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Myotonic dystrophy type 1 (DM1) is caused by the expanded CUG repeats and usually
displays defective myogenesis. Although we previously reported that ectopic miR-322/-
503 expression improved myogenesis in DM1 by targeting the toxic RNA, the underlying
pathways regulating myogenesis that were aberrantly altered in DM1 and rescued by miR-
322/-503 were still unknown. Here, we constructed DM1 and miR-322/-503
overexpressing DM1 myoblast models, which were subjected to in vitro myoblast
differentiation along with their corresponding controls. Agreeing with previous findings,
DM1 myoblast showed remarkable myogenesis defects, while miR-322/-503
overexpression successfully rescued the defects. By RNA sequencing, we noticed that
Tumor necrosis factor (TNF) signaling was the only pathway that was significantly and
oppositely altered in these two experimental sets, with it upregulated in DM1 and inhibited
by miR-322/-503 overexpression. Consistently, hyperactivity of TNF signaling was
detected in two DM1 mouse models. Blocking TNF signaling significantly rescued the
myogenesis defects in DM1. On the contrary, TNF-a treatment abolished the rescue effect
of miR-322/-503 on DM1 myogenesis. Taking together, these results implied that TNF
signaling mediated the myogenesis defects in DM1 and might act downstream of miR-
322/-503 in regulating the myogenesis in DM1. Moreover, the inhibition of TNF signaling
benefiting myogenesis in DM1 provided us with a novel therapeutic strategy for DM1.
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INTRODUCTION

Myotonic dystrophy type 1 (DM1) is an autosomal inherited neuromuscular disease caused by
aberrant expanded trinucleotide repeats (CTG) in the 3’ untranslated region (3’UTR) of the DMPK
gene (1, 2). The copy number of CTG repeats was more than 50 in DM1 patients and less than 37 in
healthy individuals (3, 4). The mRNA transcribed from the expanded CTG repeats conjugated
DMPK gene in DM1 is called toxic RNA, which leads to abnormal expression of MBNL1 and
CELF1. As MBNL1 and CELF1 are RNA alternative splicing regulators, DM1 is characterized by
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aberrant alternative splicing events, which directly cause the
pathological phenotypes of DM1, for example, defective
myogenesis. Although many mechanisms and pathways have
been revealed to regulate myogenesis in DM1, there were
still controversies.

Myogenesis is a complicated process that is precisely
controlled by multiple regulatory factors and signaling
pathways (5). Myogenesis from myoblasts is consists of three
steps: cell cycle exit, cell alignment, and cell fusion. Upon
myogenesis initiation, Pax7+ satellite cells are activated and
proliferate to form MyoD+ myoblasts (5). MyoD+ myoblasts
are highly proliferative and their division gives rise to a sufficient
number of myogenic progenitors for subsequent steps (6). Next,
myoblasts exit the cell cycle and start to differentiate into
myocytes. At this stage, MyoG drives myocyte generation, with
the expression of MyoD dropping gradually (7). Following that,
mononuclear myocytes undergo cell alignment and cell fusion to
generate multinucleated myotubes, where Mrf4 and Mef2C
function as key regulators (8, 9). In addition, Myomixer and
Myomaker are essential factors for the cell fusion process (10).
As a result of the whole myogenesis process, Myh3+/Myh7+

myotubes are produced (11).
MicroRNAs are a group of 18~22 nucleotide non-coding

RNAs, which can suppress gene expressions by incorporating
the RNA-induced silencing complex (RISC) to the 3’UTR of
mRNAs. miR-206, miR-148a, miR-322/-503 clusters were
known as important regulators in DM1 and the manipulation of
their expressions could be potential therapeutic approaches for
DM1 defects (12, 13). Specifically, miR-206 andmiR-148a targeted
the non-CUG repeat region of DMPK 3′UTR, while miR-322/-503
directly targeted both Celf1 and the toxic RNA. Moreover, the
ectopic miR-322/-503 expression could significantly improve
myogenesis in DM1, whereas leaving the underlying
mechanisms or pathways that mediated such function unknown.

Tumor necrosis factor (TNF) signaling is a pleiotropic
pathway that regulates both homeostasis and disease
pathogenesis. In the presence of TNF-a, IKK-a/b activates
downstream NF-kB signaling, and the activated NF-kB enters
the nucleus to participate in the transcription of Caspase8, Cxcl5,
Lif, and other genes, ultimately leading to cell apoptosis and
inflammation (14–16). Several miRNAs, such as miR-218, miR-
451, and miR-322, were previously reported as fine-tuning
regulators of the TNF signaling (17–19). Recent studies
suggested that hyperactive TNF signaling led to skeletal muscle
atrophy and impaired myogenesis (20, 21). In addition, with
TNF-a treatments, miR-322 and miR-335 levels were closely
associated with myogenesis extents (22). Nevertheless, in DM1,
the effects of TNF signaling on myogenesis and the function of
miR-322/-503 were uninvestigated to our best knowledge.

