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Original Article

Objectives: Many governments have imposed—and are still imposing—mobility restrictions to contain the coronavirus disease 2019 

(COVID-19) pandemic. However, there is no consensus on whether policy-induced reductions of human mobility effectively reduce the 

effective reproduction number (Rt) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies based on coun-

try-restricted data reported conflicting trends in the change of the SARS-CoV-2 Rt following mobility restrictions. The objective of this 

study was to examine, at the global scale, the existence of regional specificities in the correlations between Rt and human mobility.

Methods: We computed the Rt of SARS-CoV-2 using data on worldwide infection cases reported by the Johns Hopkins University, and 

analyzed the correlation between Rt and mobility indicators from the Google COVID-19 Community Mobility Reports in 125 countries, 

as well as states/regions within the United States, using the Pearson correlation test, linear modeling, and quadratic modeling.

Results: The correlation analysis identified countries where Rt negatively correlated with residential mobility, as expected by policy-

makers, but also countries where Rt positively correlated with residential mobility and countries with more complex correlation pat-

terns. The correlations between Rt and residential mobility were non-linear in many countries, indicating an optimal level above 

which increasing residential mobility is counterproductive.

Conclusions: Our results indicate that, in order to effectively reduce viral circulation, mobility restriction measures must be tailored by 

region, considering local cultural determinants and social behaviors. We believe that our results have the potential to guide differen-

tial refinement of mobility restriction policies at a country/regional resolution.
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INTRODUCTION

By November 20, 2021, over 250 million people had contract-
ed coronavirus disease 2019 (COVID-19) with the death toll ex-
ceeding 5 million [1]. While vaccination is being rolled out en 
masse, lengthy mobility restrictions are still imposed as a mea-
sure to limit the spread of the virus. How efficient are mobility 
restrictions at limiting the disease spread? There might be mul-
tiple answers to this seemingly simple question. 

To assess the impact of government mobility restriction pol-
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icies on the spread of severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), the causative virus of COVID-19, re-
searchers have compared changes in aggregated mobility data, 
such as the Google COVID-19 Community Mobility Reports [2], 
against changes in the effective reproduction number (Rt) of 
SARS-CoV-2 [3]. Rt captures dynamic changes in person-to-
person viral transmission and is therefore regarded as a better 
measure of the speed of disease spread, both retrospectively 
and in real time [4], compared to cumulative or new case num-
bers [5]. Unlike the latter, Rt is insensitive to individual differ-
ences in time from infection to test and robust to temporal in-
accuracies due to day-to-day variation in case reporting prac-
tices. This is particularly true when estimating the Rt retrospec-
tively [6].

Multiple studies have found that policy-induced reductions 
of human mobility significantly decreased the Rt of SARS-
CoV-2 [7-10]. Noland [8] noted that, in the United States, stay-
ing at home (referred to as residential mobility hereafter) was 
particularly effective at reducing Rt, and suggested that a 
stronger impact on Rt would require a larger increase in resi-
dential mobility. A similar linear negative relationship between 
residential mobility and Rt was found in a study from Turkey 
[7]. A time lag between changes of mobility and the corre-
sponding changes of Rt was also noted [11], with marked vari-
ability between countries [12]. 

However, in an analysis of correlations between new cases 
and human mobility in 34 Organization of Economic Coopera-
tion and Development (OECD) countries, Oh et al. [13] found 
that strong mobility decreases did not perform better than 
mild mobility decreases in terms of reducing the new case 
count. Furthermore, Wang et al. [11] suggested that the corre-
spondence between mobility changes and Rt was rather irreg-
ular across regions and pandemic periods in Australia, relating 
it to the complexity of the contagion dynamics and the un-
measured confounding. Therefore, increased residential mo-
bility might not always correlate with decreased Rt in all coun-
tries and regions or in all epidemic phases. The purpose of this 
work was to systematically characterize the relationships be-
tween the Rt of SARS-CoV-2 and mobility indicators in 125 
countries and 52 states/regions (the United States+Puerto 
Rico). We hope that this research will clarify the conflicting re-
ports on the relationship between mobility changes and Rt 
and inform decision-makers on the effectiveness of move-
ment restriction policies at mitigating COVID-19 spread in 
specific countries/regions.

