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Network module (community) structure has been a hot research topic in recent years. Many methods have been proposed for
module detection and identification. Hierarchical structure of modules is shown to exist in many networks such as biological
networks and social networks. Compared to the partitional module identification methods, less research is done on the inference
of hierarchical modular structure. In this paper, we propose a method for constructing the hierarchical modular structure based
on the stochastic block model. Statistical tests are applied to test the hierarchical relations between different modules. We give
both artificial networks and real data examples to illustrate the performance of our approach. Application of the proposed method
to yeast gene coexpression network shows that it does have a hierarchical modular structure with the modules on different levels
corresponding to different gene functions.

1. Introduction

Networks are widely applied to model complex systems,
including biological systems, social organizations, World-
Wide-Webs, and so on. In a network, the nodes (vertices)
represent the members in the system, while the edges repre-
sent the interactions among the members. If two nodes have
interactions in a network, there will be an edge connecting
them. With such a representation, the complex systems can
be analyzed by computational methods.

Module (community) structure is a common property
of many different types of networks. Modules are the dense
subgroups of a network, where the nodes in the same module
are more likely to connect each other than the nodes in other
modules. In general, the members in the same module share
some common properties or play similar roles. For example,
in a gene coexpression network, the genes in the same
module may belong to the same functional category such
as lipid metabolism and acute-phase response [1]. Since the
paper published by [2], module detection and identification
becomes a hot research topic in several different areas such
as computer science, physics, and statistics. A large num-
ber of related works have been published with the physicists
making the most contributions [3–12]. Several recent review

papers provide details and comparisons of the module
identification methods [6, 9, 13]. Reference [13] compares
the performance of several existing methods for both com-
putation time and output. Reference0020[6] is a thorough,
more recent discussion. Reference [9] contrasts different per-
spectives of the methods and sheds light on some important
similarities of several methods. A recent comparison of some
popular methods is shown in [14]. Among the compared
methods, the method by maximizing the average degree
within modules and minimizing the average connections
between different modules outperforms other methods in
identification accuracy. Its computational speed is also
competitive [14]. Besides these computational methods, the-
oretical analysis on module identifications is presented very
recently. Bickel and Chen gave the first statistical analysis on
the properties of modules [15]. There based on the stochastic
block model, they gave the sufficient conditions for a modu-
larity to be a consistent estimator of modules and presented
a new consistent modularity. However, the computation of
maximizing this modularity is very time consuming.

Although so many related works are published, how to
choose an appropriate number of modules keeps being an
open problem. Different methods output different solutions
when they are applied to the same network. In reality, all
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Figure 1: Example of hierarchical modular network structure.

of the different choices may be reasonable because different
choices of this number may correspond to the modules on
different levels. As explained in [16], some modular networks
may have hierarchical structure. For example, in a friendship
network, on the large scale, the modules may correspond
to people from different countries. On the smaller scales,
people in the same module may graduate from the same
university, grow up in the same community, or even be
born in the same family. Such hierarchical modular structure
appears in different kinds of networks. For example, Meunier
and colleagues gave an example on hierarchical modular
structures in human brains [17]. Figure 1 shows an example
of hierarchical modular network. There are two levels of the
modules. We can identify three modules corresponding to
different shapes of nodes on the lowest level or two modules
with nodes represented by cubes and circles being combined
together on the higher level.

Compared to the module identification in a partitional
way (all the modules are on the same level), there are much
fewer works on computational methods for hierarchical
modular structure analysis [18–20]. Although these papers
present some methods to construct the hierarchical modular
structure, they do not give a clear picture on how these
modules are organized and what the relationship among the
modules is. In this paper, we mainly consider the problem
of hierarchical modular structure in unweighted networks.
Based on the module identification method presented in
[14], we give the method on how to construct the hierar-
chical structure from all the possible modules in Section 2.
Numerical experiments for both simulated networks and real
data networks are presented to show the performance of
our proposed method in Section 3. The application of the
proposed method to yeast gene coexpression network shows
that it does have a hierarchical structure, which corresponds
to the different levels of gene functions. Conclusion remarks
are given finally. By constructing the hierarchical structure,
we aim to explore the functions of modules on different
levels and explain why the number of modules may differ for
different identification methods.