Here we discovered that TNF signaling was hyperactive in
both DM1 cell and mice models and miR-322/-503 rescued
myogenesis defects in DM1 at least partially through the TNF
signaling. Meanwhile, the inhibition of TNF signaling using a
chemical inhibitor significantly rescued myogenesis defects
in DM1, which implied a potential therapeutic role of
TNF signaling.
Frontiers in Endocrinology | www.frontiersin.org 2
MATERIALS AND METHODS

Cell Culture
C2C12 cells used in this study were kindly provided by Stem Cell
Bank, Chinese Academy of Sciences. The cells were
authenticated by STR profiling and free of mycoplasma
contamination. C2C12 cells were cultured in the growth
medium (high-glucose Dulbecco’s Modified Eagle Medium
(DMEM, Gibco, Cat# C11965500BT), supplemented with 20%
Fetal Bovine Serum (Clark bioscience, Cat# FB15015), 50 U/mL
penicillin, and 50 mg/mL streptomycin (Biosharp, Cat#
BL505A)). For normal culture, C2C12 cells were seeded onto
6-well plates (8×104/well) and cultured in the growth medium.
C2C12 cells were subcultured when they reached ~70% confluence.

For in vitromyoblast differentiation, C2C12 cells were seeded
onto 6-well plates (8×104/well) and cultured in the growth
medium until 80-90% confluence (~9×105/well). Next, C2C12
cells were switched to culture in the differentiation medium
(DMEM supplemented with 2% Horse Serum (HyClone, Cat#
SH30074.03), 50 U/mL penicillin, 50 mg/mL streptomycin, and 1
mM insulin (Beyotime, Cat# P3376-100IU)). The differentiation
medium was changed daily. The culture in the differentiation
medium lasted for 6 days. If it is necessary, add a TNF signaling
inhibitor, INH14 (100 nM except where otherwise stated, MCE,
Cat# HY-114454) or TNF-a (50 ng/ml, Peprotech, Cat# 315-
01A) to the medium from day 3 to day 6, with DMSO (Diamond,
Cat# A100231-0500) or BSA (Sigma, Cat# V900933) as control,
respectively. in vitroTotal RNA samples were collected on day 0,
day 1, day 2, day 4, and day 6, and cells on culture dishes were
fixed on day 6 for immunofluorescence staining.

Plasmid and Cell Line Construction
pCDNA3-GFP-(CUG)5 and pCDNA3-GFP-(CUG)200 plasmids
were as previously reported (23). In such plasmids, 5 and 200
CTG repeats were placed at the 3’ UTR regions of the GFP gene,
respectively. In this study, the pLL4.0 backbone was generated by
replacing a GFP expressing cassette in the pLL3.7 vector with a
puromycin encoding fragment. miR-322/-503 overexpression
plasmid (pLL4.0-miR-322/-503) was produced by ligating a
miR-322/-503 encoding fragment into the pLL4.0 plasmid at
an EcoRI site.

Plasmid transfections were performed with the PolyJet
transfection reagent (SignaGen, Cat# SL100688) according to
the manufacturer’s suggestion. Cell culture mediums were
changed 24h after transfection. The transfected cells were
subjected to drug selections when stable cell lines were needed.
The drugs used in this study include G418 (1mg/ml, Biofroxx,
Cat# 1150GR001) and puromycin (1mg/ml, Sangon Biotech,
Cat# A610593), which were adopted regarding specific drug
resistances carried in the plasmids. All C2C12 derived cell lines
were selected stable before in vitro myoblast differentiation.

Total RNA Extraction and Real-Time
Quantitative PCR (RT-qPCR)
Total RNA was extracted from the Total RNA Isolation Reagent
(Biosharp, Cat# BS259A). Reverse transcription was performed
April 2022 | Volume 13 | Article 843202
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with FastKing kit cDNA (Tiangen, Cat# KR118-02). Quantitative
PCR was performed with Powerup SYBR Master Mix (Applied
Biosystems, Cat# A2577) using a Roche Light Cycle96 machine.
All these procedures were performed according to the
manufacturer’s protocols. Gapdh was used as a normalized
control. All RT-qPCR primer sequences were provided in the
Table S1.

