performance
improved with the number of training sessions of the electrode shift. The number of sessions
necessary for efficient training was four, and the feature vectors with a high inter-session PCC
(r > 0.7) exhibited high classification accuracy. Similarities between postures in a posture group
decreased the classification accuracy. Our results indicate that the classification accuracy could be
improved with the addition of more electrode shift training sessions and that the PCC is useful for
selecting the feature vector. Furthermore, hand posture selection was as important as feature vector
selection. These findings will help in optimizing the sEMG-based pattern recognition algorithm more
easily and quickly.

Keywords: surface electromyography; pattern recognition; artificial neural network; electrode shift;
hand posture; feature vector; human-computer interaction; armband sensor

1. Introduction

Gestures, involving the physical movements of the hands, face, or body, is a form
of communication used to convey meaningful information or interact with the environ-
ment [1]. Among the various gestures, those typically applied in machine learning algo-
rithms as the interface of human-computer interaction (HCI) are hand gestures. This is
because they constitute the most natural and efficient movements in daily life [2]. As an
HCI interface, a hand gesture recognition system has three advantages [3]. The first advan-
tage is the ease of hygiene management through a contactless interface. This contactless
interface helps in maintaining hygienic conditions for the user by preventing contami-
nation due to contact. Therefore, hand gesture recognition systems are useful in clinical
applications such as healthcare systems. The second advantage is that a hand gesture
recognition system can be applied as an alternative to overcome physical disabilities. It
is easy to apply this system to an assistive device, such as a home-care system or an IoT
system controller, for the disabled or elderly who have difficulty in moving. Furthermore,
the need for a gesture-based HCI interface is increasing, owing to the increasing number of
people who can only communicate through hand gestures (e.g., sign language for the deaf).
The third advantage is that considerable data and commands can be easily managed by the
intuitive movements.

Studies on hand gesture recognition have predominantly used one of the two following
technologies: computer vision or wearable sensors. Computer vision-based systems
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use one or more cameras to recognize hand gestures. Shin et al. developed a six-hand
gesture recognition system using a low-priced USB color camera and entropy analysis;
they achieved a classification accuracy of 97.2% [4]. Stergiopoulou and Papamarkos were
developed a neural network-based hand gesture recognition system using one camera and
thirty-one classified hand gestures with an accuracy of 90.0% [5]. However, these systems
encountered the problem of environmental factors (e.g., shadow, lighting, background, and
camera position) affecting the classification performance. They exemplify the difficulty
involved in optimizing computer vision-based recognition systems under environmental
factors, varying with respect to time and place. Furthermore, the camera, which has a high
resolution for accurate gesture recognition, is expensive and has low portability, and the
output data file is very large.

Wearable sensor-based systems use non-invasive sensors on the user’s skin. The bio-
signal or the motion of the user is detected and measured by the non-invasive sensors, and
the measured data are used to recognize the gestures. A data glove is predominantly used
in studies on wearable sensor-based hand gesture recognition, and is useful for measuring
the posture and gesture of the hand accurately. Nam et al. classified ten hand gestures
with an accuracy of 80.0% using the VLP data glove and hidden Markov model (HMM) [6].
Additionally, Yin et al. developed a hand gesture recognition system that recognizes
nine hand gestures, with an accuracy of 99.8%, using the data glove and neural network
algorithm [7]. However, it is difficult to use the data glove-based gesture recognition
system in daily life, owing to the high price of the glove and consequent contamination
from sweat and oil after long-term use. Furthermore, the data glove restricts the natural
hand gestures of the user, and the glove design causes discomfort because of repetitive
donning and doffing in daily life.

Recently, several studies have applied sEMG sensors to overcome problems encoun-
tered by hand gesture recognition systems. sEMG is a non-invasive method for measuring
the fine bio-signal of muscle activation, and the sEMG signal contains extensive information
about the activity of neurons from the spinal cord to the muscle fibers. Therefore, sEMG
is widely used in clinic and rehabilitation and bio-signal-based control systems for HCI.
Kim et al. classified four-hand gestures from one sEMG sensor and achieved a classification
accuracy of approximately 94.0% using a combination of the K-nearest neighbor (KNN)
and Bayes classifier [8]. Shi et al. developed a four-hand gesture recognition algorithm and
achieved an accuracy of 94.0% using two sEMG sensors and a KNN classifier [9]. These
previous studies suggested using each muscle belly for the positions of the sEMG sensors,
to avoid crosstalk between sEMG signals; however, this decreases the practicality of using
the gesture recognition system because finding the muscle belly is difficult for non-expert
users in daily life.

A wearable sensor, which has the design of an armband or a wristband, has been
suggested to increase the practicality for non-expert users in daily life. Jiang et al. de-
veloped a wristband-type sEMG sensor that includes four channel sEMG modules and
one inertial measurement unit (IMU). They classified eight hand gestures with an accu-
racy of 92.6% using a linear discriminant analysis classifier [10]. Abreu et al. classified
twenty static hand gestures with an accuracy of 98.6% using a support vector machine
(SVM) classifier and a commercial sensor called the Myo Armband (Thalmic Labs, Kitch-
ener, Canada) [11]. However, the two main problems—electrode shift and feature vector
selection—remain unsolved.

Electrode shift is a common issue that arises during donning and doffing of a sensor in
daily life. Many previous studies fixed the positions of both the sEMG and wearable sensors
to avoid misclassifications that result from electrode shift. Feature vector selection is an
important process in the development of a pattern recognition algorithm [12,13]. Previous
studies analyzed the classification performance of each feature vector and applied the
feature vector that delivered the best performance in the hand gesture recognition algorithm.
However, various factors, such as the sensor performance, limb position, and electrode
shift, easily affect the classification performance of the feature vector. Therefore, feature
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vector selection, based on classification performance, is inefficient in the development of
the pattern recognition algorithm. In previous studies on efficient pattern recognition, a
principal component analysis (PCA) and a genetic algorithm (GA), both of which reduce
the dimension of the feature vector and minimize the data complexity, were suggested
for feature vector selection [14,15]; however, few studies have been conducted on feature
vector selection that consider the electrode shift.