2. Methodology

Before going to the details on how to construct the hierar-
chical structure, we give its definition first. We consider a
network G(V ,E) with n nodes, where V denotes the set of

nodes and E denotes the set of edges. The adjacency matrix
is denoted as A with each entry being 0 or 1. The hierarchical
structure of a network is defined based on the stochastic
block model, which is a direct extension of the Erdös-Rényi
random graph model [21]. The network is obtained by
starting with a set of n nodes and adding edges between them
in a probabilistic fashion. The presence of an edge between
any two nodes is a Bernoulli event where the probability may
be vertex-pair dependent. At the beginning, we assume there
are K modules in the network. The network is generated in
two steps. First, any node is assigned to a module Mi with a
probability µi, where µ = (µ1,µ2, . . . ,µK ) satisfies

∑K
i=1 µi =

1. Then any two nodes u, v ∈ V and u ∈Mi, v ∈Mj are con-
nected with probability Pi, j depending on Mi, Mj , and P is
symmetric. If there is the modular structure in the network,
then Pi, j < min{Pi,i,Pj, j}. With this model, the hierarchical
structure of a network can be defined recursively. For any
three modules Mi, Mj , and Mk, if Pi, j > max{Pi,k,Pj,k}, we
say there is hierarchical structure among these three modules
and Mi,Mj can be combined to a new module parallel to Mk.

To construct the hierarchical structure, we use the
bottom-up strategy. We first find all the possible modules
on the lowest level and then build the hierarchical structure.
We use the method presented in [14] to find all the possible
modules. Suppose K is given first. We let Nk denote the
number of nodes in subnetwork Vk, Lkk denote twice the
total number of edges in subnetwork Vk, and Lkl denote the
total number of connections between the subnetworks Vk

and Vl, where k, l = 1, 2, . . . ,K . The module identification
problem is formulated as

max
P

Φ(P) =
K∑

k=1

Lkk
Nk

−
K∑

k=1

∑

l /= k

Lkl
Nk

, (1)

where P is a partition of the network.
In matrix form, if we let

Sik =
{

1, if node i ∈ Vk

0, otherwise
i = 1, 2, . . . ,n, (2)

the problem is formulated as

maxΨ(S) =
K∑

k=1

ST·,kAS·,k
ST·,kS·,k

−
K∑

k=1

∑

l /= k

ST·,kAS·,l
ST·,kS·,k

=
K∑

k=1

ST·,k(2A−D)S·,k
ST·,kS·,k

s.t. Si, j ∈ {0, 1} for i, j = 1, 2, . . . ,K ,

K∑

k=1

S·,k = 1.

(3)

Here 1 is a vector with all elements being 1.
The objective function aims to both maximize the aver-

age degree within each module and minimize the average
connections between different modules. We expect to achieve
a good balance of the module size and make correct inference
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on the modules. The problem (3) is solved with an approxi-
mate method similar to the spectral clustering. We first com-
pute the K eigenvectors of the matrix 2A − D. By clustering
these K eigenvectors as a matrix of n objects with K dimen-
sions, we get the assignment of the n nodes into K modules.

Now, we discuss how to determine the lowest level of all
the possible modules K . For any node i ∈ V , the degree can
be written as

di =
K∑

k=1

di(Vk), (4)

where

di(Vk) =
∑

j∈Vk

Ai j , (5)

which defines the connections that node i has in the sub-
network Vk. To determine the number of possible modules,
we compare the average connectivity within a subnetwork
and the average connectivity between it and any other sub-
network. If the average connectivity within a subnetwork is
greater, we take it as a module, that is,

∑
i∈Vk

di(Vk)

Nk
>

∑
i∈Vk

di(Vl)

Nk
, l /= k. (6)

Alternatively, it can also be written as

Lkk > Lkl, (7)

if we multiply both sides with Nk. This condition is very
weak, thus with it, we hope we find all the modules as on the
lowest level. We do the clustering for K increasing from two
until the condition (6) does not hold and get all the possible
modules. The efficiency of the above algorithm can be seen
in [14].