Immunofluorescence
Cells were briefly washed with PBS and then fixed with 4%
paraformaldehyde (PFA, Sangon Biotech, Cat# A500684) for
10 min at room temperature. Following fixation, the cells were
permeabilized with 0.1% TritonX-100 in PBS for 30 min.
Subsequently, the cells were blocked in the blocking solution
(10% normal goat serum, 0.1% Triton X-100 in PBS) for 1 h, and
incubated with primary antibodies overnight. On the next day,
the cells were incubated with fluorescence conjugated-secondary
antibodies for 90 min at room temperature and then stained with
DAPI for 5 min. Immunostaining images were taken with a Leica
DMI8 fluorescence microscope, and analysis was performed by
ImageJ software (RRID: SCR_003070) (24). In fluorescent
images, the myotube area is the ratio of fluorescence positive
area to the whole area. and fusion index is the ratio of nuclei
number in the cells with at least two nuclei versus total nuclei
number. These antibodies used were as follows: MF20 mAb
(1:10, DSHB, Cat# AB_2147781), Ki67 mAb (1:100, Invitrogen,
Cat# MA5-14520), Goat anti-Rabbit Alex Fluor 488-conjugated
IgG (1:500, Invitrogen, Cat# A11008), Goat anti-Mouse Alex
Fluor 555-conjugated IgG (1:500, Invitrogen, Cat# A32727).

RNA Fluorescence In Situ Hybridization
(RNA FISH)
RNA FISH was performed as reported previously (13). Cells were
fixed with 4% PFA at 4°C for 20 min and then permeabilized
with PBS supplemented with 0.5% Triton X-100 and 2 mM
ribonucleoside vanadyl complex (RVC, Beyotime, Cat# R0107)
for 7 min. Next, the cells were incubated with 30% formamide
(Sangon Biotech, Cat# A600212) and 2× SSC (Sangon Biotech,
Cat# B548110) for 10 min. Hybridization was conducted by
incubating the cells with the hybridization buffer (30%
formamide, 2× SSC, 0.02% bovine serum albumin (Sigma, Cat#
V900933), 66 ug/ml yeast tRNA (Invitrogen, Cat# AM7119),
10% dextran sulfate (Sangon Biotech, Cat# A600160), 2 mM
RVC, and 2 ng/ml (CAG)7 probe) for 24 h. The cells were then
washed with 30% formamide and 2× SSC at 45°C for 30 min and
then 1× SSC at 37°C for 30 min. Finally, the cells were mounted
with Antifade Mounting Medium with DAPI (Beyotime, Cat#
P0131) and observed with a Zeiss ApoTome.2 fluorescence
microscope. The (CAG)7 probe was 5′-CAGCAGCAGCA
GCAGCAGCAG-3′ with 5′-FAM label and 2′-O-methyl
modification at the first two nucleotides.

Apoptosis Assay
Apoptosis assay was performed with the Annexin V Apoptosis
Detection Kit FITC (BBI, Cat# E606336) according to the
manufacturer’s suggestion. Cells were briefly washed with PBS
and re-suspended with 1× binding buffer at a density of ~5×105/
Frontiers in Endocrinology | www.frontiersin.org 3
ml. Subsequently, the cells were incubated with Annexin V-FITC
for 15 min at room temperature. Next, the cells were incubated
with Propidium Iodide (PI) for 5 min. Finally, the cells were
subjected to flow cytometry on a BD FACSCantoII Flow
Cytometer (BD). Annexin V+ cells were apoptotic cells.

RNA Sequencing (RNA-Seq)
RNA samples were sent to the Anhui Microanaly Genetech
Technology Co., LTD for library construction and RNA-seq.
Raw data were first filtered with the Trim-Galore software
(RRID: SCR_011847) and then aligned to the mouse GRCm38
genome by the Hisat2 software (RRID: SCR_015530) (25). Next,
the Stringtie software (RRID: SCR_016323) was used to generate
readcount tables (26). Differentially expressed genes (DEGs)
were determined with the DESeq2 software (RRID:
SCR_015687) (27), of which the cut-off used was | log2Fold
Change | > 1 and adjust p-value< 0.05. Gene ontology (GO) and
Gene Set Enrichment Analysis (GSEA) were performed with the
clusterProfiler software (RRID: SCR_016884) (28). RNA-seq
data generated in this study have been deposited at the Gene
Expression Omnibus (GEO) database under the accession
numbers GSE174119 and GSE189897. The RNA-seq data of
quadricep muscles derived from wild-type and two DM1 mice
models were obtained from Sequence Read Archive (SRA)
database (PRJNA625451).