Many previous studies developed hand gesture recognition systems, but the number
of target gestures are limited because of the limitations of the classification performances
of the algorithms and the efficiencies of the systems. Therefore, target gestures were
selected with reference to previous studies. For the HCI interface, Wahid et al. developed
a classification algorithm for the target gestures of a fist, wave in, and wave out [16],
and Zhang et al. developed an algorithm for the target gestures of a double tap, wave
in, wave out, fingers spread, and fist [17]. Castiblanco et al. selected twelve hand wrist
gestures to develop a gesture recognition algorithm for stroke rehabilitation [18]. Kim et al.
selected thirty-eight Korean finger languages in a finger language recognition study [19],
and seven hand gestures were selected in a myoelectric hand prosthesis control study [20].
Andrad et al. developed a hand gesture recognition algorithm for the target gestures of
a cylindrical grasp, tip pinch, and hook (snap, palmar pinch, spherical grasp, and lateral
pinch) [21]; furthermore, they reported that the classification accuracy decreased with
similarity in the same-gesture group (precision grasp: tip, palmar and lateral; power grasp:
cylindrical, hook, and spherical). Therefore, these previous studies were performed to
improve the classification performance with a selected target gesture. However, selected
gestures could be replaced with other gestures which had a similar form or function.
Therefore, the analysis about the gesture selection was important to improve the gesture
recognition algorithm, but few studies have been conducted on classification performance
in accordance with the gesture selection type.

In this study, a hand posture recognition algorithm was developed, taking into con-
sideration the electrode shift, feature vectors, and posture types. A custom armband-type
multi-channel sEMG sensor was used to measure the sEMG signal on the forearm. Experi-
ments were conducted with electrode shifts and the measured sEMG signal was used to
calculate twenty-one feature vectors. Twelve hand postures were selected after a literature
review, and seven posture groups were formed considering the function and muscle activa-
tion of each hand posture. The classification accuracy and inter-session and inter-feature
PCCs were analyzed for the PCC-based feature vector selection.

2. Materials and Methods
2.1. Participants

Ten healthy right-handed adults (7 males, 3 females, 24.1 ± 0.7 years) without neu-
rological disorders were recruited to participate in this study. All participants were fully
informed of any of the risks associated with the experiments, and they gave their written
consent to participate in this study. The experimental procedure was approved by the
Yonsei University Mirae Institutional Review Board (1041849-201704-BM-018-01).

2.2. Equipment

Figure 1 shows the armband-type sEMG sensor and Baseline hand dynamometers
(Fabrication Enterprises, Inc., White Plains, NY, USA) used in this experiment. The custom
armband-type eight-channel sEMG sensor was used to measure the sEMG signal with a
sampling frequency of 500 Hz [19]. Each participant wore the armband sensor on their
right forearm, and the main module of the armband sensor was placed on the belly area of
the anterior part of the forearm during wrist flexion (around the flexor carpi radialis). The
hand dynamometers were used to perform each hand posture with fixed grasp force.
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Figure 2. Twelve hand postures selected for use in this study: (a) rest, (b) spread, (c) scissor-sign, 
(d) finger pointing, (e) V-sign, (f) O.K.-sign, (g) thumb-up (hook), (h) cylindrical grasp, (i) spheri-
cal grasp, (j) lateral pinch, (k) palmar pinch, (l) tip pinch 

In this study, seven hand posture groups were constructed, and the classification 
performances of each posture group were analyzed to find the most efficient hand posture 
group for the development of a hand posture recognition algorithm. The posture groups 
were determined using the function and activated muscles of each hand posture. Group 
1 was composed of the most frequently used and important hand postures identified in 
previous studies. Group 2 and Group 5 consisted of the postures in Group 1 and the fin-
ger-pointing or scissor-sign postures, respectively, which are postures used to point to 
objects. Group 3 and Group 4 consisted of the postures in Group 1 and postures such as a 
tip pinch and spherical grasp, which have the same function as those included in Group 
1. Seven different hand postures were selected to be part of Group 6, considering the over-
lap of the functions and activated muscles on each hand posture. Finally, Group 7 in-
cluded all of the listed hand postures.  

In an sEMG-based gesture recognition algorithm, force and muscle fatigue were 
classed as critical factors to increase the variability of the sEMG signal. Therefore, all hand 
postures were performed with 20% maximum voluntary contraction (MVC) to avoid mus-
cle fatigue and the confounding factor with the grasp force [20,31]. Hydraulic-hand and 
pneumatic-hand dynamometers, and hydraulic pinch gauge (Fabrication Enterprises, Inc., 
White Plains, NY, USA) were used for the grasp and pinch postures, respectively. All par-
ticipants practiced maintaining 20% MVC in all hand postures except the rest posture. 
Postures without the use of the hand dynamometers were performed with the same force 
as displayed in the practice. The participants were seated on chairs and performed each 
hand posture for 5 s in a random order, and the experimental session was repeated 10 

Figure 1. Armband-type multi-channel sEMG sensor (a) and hand dynamometers (b–d).

2.3. Experimental Procedures

Twelve hand postures were selected after a literature review [10,21–30] (Figure 2); the
function of each of these hand postures is presented in Table 1.
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Figure 2. Twelve hand postures selected for use in this study: (a) rest, (b) spread, (c) scissor-sign,
(d) finger pointing, (e) V-sign, (f) O.K.-sign, (g) thumb-up (hook), (h) cylindrical grasp, (i) spherical
grasp, (j) lateral pinch, (k) palmar pinch, (l) tip pinch.

In this study, seven hand posture groups were constructed, and the classification
performances of each posture group were analyzed to find the most efficient hand posture
group for the development of a hand posture recognition algorithm. The posture groups
were determined using the function and activated muscles of each hand posture. Group
1 was composed of the most frequently used and important hand postures identified in
previous studies. Group 2 and Group 5 consisted of the postures in Group 1 and the
finger-pointing or scissor-sign postures, respectively, which are postures used to point to
objects. Group 3 and Group 4 consisted of the postures in Group 1 and postures such as a
tip pinch and spherical grasp, which have the same function as those included in Group 1.
Seven different hand postures were selected to be part of Group 6, considering the overlap
of the functions and activated muscles on each hand posture. Finally, Group 7 included all
of the listed hand postures.
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Table 1. Hand posture functions and groups.