Based on the above results, we construct the hierarchical
structure in an agglomerative way (bottom-to-up). We
directly use connection probability, which is computed from
the clustering results through maximum likelihood estima-
tion, to measure the distance between different modules.
This connection probability matrix is denoted as P̂0. First the
maximum connection probability between different modules
is found, and we assume it is P̂0

i0, j0 with the corresponding
two modules i0, j0 being recorded. The second largest con-
nection probability for these two modules i0, j0 are also
found, and we assume they are P̂0

i0,k0
and P̂0

j0,l0 with the cor-
responding modules being k0 and l0. To determine whether
there is a hierarchical structure for these modules, we use
Fisher exact test to see whether the connection probabilities
P̂0
i0,k0

and P̂0
j0,l0 are the same as P̂0

i0, j0 . That is, we need to test

P̂0
i0, j0 = P̂0

i0,k0
and P̂0

i0, j0 = P̂0
j0,l0 . Here we take a P value thresh-

old to be 0.05. Three different cases may occur for these two
relations. (1) Both of these two null hypotheses are rejected.
In this case, there is hierarchical structure and the modules
i0, j0 are on the lower level than k0 and l0. We combine the
two modules i0 and j0 and take them as one module. (2)
Only one of P̂0

i0, j0 = P̂0
i0,k0

and P̂0
i0, j0 = P̂0

j0,l0 is accepted. The

corresponding modules having the same connection prob-
ability are combined together. We look for the next largest
connection probability for these three modules and test the
relationship again. If two modules are tested to have the same
connection probability, they are combined into one group,
and the same step is implemented again. (3) Both of these
two null hypotheses are accepted. These modules are taken as
on the same level and combine together. We search the next
largest connection probability to these four modules and do
the statistical test until the hierarchical structure occurs or
all the modules are combined together. After the above steps
are finished, the connection probability between different
modules is recalculated and recorded as P̂1. The above search
and test steps are repeated for P̂1. Such steps are implemented
recursively until all the modules are combined into one big
module/network. For the statistical tests, we can also use t-
test to test the relations between the connection probabilities
if the distribution of the connections between different
modules can be approximated by normal distribution. With
this method, we can efficiently combine the modules with the
same connection probability into the same level.

3. Numerical Experiments

In this section, we evaluate the performance of our proposed
method through its application to several examples. We first
start with two artificial networks having comparatively clear
module structures. We then apply our method to two real
networks to evaluate its performance. The first real network
is the well-known karate club network and the second one is
a yeast gene coexpression network.

3.1. Artificial Networks

3.1.1. A Network Composed of Cliques. We consider a net-
work with 200 nodes, which is composed of 4 cliques. The
sizes of the cliques are 90, 30, 40, and 40. The connections
between different cliques are randomly generated with the
following probability:

P =

⎛

⎜
⎜
⎜
⎝

1.000 0.200 0.002 0.003
0.200 1.000 0.005 0.010
0.002 0.005 1.000 0.030
0.003 0.010 0.030 1.000

⎞

⎟
⎟
⎟
⎠
. (8)

The pattern of the adjacency matrix is shown in
Figure 2(a). From upper-left to lower-right, we denote the
four modules as M1, M2, M3, and M4, which correspond to
the position in the connection probability matrix. We can see
the hierarchical structure of the network from the adjacency
matrix. We apply our proposed method to this network. The
condition (6) is satisfied until K = 4. The estimated con-
nection probability matrix is