Statistical Analysis
Bar graphs were drawn with the R, Microsoft Excel, and GraphPad
Prism 9. The quantification of Immunofluorescence staining
images was performed with the ImageJ software. Three
biological replicates and three technical replicates were
performed for all assays except where otherwise stated.
Significance was determined by the student’s t-test and one-way
analysis of variance (ANOVA), and p < 0.05 was considered to be
statistically significant. All data were presented as mean ± SD.
RESULTS

Myogenesis Was Defective in the DM1
Myoblast Model
We constructed normal and DM1 myoblast models by stably
transfecting C2C12 myoblast cells with pCDNA3-GFP-(CUG)5
and pCDNA3-GFP-(CUG)200 plasmids, respectively. To verify the
normal and DM1 myoblast models, we performed RNA FISH with
(CAG)7 probes as reported previously (13). The DM1 myoblasts
showed clear RNA foci, while the normal group did not
(Figure 1A). We examined the proliferation abilities of these two
cell models by immunostaining against Ki67 and found DM1
myoblasts retained a relatively higher proliferation (Figure S1).
By Annexin V/PI apoptosis assay, we found that DM1 and control
myoblasts had similar ratios of apoptotic cells (Figure S2). We next
performed in vitro myoblast differentiation on normal and DM1
myoblasts (Figure 1B). By immunostaining against MF20, we
observed a severely damaged myotube formation in the DM1
group (Figure 1C). Statistical analyses indicated that myotube
area and fusion index were both significantly lowered in DM1
April 2022 | Volume 13 | Article 843202
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(Figure 1D). Similarly, the mean number of nuclei per fiber was
significantly downregulated in DM1 (Figure 1E). By RT-qPCR, we
found that myogenesis-related genes (MyoG, MyoD, Mef2C, and
Mrf4) and myoblast fusion markers (Myomixer and Myomaker)
were all significantly repressed in DM1 (Figure 1F). These results
suggested that our DM1 myoblast model reproduced the defective
myogenesis in DM1 and thus could be applied to further studies on
DM1 regulatory mechanisms.
Frontiers in Endocrinology | www.frontiersin.org 4
Previous reports have documented many regulatory factors
that might contribute to the defective myogenesis in DM1, such
as aberrant alternative splicing and upregulated Celf1, while the
underlying pathways that directly mediated this defect remained
unclear. To address this, we performed RNA-seq on the normal
and DM1 myoblasts that had been subjected to in vitromyoblast
differentiation on day 4. Principal component analysis (PCA) on
this RNA-seq data indicated that the expression patterns of
A B

D E

F

C

FIGURE 1 | Myogenesis was defective in the DM1 myoblast model. (A) Ribonuclear foci were detected in the DM1 myoblast model, but not in the normal group.
RNA FISH with the (CAG)7 probe was performed on the normal and DM1 myoblast models. (B) Schematic diagram of in vitro myoblast differentiation of the normal
and DM1 myoblasts. (C) Myotube formation was significantly repressed in the DM1 group. Immunofluorescence staining against MF20 was performed on
differentiation day 6. (D) The myotube area and fusion index were significantly decreased in the DM1 group. (E) The mean number of nuclei per fiber was significantly
decreased in the DM1 group. (F) The expression of muscle regulatory factors (MyoD, MyoG, Mef2C, and Mrf4) and myoblast fusion genes (Myomixer and
Myomaker) was significantly downregulated in the DM1 group. CUG5, the normal group; CUG200; the DM1 group; n≥3; *p < 0.05.
April 2022 | Volume 13 | Article 843202
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normal and DM1 groups were highly distinct (Figure 2A).
Through classical DEG analysis, we identified 279 upregulated
and 158 downregulated genes using the cut-off of | log2Fold
Change | > 1 and adjusted p-value< 0.05 (Figures 2B, C). Next,
we performed GO analysis on these DEGs and found that muscle
tissue development-related processes were inhibited, while the
processes of cytokine activity, receptor-binding capability, and
extracellular matrix (ECM) related processes were significantly
strengthened in DM1 (Figure 2D). For verification, we
performed RT-qPCR on ECM-related factors (Col1a1, Fmod,
Postn) and cytokine factors (Cxcl5, Ccl2, IL1b) and found these
genes were all significantly upregulated during DM1 myogenesis
(Figure S3). The alterations of ECM-related gene expression and
alternative splicing in DM1 had been studied previously (29),
while the cytokines-related processes and pathways in DM1 were
previously unrecognized.
Frontiers in Endocrinology | www.frontiersin.org 5
MiR-322/-503 Rescued Myoblast
Differentiation Defects
Our previous work demonstrated that miR-322/-503 could
rescue myoblast defects by targeting both the toxic RNA and
Celf1 in DM1 (13). In this study, we constructed miR-322/-503
overexpressing the DM1 myoblast cell line. Through in vitro
myoblast differentiation, we observed a remarkable improvement
of myogenesis in DM1 with miR-322/-503 overexpression as
indicated by the immunostaining against MF20 and the
statistical analyses of myotube area, fusion index, and mean
number of nuclei per fiber (Figures 3A–C). By RT-qPCR, we
found that myogenesis-related genes (MyoG, MyoD, Mef2C,
Mrf4) and myoblast fusion markers (Myomixer, Myomaker)
were all significantly upregulated (Figure 3D). These results
confirmed a rescue function of miR-322/-503 on the DM1
myogenesis defect.
A B