Function Hand Postures Posture Groups

Holding objects Cylindrical grasp [21,27,28] (for
cylindrical objects) Spherical grasp [21,28](for spherical objects) Group 1 Rest, cylindrical grasp, palmar

pinch, hook (thumb-up), lateral
pinch, spread

Palmar pinch [21,28] (using thumb, index,
and middle fingers for palm facing

the objects)
Tip pinch [21,28] (using thumb and index fingers for

palm facing the objects)
Group 2 Group 1 + finger pointing

Group 3 Group 1 + tip pinch

Holding small/thin/
flat objects

Lateral pinch [21,27] (using a thumb pad and
the radial side of the index finger) Group 4 Group 1 + spherical grasp

Releasing objects - Spread [10,24,27,29,30] Group 5 Group 1 + scissor-sign
Supporting loads

Expression of emotion Thumb-up (hook) [10,21,23,28–30] V-sign [10,25,29,30] O.K.-sign [10,22,29,30]
Group 6No activation Rest

Rest, cylindrical grasp, palmar
pinch, V-sign, finger pointing,

thumb-up (hook), lateral pinchFinger pointing [10,23,27] (using index
finger, only)Pointing objects Scissor-sign [23,26] (using thumb and index finger)

Group 7 All hand postures (12)
Hand postures with gray background: the most frequently used and important hand postures in previous studies.
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In an sEMG-based gesture recognition algorithm, force and muscle fatigue were
classed as critical factors to increase the variability of the sEMG signal. Therefore, all
hand postures were performed with 20% maximum voluntary contraction (MVC) to avoid
muscle fatigue and the confounding factor with the grasp force [20,31]. Hydraulic-hand
and pneumatic-hand dynamometers, and hydraulic pinch gauge (Fabrication Enterprises,
Inc., White Plains, NY, USA) were used for the grasp and pinch postures, respectively. All
participants practiced maintaining 20% MVC in all hand postures except the rest posture.
Postures without the use of the hand dynamometers were performed with the same force
as displayed in the practice. The participants were seated on chairs and performed each
hand posture for 5 s in a random order, and the experimental session was repeated 10 times.
All participants took sufficient rests, removing the sensor between experimental sessions,
and the sensor was worn again before the next session.

2.4. Feature Vector Extraction

The sEMG signal was filtered using the fourth bandpass filter with a bandwidth of
15–250 Hz, and the filtered sEMG signal was used to calculate the feature vectors. In
this study, the feature vectors were selected in the time domain corresponding to real-
time application [32]. Twenty-one time-domain feature vectors and their corresponding
formulas are presented in Table 2. The hand posture recognition algorithm was applied to
feature vectors of a single type. The feature vectors were calculated with a window size of
250 ms and a window shift of 10 ms, as recommended in a previous study [33]. The feature
vectors of AR and CC were calculated using various orders of 1 to 10.

Table 2. Time-domain feature vectors.

N: window size, i: data sample, EMGi: sEMG signal, wi: white noise error term; p: function order

RMS =

√
1
N

N
∑

i=1
EMGi

2 WL =
N−1
∑

i=1
|EMGi+1 − EMGi | MAV = 1

N

N
∑

i=1
|EMGi | MAVSLPi = MAVi+1 −MAVi

MAV1 & MAV2 = 1
N

N
∑

i=1
wi |EMGi |

MAV1 : wi =

{
1, i f 0.25N ≤ i ≤ 0.75N
0.5, otherwise

MAV2 : wi =


1, i f 0.25N ≤ i ≤ 0.75N

4i
N , elsei f i < 0.25N

4(i−N)
N , otherwise

ZC =
N−1
∑

i=1
[ f (xi × xi+1) ∩ |xi − xi+1| ≥ threshold]

WAMP =
N−1
∑

i=1
[ f (|xi − xi+1|)] f (x) =

{
1, i f x ≥ threshold
0, otherwise

SSC =
N−1
∑

i=2
[ f [(xi − xi−1)× (xi − xi+1)]]

IEMG =
N
∑

i=1
|EMGi | VAR = 1

N−1

N
∑

i=1
EMGi

2 SSI =
N
∑

i=1
EMGi

2 DASDV =

√
1

N−1

N−1
∑

i=1
(xi+1 − xi)

2

TM3 =

∣∣∣∣ 1
N

N
∑

i=1
EMGi

3
∣∣∣∣

TM4 = 1
N

N
∑

i=1
EMGi

4

TM5 =

∣∣∣∣ 1
N

N
∑

i=1
EMGi

5
∣∣∣∣

LOG = e
1
N ∑N

i=1 log(|EMGi |) MYOP = 1
N

N
∑

i=1
[ f (xi)] AAC = 1

N

N−1
∑

i=1
|xi+1 − xi |

AR = ap; Auto− regressive mode : xi = ∑P
p=1 apxi−p + wi

CC = cp; c1 = −a1; cp = −ap −∑
p−1
l=1

(
1− l

p

)
apcp−l ; 1 ≤ l ≤ p

The threshold-based feature vectors, such as ZC, MYOP, WAMP, and SSC, were calcu-
lated using the predefined threshold values. In previous studies, the threshold value was
selected from 50 µV to 100 mV considering the gain of the sEMG sensor and background
noise. The optimization of the threshold value is crucial because a considerably low thresh-
old value leads to the transmission of unwanted information from the background noise,
and a considerably high threshold value misses important information for pattern recogni-
tion. However, finding the optimized threshold value requires significant amounts of time
and high costs for the gesture recognition system. Therefore, many previous studies used
threshold values from other studies, rather than optimizing the threshold values in their
systems; moreover, few studies have been conducted to find the most suitable threshold
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value for each feature vector. Kamavuako et al. suggested Equation (1) for defining various
threshold values using a factor R and the RMS value from the sEMG signal at rest [34]. The
equation proved useful in reducing the time and cost for the optimization of the threshold
values in the gesture recognition algorithm:

Threshold value = R× RMSsEMGat rest , (1)

Consequently, the equation was used in this study to optimize the threshold value for
each feature vector, and a factor R was applied in increments of 0.5, from 0.0 to 10.0. In
addition, the threshold values used in previous studies [13,20,35–43] were applied in the
hand posture recognition algorithm.