METHODS

Data Source and Pre-processing
Country/region-specific mobility indicators were obtained 

from Google COVID-19 Community Mobility Reports [2]. Google 
reports anonymized position data from users who have Loca-
tion History activated on their mobile phones [14]. Positions 
are classified as: retail stores, restaurants, and recreation places 
in general (referred to as “retail” below); grocery stores and 
pharmacies (grocery); transit stations (transit); residential plac-
es (residential); parks and natural spaces (parks); and work-
places (work). These positions are referred to as “mobility indi-
cators” throughout the article. For each country/region, the 
dataset consists of daily percentages of changes in each mo-
bility indicator, from the median value of the same weekday 
during the 5-week baseline period (January 3 to February 6, 
2020). For days with missing mobility data, linear interpolation 
between the previous and next days with available data was 
used. Incidence data of SARS-CoV-2 infections (reported as dai-
ly new cases) was obtained from the GitHub COVID-19 reposi-
tory of Johns Hopkins University (github.com/CSSEGISandDa-
ta/COVID-19) [1]. We focused on the pre-vaccination and pre-
variants-of-concern phase of the pandemic (from February 15 
to December 31, 2020), using days as the time unit. For each 
country, pre-pandemic days (those in which the number of 
cumulated cases was <2) were excluded from the analysis. 
Likewise, countries that reported fewer than 60 days of new 
cases and mobility data were excluded, leaving a final dataset 
of 125 countries and 52 United States states/regions.

The Rt was computed for each country and each day retro-
spectively from the case incidence data over the entire period 
using the R package EpiEstim [15]. In our computations of Rt, 
we used the serial interval derived from a meta-analysis of  
64 studies (mean, 5.15 days; 95% confidence interval [CI], 4.73 
to 5.57) [16]. The time-series for Rt, new cases, cumulative cas-
es, and mobility indicators are provided as Supplemental Ma-
terial 1.

Statistical Analysis
For each country/region and mobility indicator, the data 

pre-processing described above yielded 60-316 Rt/indicator 
pairs, 1 per day of observation (with a median of 299 days of 
observation across countries/regions). Supplemental Material 
2 presents the corresponding data as scatter plots with mobil-
ity indicators and Rt shown on the x and y axes, respectively. 
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For each country, Rt/mobility indicator correlations were de-
fined as the R coefficient of the Pearson test for linear correla-
tions, yielding 1 number (the Rt/mobility indicator covariance) 
per country per Rt/mobility indicator pair:

where M is a mobility indicator, D is the number of data days (d ) 
with Rt/mobility scored for this country, and  and  are, re-
spectively, the Rt and M averages over the observation period 
(D days). This coefficient characterizes the linear correlations 
between mobility indicators and the Rt coefficient computed 
for the same day (+1: perfect correlation; -1: perfect anti-cor-
relation). However, it is theoretically possible that the Rt deter-
mination could yield time-lagged estimates of the reproduc-
tion number. To mitigate the effects of time lags in Rt determi-
nation, we also computed correlations between mobility indi-
cators and time-lagged Rt coefficients, with a time lag from  
1 day to 30 days: 

where =1…30 is the time lag (in days) between the mobili-
ty indicator M and Rt in the covariance estimation [4,17]. This 
analysis yielded, for each country and mobility indicator, a 
curve  showing the R coefficient of the linear Pearson 
test as a function of the time lag. 

In several countries, the Rt versus mobility scatter plots (ei-
ther same day or time-lagged) showed non-monotonic distri-
butions of the daily Rt/mobility values, translating into poor 
fits of the data with the Pearson correlation coefficient and the 
linear relationships between Rt and mobility variables (i.e., data 
fitted to a linear model , where a and b are fit-
ting parameters). In these instances, the data were fitted with 
the simplest model that accounted for non-monotonic corre-
lations: a quadratic model , where a, 
b, and c are fitting parameters (Supplemental Material 2).