DC

FIGURE 2 | RNA-seq on the differentiating normal and DM1 myoblasts. (A) PCA of the RNA-seq data. There were three replicates for each group. (B) The volcano
plot displayed the distribution of DEGs. Red dots represented the significantly upregulated genes and blue dots represent significantly downregulated genes. |log2
(Fold Change)| > 1 and adjusted P-value < 0.05 were used as the cut-off value. (C) Heatmap showed the relative levels of DEGs between the normal and DM1
groups. (D) The GO analysis of DEGs. CUG5, the normal group; CUG200, the DM1 group; MF, molecular function; CC, cellular component; and BP, biological
process; n=3.
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Similarly, to interpret the downstream pathways that
mediated the rescue function of miR-322/-503 on DM1
myogenesis defects, we performed RNA-seq on the control and
miR-322/-503 overexpressing DM1 myoblasts that had been
differentiated on day 4. PCA showed that these two groups
were well separated along with the principal component 1 (PC1)
division, which accounted for 78% of the variation in gene
expression (Figure 4A). Through DEG analysis, we identified
941 upregulated and 1053 downregulated genes (Figures 4B, C).
GO analysis indicated that muscle development processes were
strengthened with miR-322/-503 overexpression, while the
cytokine receptor activity process was inhibited (Figure 4D).
Combining with the notion that the cytokines and their receptors
related processes were upregulated in DM1, it is rational to ask if
Frontiers in Endocrinology | www.frontiersin.org 6
the cytokines-related processes and pathways mediated both the
defective myogenesis in DM1 and the rescue function of miR-
322/-503.

TNF Signaling Pathway Is Essential for
DM1 Myogenesis
To further explore which cytokine-related signaling pathway is
involved in regulating DM1 myogenesis, we performed GSEA on
the above two RNA-seq datasets. There were 54 significantly
altered signaling pathways when comparing DM1 myoblasts to
normal control, while 21 differential pathways with miR-322/-
503 overexpression treatment on DM1 myoblasts (Figure 5A).
Among these, there were five pathways changed in both datasets,
which were TNF signaling pathway, Olfactory transduction,
A

B

D

C

FIGURE 3 | miR-322/-503 rescued myoblast differentiation defects. (A) Ectopic miR-322/-503 expression improved myotube formation in DM1 myoblasts.
Immunofluorescence staining against MF20 was performed on differentiation day 6. (B) The myotube area and fusion index were significantly increased with miR-
322/-503 overexpression. (C) The mean number of nuclei per fiber was significantly increased with miR-322/-503 overexpression. (D) The expression of muscle
regulatory factors (MyoD, MyoG, Mef2C, and Mrf4) and myoblast fusion genes (Myomixer and Myomaker) was significantly upregulated with miR-322/-503
overexpression. Control, control empty vector stably transfected DM1 myoblasts; miR-322/-503, miR-322/-503 overexpressing DM1 myoblasts; n≥3; *, p < 0.05.
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Steroid hormone biosynthesis, Linoleic acid metabolism, and
Endocrine resistance. Considering that myogenesis was
conversely regulated, it is logical to locate oppositely changed
pathways as potential underlying mechanisms between these two
experiment sets. Surprisingly, only TNF signaling pathway is
hyperactivated in the DM1 model and inhibited by miR-322/-
503 (Figure 5B). GSEA plots showed a clear upregulation of the
TNF signaling pathway in the DM1 compared to the normal
control, while a remarkable suppression with the miR-322/-503
treatment (Figures 5C, D). Furthermore, we analyzed the
relative levels of TNF signaling-related genes in the
differentiating normal myoblasts, DM1 myoblasts, miR-322/-
503 overexpressing DM1 myoblasts, and its corresponding
control myoblasts. These TNF signaling-related genes, such as
Cxcl5, Fas, and Junb, were synchronously upregulated in the
DM1 versus the normal group. With miR-322/-503
overexpression, however, these genes in DM1 myoblasts were
Frontiers in Endocrinology | www.frontiersin.org 7
significantly reduced back to normal levels (Figure 5E). To
further verify these findings, we analyzed the expressions of
TNF signaling-related genes in the RNA-seq data of quadricep
muscles from the normal and DM1 (including MBNL1 knockout
and HSALRmice) mouse models. As expected, both DM1mouse
models displayed upregulations of most TNF signaling-related
genes (Figure 5F). These results encouraged us to investigate
the potential function of the TNF signaling pathway
in DM1 myogenesis.