P̂ =

⎛

⎜
⎜
⎜
⎝

1.000 0.205 0.003 0.003
0.205 1.000 0.006 0.009
0.003 0.006 1.000 0.029
0.003 0.009 0.029 1.000

⎞

⎟
⎟
⎟
⎠
. (9)

We apply statistical tests to the corresponding modules,
and finally we get the hierarchical structure as shown in
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Figure 2: Example of hierarchical modular network structure. (a) Pattern of the adjacency matrix; (b) the hierarchical structure of the
network.
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Figure 3: Pattern of the adjacency matrix for the randomly gen-
erated network.

Figure 2(b). The values on the hierarchical tree is the esti-
mated connection probability of the corresponding modules.
On the lowest level, there are four modules. If the tree is cut
between 0.205 and 0.029, there are three modules while if
the cutoff is greater than 0.029, there are only two modules.
These results are consistent with the network generation
strategy.

3.1.2. A Randomly Generated Network. In this example, we
also consider a network with 200 nodes and 4 modules.

The size of each module is 10, 45, 45, and 100. We set the
degree of each node within its module to be 6, 15, 15, and
30. Then the connections between different nodes are rand-
omly generated. We keep all the edges generated for each
node. So finally the average degree within each module is
greater than the prespecified number. The connection pro-
bability between different modules is 0.002. The pattern of
the adjacency matrix is shown in Figure 3. From upper-left
to lower-right, the four modules are M1, M2, M3, and M4,
respectively. With our proposed method, the network is part-
itioned into four modules correctly on the lowest level and
the estimated connection probability is

P̂ =

⎛

⎜
⎜
⎜
⎝

0.298 0.002 0.002 0.003
0.002 0.328 0.002 0.004
0.002 0.002 0.321 0.000
0.003 0.004 0.000 0.560

⎞

⎟
⎟
⎟
⎠
. (10)

By using the statistical tests, these four modules are deter-
mined as parallel modules, which is the same as that in our
network generation strategy.

3.2. Karate Club Network. We consider the Zachary’s net-
work of karate club members [22] in this example. There are
34 nodes in this network corresponding to the members in
a karate club. This dataset has been applied as a benchmark
to test many module identification algorithms since the true
modules are known in this network. The people in the club
were observed for a period of three years. The edges represent
connections of the individuals outside the activities of the
club. At some point, the administrator and the instructor of
the club broke up due to a conflict between them. The club
was separated into two groups supporting the administrator
and the instructor. Figure 4 shows the network. Originally,
there are two modules, which have 16 nodes (squares and
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Figure 4: Zachary’s karate club network. Different shapes show the modules. M1: pentagon, M2: square, M3: triangle, M4: circle.

pentagons in the figure) and 18 nodes (circles and triangles
in the figure), respectively.

We apply our proposed method to this network. The
criterion (6) is satisfied until K = 4. The result is shown in
Figure 4, with different shapes of the nodes denoting differ-
ent modules. The estimated connection probability matrix is

P̂ =

⎛

⎜
⎜
⎜
⎝

0.364 0.073 0.056 0.036
0.073 0.480 0.000 0.000
0.056 0.000 0.237 0.108
0.036 0.000 0.108 0.480

⎞

⎟
⎟
⎟
⎠
. (11)

From this matrix, it is easy to see that M3 and M4 are
more likely to connect each other. With statistical tests, we
can get that the connection probability among M3, M4, and
M1 is the same. Although M2 has no connections to M3 and
M4, it has a larger connection probability to M1 than M3,
M4 to M1. Thus these four modules are on the same level.
In [19], the authors considered constructing the hierarchical
modular structure of this network too. At first, they also
found four modules on the lowest level. Then they found
that this network has two modules with some nodes (3, 9, 10,
14, 31) belonging to both of them. We did not consider the
overlapping nodes in this article. However, we can see that
because these overlapping nodes belong to both M1 and M3,
and they connect both parts closely, our method detect M1

and M3, M3 and M4 as having the same connectivity.