2.5. Classifier

An artificial neural network (ANN) is a machine learning algorithm that was devel-
oped by simulating a biological neural network in the brain of a human or animal. The ANN
was constructed with the input layer, hidden layer, and output layer, using artificial neurons,
known as the node, which then classified the input signals through learning processes such
as the backpropagation algorithm. The joint function between the input/hidden/output
layers was easily estimated, and the classification was performed quickly.

In the input and the output layers, the number of nodes were determined by the
feature vector and the target class. However, the hidden layer was able to change the
number of nodes. The optimization of the hidden layer’s nodes was important because
insufficient nodes caused underfitting, while excessive nodes caused overfitting [44,45].
In this study, 8 nodes in the input layer (1 sEMG feature × 8 channels) and 6–12 nodes in
the output layer (the number of hand posture) were determined in ANN, and there were
17 nodes in the hidden layer according to a previous study [46]. Both the training and
testing of the ANN classifier were performed through 10-fold cross validation using the
MATLAB Deep Learning Toolbox (Mathworks, Inc., Natick, MA, USA).

2.6. Performance Evaluation

In this study, twenty-one time-domain feature vectors and two feature combinations
(Hudgins’ set: MAV, WL, ZC, and SSC [38] and Du’s set: IEMG, VAR, WL, ZC, SSC, and
WAMP [47]) from previous studies were applied to the ANN classifier. The classification
accuracy was analyzed based on the number of training sessions and considering the
electrode shift, and the PCC was calculated to analyze the linear relationship between the
sessions or the feature vectors. Many previous studies suggested various methods to select
the feature vectors for the improvement of the classification performance [10,12,14,15].
Correlation-based feature vector selection was primarily used to evaluate the way each
feature vector is able to distinguish a gesture or verify the similarity of the information of
feature vectors. In this study, the inter-session PCC was used to analyze the correlation
between the sessions with the electrode shift, and the similarity of the feature vectors was
analyzed by inter-feature PCC. A factor r represented the linear relationships as follows:
weak linear relationship: 0 < r ≤ 0.3; moderate linear relationship: 0.3 < r ≤ 0.7; and strong
linear relationship: 0.7 < r ≤ 1.0.

A statistical analysis was performed using IBM SPSS Statistics (IBM, Corp., Armonk,
NY, USA), and the results of the evaluation were determined as nonparametric. The
Kruskal–Wallis H test and pairwise comparison were performed to examine the differences
in classification accuracy in accordance with the threshold values, feature vector orders,
and the number of training sessions. The statistical significance was set at p < 0.05 for
all tests.

3. Results
3.1. Classification Accuracy Based on Threshold Values and Feature Vector Orders

In this study, various threshold values obtained using Equation (1), and from previous
studies, were applied to calculate the threshold-based feature vectors. The RMS value
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of the sEMG signal at rest was 3.3 mV, and the threshold values were defined in the
range of 0.0–33.0 mV following accordance with Equation (1), with a step size of 1.65 mV.
The range of the threshold values from Equation (1) included all threshold values from
previous studies.

Figure 3 shows the classification accuracy and inter-session PCC of Group 1 in
accordance with the threshold values (the results for the other groups are shown in
Figures S1–S6). All threshold-based feature vectors showed improved classification accu-
racies corresponding with an increasing number of training sessions. The classification
accuracy and inter-session PCC were dramatically improved by increasing the threshold
value, and then maintained at the constant level. However, excessive threshold values
were found to cause a degradation of the classification accuracy and inter-session PCC. The
best threshold values depended on the feature vector.[ Page 8 in Manuscript ] 

  
(a) (b) 

  
(c) (d) 

Figure 3. Classification accuracy and inter-session PCC of Group 1 based on threshold values: (a) ZC; 
(b) WAMP; (c) MYOP; (d) SSC; prev: threshold value from the previous study. 
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Figure 3. Classification accuracy and inter-session PCC of Group 1 based on threshold values: (a) ZC; (b) WAMP; (c) MYOP;
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The threshold value of 13.2 mV exhibited the best classification accuracy in ZC with
nine training sessions (Group 1: 94.5 ± 2.1%, Group 2: 91.2 ± 2.3%, Group 3: 85.7 ± 4.3%,
Group 4: 86.6 ± 4.6%, Group 5: 89.4 ± 2.9%, Group 6: 93.1 ± 3.8%, Group 7: 76.7 ± 4.7%).
The best threshold value of WAMP with nine training sessions was 9.9 mV (Group 1:
95.6 ± 1.8%, Group 2: 92.7 ± 1.6%, Group 3: 86.1 ± 4.4%, Group 4: 89.5 ± 3.7%, Group 5:
90.8 ± 3.2%, Group 6: 94.5 ± 3.5%, Group 7: 79.3 ± 4.9%). In MYOP and SSC, with
nine training sessions, the best threshold values were 6.6 mV (Group 1: 95.4 ± 2.2%,
Group 2: 92.5 ± 2.2%, Group 3: 86.7 ± 4.7%, Group 4: 89.8 ± 3.8%, Group 5: 90.7 ± 3.0%,
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Group 6: 94.7 ± 3.1%, Group 7: 79.1 ± 4.7%) and 13.2 mV (Group 1: 93.9 ± 2.8%, Group 2:
91.1 ± 2.4%, Group 3: 84.6 ± 4.6%, Group 4: 86.9 ± 5.0%, Group 5: 88.9 ± 2.4%, Group 6:
92.9 ± 3.7%, Group 7: 76.6 ± 5.1%), respectively. Furthermore, the appropriate ranges of
the threshold values were 8.25–23.1 mV, 6.6–18.15 mV, 3.3–14.85 mV, and 8.25–23.1 mV in
the feature vectors of ZC, WAMP, MYOP, and SSC, respectively. These ranges of threshold
values were similar for the posture group in each feature vector. The classification accuracy
and inter-session PCC were high (r > 0.8) for the feature vectors with appropriate ranges of
threshold values.