TNF Signaling Is Closely Associated With
the Myogenesis Defects in DM1
As TNF signaling is hyperactivated in DM1 myogenesis, we
asked if inhibiting TNF signaling could rescue the DM1
myogenesis defects. We performed in vitro myoblast
differentiation on DM1 myoblasts and inhibited TNF signaling
pathway using 100 nM INH14 from differentiation day 3 to day 6
A B

DC

FIGURE 4 | RNA-seq on the differentiating control and miR-322/-503 overexpressing DM1 myoblasts. (A) PCA of the RNA-seq data. There were three replicates for
each group. (B) The volcano plot displayed the distribution of DEGs. Red dots represented the significantly upregulated genes and blue dots represent significantly
downregulated genes. |log2(Fold Change)| > 1 and adjusted P-value < 0.05 were used as the cut-off value. (C) Heatmap showed the relative levels of DEGs between
the two groups. (D) The GO analysis of DEGs. Control, control empty vector stably transfected DM1 myoblasts; miR-322/-503, miR-322/-503 overexpressing DM1
myoblasts; MF, molecular function; CC, cellular component; and BP, biological process; n=3.
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(Figure 6A). By immunostaining against MF20, we found that
the INH14 group had more myotube formation (Figure 6B). The
myotube area, fusion index, and mean number of nuclei per fiber
in the INH14 group were all significantly upregulated
Frontiers in Endocrinology | www.frontiersin.org 8
(Figures 6C, D). By RT-qPCR, we found that myogenesis-
related genes (MyoG, MyoD, Mef2C, Mrf4) and myoblast
fusion markers (Myomixer, Myomaker) were all significantly
upregulated (Figure 6E). We also investigated the effect of a
A B

D

E

F

C

FIGURE 5 | The TNF signal was tightly associated with DM1 myogenesis. GSEA was performed on the RNA-seq datasets of DM1 versus normal myoblasts and
miR-322/-503 overexpression versus control DM1 myoblasts to find their significantly altered pathways, respectively. (A) Venn diagram of the pathways significantly
altered in the two RNA-seq sets. (B) A heatmap showing the significance and change trends of the five signaling pathways shared by the two RNA-seq sets. (C, D).
The GSEA curves of the TNF signaling pathway in the two RNA-seq sets. (E) A heatmap showing the relative levels of TNF signaling-related genes in the two RNA-
seq sets. (F) The relative levels of TNF signaling-related genes in the quadriceps muscles of wild-type, MBNL1 knockout, and HSALR mice. DM1 vs normal, the
RNA-seq dataset of DM1 versus normal myoblasts; miR-322/-503 vs control, the RNA-seq dataset of miR-322/-503 overexpression versus control DM1 myoblasts;
CUG5, the normal group; CUG200, the DM1 group; Control, control empty vector stably transfected DM1 myoblasts; miR-322/-503, miR-322/-503 overexpressing
DM1 myoblasts; n≥3; *, p < 0.05.
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higher INH14 concentration (15 mM) on DM1 myogenesis and
found the myotube area, fusion index, and mean number of
nuclei per fiber were all significantly upregulated in the INH14
group, either (Figures S4A–C). These results suggested that
inhibiting TNF signaling pathway could improve myogenesis
in DM1.

As shown above, that TNF signaling was suppressed by miR-
322/-503 in DM1 myoblasts, we asked if miR-322/-503 rescued
Frontiers in Endocrinology | www.frontiersin.org 9
DM1myogenesis through inhibiting TNF signaling pathway. We
boosted the TNF pathway by treating differentiating miR-322/-
503 overexpressing DM1 myoblasts with TNF-a from
differentiation day 3 to day 6 (Figure 7A). By immunostaining
against MF20, we noticed a remarkable decrease of myotube
formation and reduced myotube area, fusion index, and mean
number of nuclei per fiber (Figures 7B–D). By RT-qPCR, we
found that myogenesis-related genes (MyoG, MyoD, Mef2C,
A