When specified, Rt/mobility indicator correlations were 
corrected for autocorrelations using the standard procedure. 
First, the residuals (ε) of the original Rt versus mobility indicator 
linear fit (Pearson) were subjected to the Durbin and Watson 
test [18,19] evaluating the null hypothesis (ρ=0) in a model 
with time-correlated residuals between a day (d) and the day 

preceding it: , where w corresponds 
to white noise. When applicable (null hypothesis rejected), 
the Durbin and Watson test [18,19] returned the coefficient ρ 
that fits the residual correlations the best. The ρ-corrected re-
siduals were poorly correlated, indicating that the autocorrela-
tions in our data had predominantly a first-order autoregressive 
AR(1) structure. We next used the Cochrane and Orcutt [20] 
procedure to correct the input time series  and mobility 
indicators , defining autocorrelation-free time-series: 

, and , 
that were finally used to compute the autocorrelation-corrected 
Rt/mobility correlations as defined above for  and .

The Google COVID-19 Community Mobility Reports [2] and 
Johns Hopkins University [1] datasets provided detailed data 
for the 51 United States states and the unincorporated territo-
ry of Puerto Rico. We took advantage of this increased resolu-
tion within the United States to compute, in addition to the 
country-wide correlations, same-day and time-lagged correla-
tions for each state/territory independently using the same 
methodology as for countries.

We used R version 4.04 (https://www.R-project.org) for all 
computations. Correlations and time-lagged correlations were 
also computed using our custom analysis scripts written in 
MATLAB version R2019b (https://www.mathworks.com/) and 
the results were confirmed (data not shown). 

Ethics Statement 
This study needed no ethical review since the observations 

concerned countries, not identified persons.

RESULTS

We curated daily country/region-specific SARS-CoV-2 infec-
tions incidence data [1] and human mobility data [2] from pub-
lic databases, and computed the effective viral reproduction 
index Rt and 6 mobility indicators for each country/region and 
each day retrospectively over the entire analysis period (Feb-
ruary 15 to December 31, 2020; see Figure 1, Methods for de-
tails, and Supplemental Material 1). 

Mobility and Rt data were aggregated for 125 countries, as 
well as 52 United States states/regions (51 states+Puerto Rico), 
yielding for each country/region, and for each mobility indica-
tor pair or Rt/mobility indicator pairs, scatter plots represent-
ing the daily data (Supplemental Material 2). Next, these data 
were used to compute statistical correlations (Pearson correla-
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tion coefficient [R]; Figure 1 and Methods) between mobility 
indicators and mobility indicators/Rt for the entire analysis pe-
riod (Figure 2 and Supplemental Material 3) or for particular 
subperiods when indicated (Supplemental Material 4). Corre-

lations were computed both across variables estimated at the 
same time point (“same-day” correlations, Supplemental Ma-
terial 2) or as a function of a time-lag between mobility indica-
tors and mobility indicators/Rt (Figure 2 and Supplemental 

Figure 1. A methodology to probe correlations between effective reproduction number (Rt) and mobility indicators. Schemat-
ics showing our analysis pipeline (see Methods for details). Same-day and time-lagged Rt versus mobility indicators scatter plots 
(bottom) were tested for linear correlations (R from the Pearson test, adjusted R-squared from the linear regression model, beta 
coefficient of the mobility indicator from the linear regression equation, p-value from the linear regression model). Shown are 
the Rt versus transit mobility (top) and Rt versus residential mobility (bottom) scatter plots for 2 exemplary countries, Austria (left, 
group 1), and Bolivia (right, group 2), with a time lag of 14 days. The dotted orange horizontal line represents the level of Rt=1, 
below which disease spread is halted. 
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Materials 3 and 4).
After establishing the impact of autocorrelations and the 

comprehensiveness of the mobility indicators (Supplemental 
Materials 5 and 6), we analyzed the correlations between Rt 
and mobility indicators with a time lag from 0 days to 30 days 
[4,17]. In most countries, the sign of the Pearson correlation 
coefficient for Rt versus residential mobility was independent 
of the time lag, and minimal variations of the correlation coef-
ficient modulus were observed (Figure 2A). The correlations of 
Rt versus other mobility indicators were often opposed to that 
of Rt versus residential mobility, in agreement with residential 
mobility being systematically anti-correlated with other mo-
bility indicators. 