The classification accuracy and inter-session PCC of Group 1, for the feature vectors
of AR and CC, are shown in Figure 4 (results of the other groups are presented in Figures
S7–S12). The second order exhibited the best classification accuracies for both AR (Group 1:
53.6 ± 7.2%; Group 2: 49.1 ± 6.0%; Group 3: 47.6 ± 6.6%; Group 4: 49.1 ± 7.0%; Group 5:
48.9 ± 6.2%; Group 6: 52.2 ± 8.2%; Group 7: 35.9 ± 5.8%) and CC (Group 1: 53.7 ± 7.2%;
Group 2: 49.5 ± 6.6%; Group 3: 46.8 ± 6.3%; Group 4: 49.6 ± 6.5%; Group 5: 49.2 ± 6.9%;
Group 6: 52.2 ± 8.6%; Group 7: 36.5 ± 5.9%); however, there was no significant difference
between the orders of AR and CC.
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Figure 3. Classification accuracy and inter-session PCC of Group 1 based on threshold values: (a) ZC; 
(b) WAMP; (c) MYOP; (d) SSC; prev: threshold value from the previous study. 

 

[ Page 9 in Manuscript ] 

  
(a) (b) 

Figure 4. Classification accuracy and inter-session PCC of Group 1 based on the orders: (a) AR; (b) CC. Figure 4. Classification accuracy and inter-session PCC of Group 1 based on the orders: (a) AR; (b) CC.

3.2. Classification Accuracy and Inter-Session PCC

Table 3 present the classification accuracies and inter-session PCCs according to the
number of training sessions and feature vectors in Group 1, respectively (results of the other
groups are presented in Tables S1–S6). The classification accuracy was improved with an
increasing number of training sessions in all feature vectors, and a significant improvement
was observed for four or more training sessions. Although the classification accuracies
for five to nine training sessions (more than four) were higher than those for four training
sessions, no significant difference was found. Across the four training sessions, feature
vectors with high inter-session PCCs (r > 0.7; strong linear relationship) exhibited higher
classification accuracies (Group 1: >90.0%, Group 2: >88.0%, Group 3: >81.0%, Group 4:
>85.0%, Group 5: >86.0%, Group 6: >90.0%, and Group 7: >70.0%) than those of the feature
vectors with low inter-session PCCs (r < 0.7). The feature vectors, which were used in the
feature combination from previous studies, exhibited high inter-session PCCs (r > 0.7).
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Table 3. Classification accuracy and inter-session PCC of the feature vectors in Group 1.

Feature
Vector

Classification Accuracy (%): Mean (Standard Deviation)
PCC (r)