B

D

E

C

FIGURE 6 | TNF inhibition rescued the DM1 myogenesis defects. (A) 100 nM INH14 (a TNF signaling inhibitor) was added to the DM1 myoblast differentiation to
inhibit the TNF signaling from differentiation day 3 to day 6. DMSO was used as a control. (B) The INH14 treatment improved myotube formation in DM1 myoblasts.
Immunofluorescence staining against MF20 was performed on differentiation day 6. (C) The myotube area and fusion index were significantly increased with the
INH14 treatment. (D) The mean number of nuclei per fiber was significantly increased with the INH14 treatment. (E) The expression of muscle regulatory factors
(MyoD, MyoG, Mef2C, and Mrf4) and myoblast fusion genes (Myomixer and Myomaker) was significantly upregulated with the INH14 treatment. DMSO, DMSO
treatment control; INH14, INH14 treatment; n≥3; *, p < 0.05.
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Mrf4) and myoblast fusion markers (Myomixer, Myomaker)
were also significantly downregulated (Figure 7E). These
results indicated that miR-322/-503 rescued DM1 myogenesis
at least partially through inhibiting the TNF signaling pathway.
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DISCUSSION

DM1 is an autosomal dominant inherited neuromuscular disease
that is usually accompanied by defective myogenesis (30, 31).
A

B

D

E

C

FIGURE 7 | TNF-a treatment repressed the rescue function of miR-322/-503 on DM1 myogenesis. (A) 50 ng/ml TNF-a was added to the miR-322/-503
overexpressing DM1 myoblast differentiation from differentiation day 3 to day 6. 0.1% BSA was used as a control. (B) The TNF-a treatment impaired myotube
formation in miR-322/-503 overexpressing DM1 myoblasts. Immunofluorescence staining against MF20 was performed on differentiation day 6. (C) The myotube
area and fusion index were significantly decreased with the TNF-a treatment. (D) The mean number of nuclei per fiber was significantly decreased with the TNF-a
treatment. (E) The expression of muscle regulatory factors (MyoD, MyoG, Mef2C, and Mrf4) and myoblast fusion genes (Myomixer and Myomaker) was significantly
downregulated with the TNF-a treatment. BSA, BSA treatment control; TNF-a, TNF-a treatment; n≥3; *, p < 0.05.
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Our previous for the first time revealed the rescue function of
miR-322/-503 on DM1 myoblast defects, including the defective
myogenesis (13). However, the direct downstream pathway that
mediates the rescue function of miR-322/-503 on DM1
myogenesis was still unclear. In this study, we found that the
TNF signaling pathway, hyperactivated in DM1 myoblasts, was
inhibited by miR-322/-503 and at least partially accounted for
the rescue function of miR-322/-503 on DM1 myogenesis.
Moreover, direct inhibiting the TNF pathway using chemical
inhibitors also significantly improved DM1 myogenesis, which
implied the TNF pathway as a druggable therapeutic target.

Based on the pathogenesis of DM1, most DM1 cell and
animal models were produced by knockout MBNL1 or
introducing ectopic expanded CTG repeats expression (32, 33).
In this study, 200 CTG repeats were transfected into C2C12 cells
to simulate DM1 defects, with 5 CTG repeats as control. As
expected, compared with the control group, the expression of
myogenic factors was significantly decreased in the DM1 group,
with MyoD representing early-stage and MyoG and Mef2C
representing middle and late stage (34, 35). Meanwhile, RNA-
seq also found a significant decrease in muscle development-
related processes in the DM1 group compared to the normal
group. These results suggested that our DM1 myoblast model
could reproduce the myogenesis defect. Our previous work
revealed that miR-322/-503 can directly target CUG repeats to
rescue myoblast defects (13). We first validated the function of
miR-322/-503 on DM1 myogenesis through in vitro myoblast
differentiation. Subsequently, by RNA-seq, we confirmed that
miR-322/-503 could rescue muscle development in DM1.

Next, we investigated the underlying mechanisms that
mediated both the defective myogenesis in DM1 and the
rescue function of miR-322/-503. By analyzing RNA-seq data,
we found five pathways that were both aberrantly altered in the
DM1 group compared with the control group and significantly
changed with miR-322/-503 treatment, which were TNF
signaling pathway, Olfactory transduction, Steroid hormone
biosynthesis, Linoleic acid metabolism, and Endocrine
resistance. Among these, Endocrine resistance was the only
signal inhibited in DM1. A previous study reported that
endocrine resistance was significantly repressed with mTOR
inhibitor treatment in breast cancer (36). As mTOR signaling
was repressed in DM1 (37), it is logical to think that the
inhibition of endocrine resistance might be caused by the
change of mTOR signaling. In addition, the decreased
endocrine resistance might imply a therapeutic role of insulin
in DM1, since insulin is a classical mTOR signaling activator
(38). The enhancement of olfactory transduction might affect
autophagy. Studies have found that olfactory receptor 544
promoted the expression of LC3 in skeletal muscles (39),
which was consistent with the enhancement of autophagy in
DM1 (40). As a steroid hormone, vitamin D played a direct
regulatory role in skeletal muscle development, participating in
myogenesis, cell proliferation, and differentiation (41). Previous
reports have revealed that an active form of Vitamin D3
inhibited the myoblast differentiation of C2C12 by activating
the Erk1/2 signaling (42). The up-regulation of linoleic acid
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metabolism was correlated with the TNF signaling. As previously
reported, conjugated linoleic acid reduced the cell death of
C2C12 cells under TNF-a treatment (43), indicating that DM1
produced self-rescue signals in response to the inflammatory
environment. Apart from these, the TNF signaling was the only
pathway significantly hyperactivated in the DM1 myoblast and
inhibited by miR-322/-503. The hyperactivation of TNF
signaling in DM1 was validated in the DM1 mice model as well.