3.3. Hierarchical Modular Structure in Yeast Gene Coex-
pression Network. In this section, we apply our proposed
approach to analyze a gene coexpression network of yeast.
The data set we use was generated by Brem and Kruglyak
from a cross between two distinct isogenic strains BY and
RM [23]. As described in [23], a total of 5740 ORFs were
obtained after data preprocessing. In our analysis, we only
use the 1,800 most differentially expressed genes as input
to construct coexpression network and derive modules.
When constructing the adjacency matrix of the network, we
use the hard thresholding, that is: if the absolute value of
Pearson correlation coefficient between two genes is greater
than some given value, we assign an edge between them;
otherwise, there is no edge. We compute the linear regression

coefficient between the frequency of degree d (log 10( f (d)))
and the log 10 transformed degree d (log 10(d)), and choose
the threshold that leads to approximately scale free property
of the network as described in [24]. Finally, the threshold
is set to be 0.705, R̂ is about 0.75. By such a setting, this
gene coexpression network is divided into 690 unconnected
parts with the largest part of size 788. Here, we only analyze
the hierarchical modular structure of the largest connected
network.

Starting from K = 2, we apply the method in [14] to this
network, and the condition (6) holds until K = 10. To make
the solution more accurate, we do a global maximization by
changing the module index of boundary nodes starting from
the approximate solution. Since the approximate solution
is already good, this step is very fast. The structure of the
network is shown in Figure 5(a), with different colors and
shapes denoting different modules as described in Table 1.
Then we construct the hierarchical modular structure as
shown in Figure 5(b). On the lowest level, there are ten mod-
ules, while on the highest level, there are four modules.

Since coexpressed genes tend to be coregulated and pos-
sibly have similar functions, genes in the same module are
expected to be enriched for some function categories. In
order to understand the biological basis of the network mod-
ules, we consider each identified module for enrichment of
annotations from gene ontology (GO) [25]. In our analysis,
the enrichment analysis was performed by GO stats from
Bioconductor. For each module, the statistically most signifi-
cant GO categories are analyzed. Table 1 shows the enrich-
ment results for the ten modules. “M-size” and “G-size”
are the size of both the modules and the GO categories,
respectively. “Overlap” is the overlap size of the module and
the GO category. Table 2 shows the enrichment results for
the modules on different levels. From the tables, it is easy to
see that different gene function categories are enriched most
on different levels. For example, module M2 enriches the
GO category “translation” most significantly, while the com-
bined module M2, M8 enriches “Ribonucleoprotein complex
biogenesis” most significantly, with M2 containing 42 genes
having this function. The combined module M2, M8, M4,
and M1 also enriches this function, while M4 itself enriches
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Table 1: GO enrichment analysis results of the gene modules on the lowest level.

Module Color, shape M-size Enriched GO category P value G-size Overlap

M1 White, square 190 Cellular carbohydrate metabolic process 3.23× 10−9 60 35

M2 White, circle 126 Translation 4.70× 10−59 101 80

M3 Grey, triangle 135 Organic acid biosynthetic process 5.41× 10−35 89 64

M4 Grey, pentagon 62 Cellular respiration 4.13× 10−27 36 28

M5 Black, circle 12 Amino acid catabolic process to alcohol via Ehrlich pathway 1.76× 10−7 5 4

M6 Black, circle 13 Steroid biosynthetic process 2.20× 10−15 13 9

M7 White, pentagon 19 Branched chain family amino acid metabolic process 4.37× 10−8 11 6

M8 Grey, triangle 209 Ribonucleoprotein complex biogenesis 5.94× 10−39 149 106

M9 Grey, square 11 Protein targeting to membrane 8.91× 10−6 4 3

M10 White, square 11 Regulation of translational termination 1.55× 10−4 2 2

(a)

M1M2 M3M4 M5M6M7M8 M9M10

0.057

0.002

0.022

0.129

0.028

(b)

Figure 5: Yeast gene coexpression network. (a) The network structure, (b) the hierarchical structure.