Based on these observations, 3 groups of countries emerged: 
(1) Group 1: countries with negative Rt versus residential mo-
bility correlations regardless of the time lag (Supplemental 
Material 3). This correlation pattern will be referred to hereafter 
as “normal”. These countries included, as previously published, 
the United States [8], Turkey [7], and many others, mostly in Eu-
rope, North America, and Asia, including South and East Asia 
(58 countries; Figure 2B, green; Table 1; and Supplemental Ma-
terial 7). (2) Group 2: countries with positive Rt versus residen-
tial mobility correlations regardless of the time lag (Supplemen-
tal Material 3). This correlation pattern will be referred to as 
“inverted”. These countries included many Central/South Amer-
ican, African/Caribbean countries, and some others (39 coun-
tries; Figure 2B, red; Table 1; and Supplemental Material 7). (3) 
Group 3: other countries showing a time lag-dependent sign of 
the Rt versus residential mobility correlations (“inconclusive”). 
Countries belonging to this third group were scattered all over 
the globe (28 countries; Figure 2B, pink; Table 1; and Supple-
mental Material 7). Many United States states/regions also dis-
played group 3-like correlations (Figure 2B). 

For all groups, time-series autocorrelations in Rt and resi-
dential mobility strongly contributed to Rt versus residential 
mobility correlations. Indeed, removing first-order correlations 
using the Cochrane and Orcutt [20] procedure with an auto-
correlation parameter determined by the Durbin and Watson 
test [18,19] strongly attenuated the magnitude of the Pearson 
coefficient for Rt versus residential mobility, but generally not 
its sign (Supplemental Material 5). Hence, Rt versus residential 
mobility correlations stemmed from complex, time-correlated 
processes in viral transmission.

The existence of groups 2 and 3 per se contradicted the 
commonsense belief that increasing residential mobility (to 

the detriment of other types of mobility, Supplemental Mate-
rial 2), should correlate with a drop in SARS-CoV-2 reproduc-
tion number. While this was true for group 1 countries, our 
data showed that for many countries, increased residential 
mobility correlated with an increase in Rt. Hence, strict policies 
reinforcing residential mobility could be counter-productive in 
reducing viral spread.

We next investigated whether there are optimal mobility 
patterns with respect to their correlation with the lowest pos-
sible Rt. For this purpose, we directly reanalyzed the scatter plots 
of Rt versus mobility indicators (Supplemental Material 2). 

We specifically considered countries from groups 2 and 3. 
For many of these countries, the Rt/residential mobility scatter 
plot could not be accurately fitted with a linear model, explain-
ing the often-low R score modulus in the Pearson test. This 
was due to a U-shaped distribution of daily data in the Rt/resi-
dential mobility scatter plots for these countries (Supplemen-
tal Material 2). The use of the simplest non-linear model, a 
quadratic model, strongly improved the fitting of this data, as 
exemplified in Figure 3. Minimal Rt values often correlated 
with partial changes in mobility indicators (15-30% increase in 
residential mobility, and a 20-50% decrease in other mobility 
indicators). This result indicates that in many countries, partial 
mobility restrictions might be more efficient in reducing the 
Rt of SARS-CoV-2.

DISCUSSION

An efficient assessment of the impact of governmental mo-
bility restriction policies to mitigate COVID-19 spread requires 
a better understanding of the complex interplay between mo-
bility and the Rt of SARS-CoV-2. Conflicting reports have indi-
cated that this interplay could be country-dependent or re-
gion-dependent [7-12], calling for a systematic investigation 
of the correlations between the SARS-CoV2 Rt and human 
mobility at the country level. In this study, we examined corre-
lations between Rt and a comprehensive set of mobility indi-
cators provided by Google COVID-19 Community Mobility Re-
ports, at the global scale in 125 countries and 52 United States 
states/regions, from February 20 to December 31, 2020. We 
examined, in-depth, the sign and linearity of the correlations 
between Rt and 6 mobility indicators. Our approach resem-
bled the methodology used by Oh et al. [13], but used the Rt 
as a metric to quantify disease spread, as recommended in the 
literature [5,6], and also extended the analyses well beyond 
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Table 1. Correlations between the effective reproduction number and residential mobility distinguish 3 groups of countries and 
United States regions