Previous studies on TNF signaling mainly focused on
inflammatory responses (44), suggesting an association
between inflammatory activation and DM1 disease. Although
Inflammatory activation has been reported to activate myogenic
cell proliferation and differentiation during the initial phase of
muscle repair (45), inhibition of inflammatory CCR2 signaling
significantly promoted muscle regeneration during a post-injury
repair (46). Similarly, we here found that inhibition of the
inflammatory cytokine TNF signaling rescued the DM1
myogenesis defect. In addition, TNF-a has been reported to
induce apoptosis and autophagy of C2C12 cells by activating NF-
kB signaling (20, 47), while knockdown TNF reduces insulin
resistance in C2C12 cells (48). Consistently, in this study, TNF-a
treatment significantly impaired myoblast differentiation in the
miR-322/-503 rescue model. This may suggest that inflammatory
response might be responsible for DM1 myoblast differentiation
defects, and that inhibition of its activity could rescue
muscle development.

Myogenesis from myoblasts includes three sequential stages:
cell cycle exit, cell alignment, and fusion. Cell cycle exit is the
prerequisite that ensures the production of myocytes from
myoblasts. Through Ki67 immunostaining, we found that
DM1 myoblasts had a higher proliferation rate than the
normal control. This agreed with a previous report that
overexpressing Celf1, which is aberrantly upregulated in DM1,
promoted myoblast proliferation (49). Moreover, we revealed
that DM1myoblasts retained a hyperactive TNF signaling, which
might be at least partially responsible for the defective
myogenesis of DM1. A previous study showed that activating
TNF signaling using TNF-a could increase NF-kB activation and
promote the proliferation of primary mouse muscle precursor
cells and C2C12 cells (50). These results together might imply
that DM1 myoblasts had an impaired cell cycle exit ability that
might be at least partially caused by the hyperactive TNF
signaling. On the contrary, miR-322/-503 might promote the
cell cycle exit stage of the myogenesis process by inhibiting the
TNF signaling. This was in line with a report that miR-322/424
and miR-503 initiate normal muscle differentiation by
promoting cell cycle quiescence (51). To sum up, miR-322/-
503 inhibiting the TNF signaling promoted the cell cycle exit of
DM1 myoblasts, which favored the myogenesis in DM1.

Our study demonstrated that the TNF signaling might be
responsible for the defective myogenesis in DM1 and at least
partially mediate the rescue function of miR-322/-503 on
DM1 myogenesis. Blocking TNF signaling using chemical
inhibitors significantly improved the myogenesis in DM1,
implying a potential therapeutic approach against DM1
muscle wasting.
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Supplementary Figure 2 | Annexin V/PI apoptosis assays on the normal and
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Supplementary Figure 3 | The levels of ECM related and cytokine factors along
the differentiation of the normal and DM1 myoblasts. RT-qPCR was performed on
ECM-related factors (Col1a1, Fmod, Postn) and cytokine factors (Cxcl5, Ccl2, IL1b).
These genes were all significantly upregulated during DM1 myogenesis. CUG5, the
normal group; CUG200, the DM1 group; n≥3; *, p < 0.05.

Supplementary Figure 4 | 15 mM INH14 treatment also rescued the DM1
myogenesis defects. (A) 15 mM INH14 treatment improved myotube formation in
DM1 myoblasts. Immunofluorescence staining against MF20 was performed on
differentiation day 6. (B) The myotube area and fusion index were significantly
increased with 15 mM INH14 treatment. (C) The mean number of nuclei per fiber
was significantly increased with 15 mM INH14 treatment. DMSO, DMSO treatment
control; 15 mM INH14, 15 mM INH14 treatment; n≥3; *, p < 0.05.
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