“cellular respiration” significantly. On the uppermost level,
the module composed of M2, M8, M1, M4, M3, and M7

enriches four GO function categories most significantly, and
all the genes are overlapped. Three (“cellular component
biogenesis,” “cellular component biogenesis at cellular level,”
and “ribosome biogenesis”) of them are different from the
most enriched gene functions for each of these six modules.
All these results indicate that hierarchical modular structure
does exist in gene coexpression networks and different gene
functions are enriched most on different levels.

We use the software REViGO to check the hierarchical
structure of the enriched GO categories [26]. We consider the
enriched GO categories in Tables 1 and 2 except the category
“regulation of translational termination” because its G-size
is very small and the P value is comparatively large. Figure 6
shows the tree map of the most enriched GO categories. The
subgraph that we do not mark with the module corresponds
to the combined module M1, M2, M3, M4, M7, M8. Here
the modules M6, M9 and other modules are parallel to each
other, which is consistent with our results. M3 and M7 belong
to a large category, which is “branched chain family amino

acid metabolic process”. This large category is different from
the most enriched category for the combined module M3

and M7. This may come from the fact that since M7 is very
small, it does not cover a large part of its enriched category.
M1 and M4 are parallel to each other which is also consistent
with our analysis. All these results show that our proposed
method can explain some of the hierarchical structure of the
GO categories. Due to the network size, we did not handle
all the genes of yeast. This may be a reason why some of
our computational results are not consistent with the GO
function tree map.

4. Conclusion

Module identification problem has attracted much attention
from different fields and it continues being a hot research
topic. How to determine the number of modules in a
modular network has been an open problem during the
study of module identification methods. This problem may
come from the hierarchical structure of modular networks.
The different numbers correspond to the different levels of
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Table 2: GO enrichment analysis results of gene modules on the upper level.

Module M-size Enriched GO category P value G-size Overlap

M2,M8 335 Ribonucleoprotein complex biogenesis 4.02× 10−66 149 148

M1,M2,M8 525 Ribonucleoprotein complex biogenesis 1.33× 10−29 149 148

M1,M2,M4,M8 587 Ribonucleoprotein complex biogenesis 6.04× 10−23 149 149

M3,M7 154 Organic acid biosynthetic process 9.22× 10−40 89 71

M1,M2,M3,M4 741 Cellular component biogenesis 4.01× 10−6 175 175

M7,M8 Cellular component biogenesis at cellular level 1.84× 10−5 156 156

Ribonucleoprotein complex biogenesis 3.19× 10−5 149 149

Ribosome biogenesis 3.44× 10−5 148 148

M6,M10 24 Steroid biosynthetic process 2.36× 10−19 13 12

Cellular
carbohydrate

metabolic process
Protein targeting

to membraneCellular

respiration

Steroid

biosynthesis
Translation

Branched chain

family amino

acid metabolism

Branched chain

family amino
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M4

M6

M7

M9

Figure 6: Tree map of the enriched GO categories in yeast gene coexpression network.

the hierarchical structure and they may be all reasonable.
In this paper, we proposed a method for constructing the
hierarchical modular structure of networks. With statistical
tests, we can identify both the parallel modules and the
hierarchical structure. According to different cutoffs of the
hierarchical tree, different numbers of modules can be
identified. This may solve the problem of the number of
network modules to some extent. Several examples are given
to demonstrate the efficiency of our method. Application of
this method to gene coexpression networks shows that there
are hierarchical modules in yeast gene coexpression network.
On different levels of such networks, the genes in the module
belong to different gene functions most. Thus studying the
gene function through constructing the hierarchical modular
structure instead of specifying the number of modules
should perform better. Application of such algorithms to
other kinds of networks may also contribute to other research
fields.
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