TRN1 TRN2 TRN3 TRN4 TRN5 TRN6 TRN7 TRN8 TRN9

IEMG 84.6 (5.7) 90.1 (3.1) 92.3 (2.2) 93.2 (2.0) 93.8 (1.7) 94.4 (1.6) 94.9 (1.3) 95.4 (1.4) 95.4 (1.2) 0.837

MAV 84.9 (5.8) 90.2 (3.0) 92.5 (1.9) 93.2 (1.8) 93.8 (1.7) 94.3 (1.7) 94.7 (1.5) 95.5 (1.3) 95.4 (1.4) 0.837

MAV1 85.2 (5.5) 90.1 (3.0) 92.2 (2.1) 93.1 (1.8) 93.5 (1.6) 94.3 (1.5) 94.5 (1.3) 94.9 (1.5) 95.4 (1.4) 0.835

MAV2 84.4 (5.3) 89.1 (2.9) 90.4 (2.9) 91.3 (2.6) 91.7 (2.7) 92.2 (2.5) 92.5 (2.5) 93.0 (2.3) 93.2 (2.3) 0.808

SSI 79.6 (6.5) 86.0 (3.8) 89.3 (2.5) 90.5 (1.8) 91.9 (1.3) 93.0 (1.3) 93.3 (1.1) 94.1 (1.3) 94.4 (1.1) 0.735

VAR 79.5 (6.7) 86.0 (3.3) 89.3 (2.1) 90.6 (1.8) 92.2 (1.4) 93.2 (1.3) 93.3 (1.2) 94.0 (1.0) 94.3 (1.2) 0.735

TM3 65.9 (6.1) 73.9 (4.7) 77.7 (4.3) 79.9 (3.6) 81.5 (3.8) 82.4 (3.8) 83.1 (3.7) 83.4 (3.5) 83.6 (4.2) 0.392

TM4 69.6 (7.7) 77.8 (5.5) 82.1 (4.1) 84.1 (3.7) 85.8 (3.5) 86.6 (3.1) 87.6 (3.1) 88.2 (3.4) 88.9 (3.1) 0.428

TM5 61.3 (6.6) 68.7 (5.9) 71.3 (6.2) 71.9 (5.8) 72.4 (6.0) 72.5 (6.3) 72.5 (6.1) 72.1 (6.7) 72.4 (6.9) 0.248

RMS 84.9 (5.9) 90.0 (3.3) 92.4 (2.5) 93.2 (1.8) 93.7 (1.7) 94.3 (1.7) 94.7 (1.4) 95.1 (1.3) 95.5 (1.3) 0.829

LOG 85.8 (5.3) 90.1 (3.1) 92.1 (2.6) 93.0 (2.4) 93.1 (2.4) 93.8 (2.3) 93.8 (2.4) 94.2 (2.3) 94.3 (2.2) 0.859

WL 84.5 (5.9) 90.3 (3.0) 92.4 (2.1) 93.1 (1.9) 93.7 (1.7) 93.9 (1.8) 94.4 (1.6) 94.8 (1.6) 95.0 (2.1) 0.832

AAC 84.6 (5.7) 90.0 (3.3) 92.4 (2.1) 93.2 (1.8) 93.6 (1.9) 94.0 (1.8) 94.5 (1.9) 94.7 (1.8) 95.1 (2.0) 0.832

DASDV 84.5 (5.9) 89.8 (3.7) 92.0 (2.2) 93.2 (1.9) 93.6 (1.9) 94.2 (1.9) 94.3 (1.8) 94.9 (2.1) 95.0 (1.6) 0.824

MAVSLP 39.2 (3.8) 45.5 (4.2) 47.9 (4.3) 49.1 (4.2) 49.8 (4.1) 50.2 (4.2) 50.5 (4.2) 50.9 (4.1) 51.3 (4.0) 0.005

ZC 85.9 (6.7) 90.0 (3.8) 92.0 (3.1) 92.9 (2.6) 93.2 (2.6) 93.6 (2.3) 93.8 (2.3) 94.2 (2.4) 94.5 (2.1) 0.858

WAMP 87.3 (5.8) 91.3 (3.8) 92.9 (2.9) 93.6 (2.4) 94.1 (2.3) 94.3 (2.3) 94.7 (2.0) 94.7 (2.3) 95.6 (1.8) 0.873

MYOP 87.5 (5.0) 91.5 (3.2) 93.1 (2.7) 93.9 (2.4) 94.4 (2.1) 94.5 (2.3) 94.9 (2.4) 95.2 (2.1) 95.4 (2.2) 0.876

SSC 86.0 (6.5) 90.1 (3.9) 91.8 (3.1) 92.4 (2.8) 93.1 (2.6) 93.1 (2.5) 93.6 (2.5) 94.0 (2.6) 93.9 (2.8) 0.862

AR 45.8 (6.6) 48.1 (7.8) 48.3 (8.2) 48.4 (8.0) 49.4 (7.7) 50.6 (7.4) 52.2 (7.3) 53.0 (6.6) 53.6 (7.2) 0.278

CC 45.8 (6.5) 48.2 (7.6) 48.1 (8.2) 48.6 (8.4) 49.7 (7.8) 50.9 (7.7) 52.1 (7.1) 52.5 (7.3) 53.7 (7.2) 0.299

3.3. Classification Accuracy and Inter-Feature PCC

The classification accuracies of all of the feature vectors and their combinations in
Group 1 are presented in Figure 5 (the results for the other groups are presented in
Figures S13–S18). The classification accuracies of all feature vectors, including the combi-
nations of feature vectors, were improved by increasing the number of training sessions.
However, certain feature vectors, such as MAVSLP, AR and CC, demonstrated lower classi-
fication accuracy (51.3%~53.7%) and inter-session PCC (r < 0.3) than other feature vectors,
even though nine training sessions were applied. On the contrary, the feature vectors with
a high inter-session PCC (r > 0.7) showed a classification accuracy of higher than 90.0%,
which was statistically similar with the classification accuracy of the feature vector combi-
nations. Furthermore, Figure 6 and Figures S19–S24 showed that strong linear relationship
in the inter-feature PCC appeared between the feature vectors with a high inter-session
PCC (r > 0.7), while a weak linear relationship in the inter-feature PCC appeared between
the feature vectors with a high inter-session PCC (r > 0.7) and the feature vectors with a
low inter-session PCC (r < 0.3). These results reveal that information was similar between
the feature vectors that had a high inter-session PCC and high classification accuracy.



Sensors 2021, 21, 7681 11 of 19
[ Page 11 in Manuscript ] 

 
Figure 5. Classification accuracies of feature vectors and feature combinations according to training in 

Group 1. 

 

Figure 5. Classification accuracies of feature vectors and feature combinations according to training in Group 1.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 5. Classification accuracies of feature vectors and feature combinations according to training in Group 1. 

 
Figure 6. Confusion matrix of inter-feature PCC in Group 1. 

3.4. Classification Accuracies According to Hand Posture Groups 
Figure 7 shows the confusion matrices of the Group 1 and Group 7 in MAV, which is 

a well-known feature vector (all results are presented in Figures S25–S31). In Group 1, the 
hand gestures of rest and cylindrical grasp showed the high classification accuracy, while 
the worst classification accuracy appeared in palmar pinch. The misclassification between 
palmar pinch and lateral pinch was also minimized from 13.0% to 4.2% by increasing the 
number of training sessions. The change in the misclassification in relation to the number 
of training sessions in Group 2 were from 12.6% to 4.0% and 14.4% to 3.7% for ‘palmar 
pinch vs. lateral pinch’ and ‘finger pointing vs. rest’, respectively (Figure S26). However, 
the misclassifications of ‘palmar pinch vs. tip pinch vs. lateral pinch’, ‘cylindrical grasp 

Figure 6. Confusion matrix of inter-feature PCC in Group 1.

3.4. Classification Accuracies According to Hand Posture Groups

Figure 7 shows the confusion matrices of the Group 1 and Group 7 in MAV, which is a
well-known feature vector (all results are presented in Figures S25–S31). In Group 1, the
hand gestures of rest and cylindrical grasp showed the high classification accuracy, while
the worst classification accuracy appeared in palmar pinch. The misclassification between
palmar pinch and lateral pinch was also minimized from 13.0% to 4.2% by increasing the
number of training sessions. The change in the misclassification in relation to the number
of training sessions in Group 2 were from 12.6% to 4.0% and 14.4% to 3.7% for ‘palmar
pinch vs. lateral pinch’ and ‘finger pointing vs. rest’, respectively (Figure S26). However,
the misclassifications of ‘palmar pinch vs. tip pinch vs. lateral pinch’, ‘cylindrical grasp vs.
spherical grasp’, and ‘scissor sign vs. thumb up (hook)’ were still high despite the increas-
ing number of training sessions in Groups 3–5 (Figures S27–S29). Group 6 (Figure S30)
exhibited a good classification performance independent of the number of training sessions.
Group 7 revealed all types of misclassifications. As shown in the confusion matrices,
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the hand postures of a similar form or function showed more misclassifications, as they
were more difficult to differentiate from one other. However, most misclassifications were
significantly reduced given an increasing number of training sessions. The same results
were obtained in the other feature vectors.
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4. Discussion

This study was conducted to develop an sEMG-based hand posture recognition system
that takes into consideration three problems: electrode shift, feature vector selection, and
hand posture selection. The classification accuracy, which is negatively affected by the
electrode shift and misclassification between similar postures, was improved by increasing
the number of training sessions and selecting hand postures with a consideration of
their functions and the associated activated muscles. Furthermore, an efficient feature
vector optimization method was developed by analyzing the relationship between the
classification and inter-session PCC. These findings provide a method for developing an
sEMG-based hand posture recognition system displaying a high practicality.

Electrode positional changes are common in sEMG-based gesture recognition systems
in daily life; however, many previous studies reported that the positions of the sEMG
sensors were fixed to avoid the occurrence of misclassification resultant of the electrode
shift. Lu et al. used seven sEMG sensors with fixed positions on the muscle belly to
control a robotic hand [48]. The measured sEMG signal was applied to a Gaussian Naive
Bayes classifier and an SVM, and six hand gestures were classified with an accuracy of
84.1%. sEMG-based gesture recognition algorithms with fixed sEMG sensor positions are
appropriate for robotic prosthesis, which uses a socket for preventing the electrode shift;
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however, it is not appropriate in the HCI interface for non-expert users. Phinyomark et al.
emphasized the importance of the solution for the confounding factors, such as the electrode
shift, to improve its re-usability and sustainability for real-world application with long-term
use [49]. These confounding factors were addressed by a big dataset that was measured
over a long-term experiment using the electrode shift.

In this study, an armband sensor was designed to measure the EMG signal pattern,
which is related to the hand gesture of the user, even if the individual sensor is not placed on
the specific muscles. Furthermore, the position of the main module was only suggested for
non-expert users, and the experiment was repeated 10 times with the donning and doffing
of the armband sensor to induce the electrode shift. Relatively low classification accuracies
appeared in all posture groups with one training session (in MAV, Group 1: 84.9 ± 5.8%,
Group 2: 80.9 ± 6.6%, Group 3: 75.5 ± 7.9%, Group 4: 79.2 ± 7.8%, Group 5: 79.5 ± 6.4%
Group 6: 83.6 ± 8.6%, and Group 7: 65.5 ± 10.2%) owing to a lack of training on the
electrode shift. The highest classification accuracies appeared after nine training sessions
(in MAV, Group 1: 95.4 ± 1.4%, Group 2: 93.6 ± 2.2%, Group 3: 87.6 ± 3.6%, Group 4:
91.4 ± 3.6%, Group 5: 91.3 ± 3.7%, Group 6: 95.5 ± 2.0%, and Group 7: 80.9 ± 5.2%,
respectively). Hence, in all feature vectors and posture groups, the classification accuracy
improved with an increasing number of training sessions for the electrode shift, and a
statistically significant improvement was observed when at least three training sessions
were conducted. The classification accuracy improved when more than four training
sessions were conducted, but the difference was not as significant. These results indicate
that the problem of classification accuracy degradation could be resolved by increasing
the number of training sessions on the electrode shift; the number of training sessions for
efficiency was four.

Oskoei et al. reported that feeding a myoelectric signal presented as a time sequence
directly to a classifier is impractical because of the large number of inputs and the random-
ness of the signal [50]. Therefore, many previous studies used feature vectors to compress
the data and to normalize the pattern. Most of the previous studies selected the feature vec-
tors according to the results of the classification performance evaluation [9,51,52]; however,
accuracy-based feature vectors selection requires significant time and high costs because
the pattern recognition algorithms are affected by various confounding factors. Data pro-
cessing techniques, such as PCA and GA, were suggested to improve the classification
performance of the feature vectors. Kakoty et al. reported that the classification accuracy
improved by more than 8.0% through the compressed information from the PCA-based
dimension reduction [12], which was useful for reducing the complexity of data or to
reinforce the important information for pattern recognition, but the process of selecting the
feature vector still remains unsolved. Oskoei et al. proposed a method for selecting feature
vectors using entropy and GA [32,50], and Phinyomark et al. reported an RES-index-based
feature vector selection, based on Euclidean distance and standard deviation [12]. These
methods of selecting feature vectors are efficient because the classification performance of
each feature vector can be evaluated before the development of the classifiers; however,
few studies have been conducted on feature vector selection considering the electrode shift.

Twenty-one feature vectors were selected in the time domain, considering the real-time
application in this study. These feature vectors were applied to the ANN-based classifier
as a single type, and the classification performance of each feature vector was analyzed
with the inter-session and inter-feature PCCs. The results indicate that the feature vectors
with a strong linear relationship in inter-session PCC (r > 0.7) had a higher classification
accuracy than that of the feature vectors with low inter-session PCC (r < 0.7), and these
results were obtained for all training conditions and posture groups. Furthermore, in the
threshold-based feature vectors of ZC, WAMP, MYOP, and SSC, the appropriate ranges
of threshold values were found from the high inter-session PCC (r > 0.8). These results
indicate that the inter-session PCC was well-correlated with the classification accuracy
of each feature vector, and the feature vectors and the threshold values could be selected
easily and efficiently by analyzing the inter-session PCC.
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There were two differences in the feature vectors between this study and previous
studies. The first difference was in the classification accuracies of AR and CC, and the
second was in the effects of the feature combinations. AR and CC, which are calculated by
the auto-regressive model, are well known as feature vectors with excellent classification
performances [53]. However, AR and CC exhibited the lowest classification accuracies
in this study, owing to the lack of data to calculate the feature vectors. In this study, the
amount of data available for calculating the feature vectors was less than for previous
studies because the armband sensor had a sampling rate of 500 Hz, whereas previous
studies used sEMG sensors with a sampling rate of at least 1000 Hz. Phinyomark et al.
evaluated the gesture recognition algorithm using various sEMG datasets and reported that
the classification performances of AR and CC degraded owing to a lack of data points [54].
The problem resulting from the lack of data could be solved by increasing the sampling rate,
but this solution will lead to an increase in the computational load and power consumption
in the HCI interface and wearable device that is used over a long period in daily life.
Increasing the window size used to calculate the feature vectors is another solution for
the lack of data, but this solution is not thought to be appropriate because the increased
window size introduces a delay in the feature vector calculation process. Therefore, AR
and CC are inappropriate in the HCI interface and wearable device, as they set high values
for efficiency and real-time classification.

Feature combinations were applied to improve the classification performance of pat-
tern recognition algorithms in previous studies, with Hudgins’ set [38] and Du’s set [47]
being the main combinations used. Hudgins’ set comprises MAV, WL, ZC, and SSC whereas
Du’s set comprises IEMG, VAR, WL, ZC, SSC, and WAMP. Among the feature vectors
in these combinations, those of ZC, WAMP, and SSC are well known to possess the fre-
quency information, although these are included in the time domain [53] and are useful for
gathering various information in real-time applications. Phinyomark et al. compared the
classification performances of the single feature vectors and feature combinations (Hudgins’
set and Du’s set) and reported that the latter is superior [53]. However, they also reported
that the difference in classification accuracy between individual feature vectors with high
inter-session PCCs (r > 0.7) and the feature combinations is not significant. These results
were obtained using the sampling rate of the sensor and noise from the crosstalk via the
electrode shift. Many previous studies that reported improved classification performances
with feature combinations used sEMG sensors with a high sampling rate (approximately
1000 Hz) and fixed positions on specific muscles. These experimental methods had the
advantages of avoiding noise from crosstalk and gathering enough frequency information
with the calculation of ZC, WAMP, and SSC; however, in this study, the frequency informa-
tion was not sufficient in the ZC, WAMP, and SSC, owing to the low sampling frequency
(500 Hz) and noise from the crosstalk. Furthermore, the inter-feature PCC between feature
vectors with a high inter-session PCC (r > 0.7) was higher than 0.8 (strong linear relation-
ship). These results indicate that these feature vectors (even the ZC, WAMP, and SSC) had
the same information. Therefore, the classification performance of the feature combinations
degraded. These problems, such as the degradation of the classification performance by the
crosstalk, could be solved by fixing the position of the electrode, but finding the position
for each specific muscle is difficult for non-expert users in daily life. Additional sensors,
such as the IMU, will help provide diverse information on the feature combinations to
improve the classification performance.

For the development of a gesture recognition algorithm, many studies have applied
various groups of gestures and postures based on their research aim. However, the classifi-
cation accuracy degraded with similar gestures in a gesture group because the function
alone of each gesture was considered. Andrade et al. selected six gestures—cylindrical
grasp, tip pinch, hook (snap), palmar pinch, spherical grasp, and lateral pinch—to develop
an sEMG-based gesture recognition algorithm [21]. Their results indicated that the misclas-
sification for similar gestures that are activated by the same muscle (precision grasp: tip
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pinch, palmar pinch, and lateral pinch; power group: cylindrical grasp, hook, and spherical
grasp) was high for the gesture recognition algorithm.

In this study, twelve hand postures—which are frequently used and are important
in hand posture recognition algorithms—were selected after a literature review. Seven
different posture groups were formed according to the functions and activated muscles
of hand postures to analyze the effects of similar postures. In Andrade’s study, the rate
of misclassification between similar postures was high, and this misclassification was not
addressed in various feature vectors with an increase in the number of training sessions.
The classification accuracies were in the following order: Group 1 (six hand postures)
> Group 6 (seven hand postures considering the function and the muscle activation) >
Group 2 (Group 1 + finger pointing) > Group 4 (Group 1 + similar posture: spherical grasp)
≥ Group 5 (Group 1 + similar posture: scissor-sign) > Group 3 (Group 1 + similar posture:
tip pinch) > Group 7 (twelve hand postures). For Groups 2 to 6, the number of postures
was 7, but the classification accuracies differed with the addition of postures (similar or
not). More specifically, Group 3 exhibited the lowest classification accuracy because of the
tip pinch posture, which was similar to both the palmar pinch and lateral pinch. Groups 2
and 6 were similar in that the postures were selected with consideration to the activated
muscles. Group 2 had the spread posture and Group 6 had the V-sign posture. Group 6
had a higher classification accuracy than Group 2, but the difference was not significant.
Furthermore, the spread posture, which opens the hand and supports loads, is more useful
than the V-sign posture, which expresses emotions. Hence, Group 2 is more efficient in
the HCI interface. These results indicate that the development of the gesture recognition
algorithm could be made more efficient by the selection of gestures, giving consideration
to both functions and the activated muscles.

This study has three limitations. The first is related to pattern information. All EMG
feature vectors were selected in the time domain considering real-time application. In
addition, because the armband sensor had a lower sampling frequency than that of the
sEMG sensor in the previous study, the feature vectors information had to be similar.
The second limitation is that the hand posture recognition algorithm was optimized for
each subject, but normalization did not occur for optimization in all subjects. The gesture
recognition algorithm without the normalization required more time and a higher cost
because the classifier had to be trained for each user. The last limitation is that the gestures
of this study were static postures only, and dynamic gestures were not considered.

5. Conclusions

This paper presented an sEMG-based hand posture recognition algorithm using an
armband sensor, considering the following three problems: electrode shift, feature vector
selection, and postures selection. This study showed that the electrode shift could degrade
the classification performance of the pattern recognition algorithm, and this problem could
be solved by increasing the number of training sessions on the electrode shift. Additionally,
the inter-session PCC was verified as a means for selecting feature vectors because it exhibits
a strong relationship with feature vectors and threshold values, with a high classification
accuracy. Furthermore, information on each feature vector was compared with the inter-
feature PCC, and the results of this analysis confirm that an additional sensor, such as an
IMU, is required to provide diverse information for improving the hand posture recognition
algorithm. In addition, selecting the target postures with consideration to the functions and
activated muscles was as important as selecting feature vectors with a high classification
accuracy for the development of an efficient posture recognition algorithm. These findings
will be helpful in assisting the development process of sEMG-based gesture recognition
algorithms more efficiently. In future works, the IMU sensor and the normalized algorithm
will be applied in the pattern recognition system to provide diverse information and to
reduce the training time and associated costs. Furthermore, the reaction speed and the
practicality of the pattern recognition algorithm will be improved via the recognition of
dynamic gestures to expand the application range.
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