Group 1 Group 2 Group 3

Countries (n=58) States/Regions (n=31) Countries (n=39) States/Regions (n=1) Countries (n=28) States/Regions (n=20)

Australia Alaska Angola Arkansas Afghanistan Alabama
Austria Arizona Argentina - Belarus Delaware
Barbados California Bahrain - Belize Dis. of Columbia
Belgium Colorado Bangladesh - Botswana Iowa
Bosnia and Herzegovina Connecticut Benin - Brazil Kansas
Bulgaria Florida Bolivia - Cambodia Kentucky
Burkina Faso Georgia Cabo Verde - Cameroon Maine
Burma Hawaii Colombia - Costa Rica Minnesota
Canada Idaho Cote d'Ivoire - Dominican Republic Mississippi
Chile Illinois El Salvador - Ecuador Nebraska
Croatia Indiana Gabon - Egypt New Mexico
Czechia Louisiana Ghana - Fiji North Carolina
Denmark Maryland Guatemala - India North Dakota
Estonia Massachusetts Haiti - Mali Ohio
Finland Michigan Honduras - Mongolia South Carolina
France Missouri Iraq - Nicaragua South Dakota
Georgia Montana Kazakhstan - Pakistan Tennessee
Germany Nevada Kenya - Papua New Guinea Utah
Greece New Hampshire Kuwait - Russia Virginia
Hungary New Jersey Kyrgyzstan - Rwanda West Virginia
Indonesia New York Laos - Serbia -
Ireland Oklahoma Libya - Singapore -
Israel Oregon Moldova - Sri Lanka -
Italy Pennsylvania Mozambique - Sweden -
Jamaica Puerto Rico Namibia - Tajikistan -
Japan Rhode Island Nepal - Trinidad and Tobago -
Jordan Texas Nigeria - Ukraine -
Latvia Vermont Oman - Zambia -
Lebanon Washington Paraguay - - -
Lithuania Wisconsin Peru - - -
Luxembourg Wyoming Qatar - - -
Malaysia - Saudi Arabia - - -
Mauritius - Senegal - - -
Mexico - South Africa - - -
Morocco - Togo - - -
Netherlands - Uganda - - -
New Zealand - Venezuela - - -
Niger - Yemen - - -
Norway - Zimbabwe - - -
Panama - - - - -
Philippines - - - - -
Poland - - - - -
Portugal - - - - -
Romania - - - - -
Slovakia - - - - -
Slovenia - - - - -
South Korea - - - - -
Spain - - - - -
Switzerland - - - - -
Taiwan - - - - -
Tanzania - - - - -
Thailand - - - - -
Turkey - - - - -
United Arab Emirates - - - - -
United Kingdom - - - - -
United States - - - - -
Uruguay - - - - -
Vietnam - - - - -
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OECD countries. Our methodology allowed us to identify nov-
el, unexpected Rt versus mobility correlations that have the 
potential to guide the refinement of mobility restriction poli-
cies differentially across countries. For instance, we discovered 
that 3 groups of countries could be distinguished in terms of 
the sign of the correlations between Rt and residential mobili-
ty: countries with negative Rt versus residential mobility corre-
lations (“normal” correlations; group 1, e.g. the United States 
[8] and Turkey [7], or most OECD countries in agreement with 
Oh et al. [13]); countries with positive Rt versus residential mo-
bility correlations (“inverted” correlations, group 2), which 
have never been reported in a peer-reviewed publication, to 
the best of our knowledge; and countries with more complex 
correlation patterns (“inconclusive” correlations, group 3). 
While Rt/mobility correlations were often linear, particularly 
for group 1 countries, for many group 2-3 countries, they were 
U-shaped, indicating an optimal level above which increasing 
residential mobility is counterproductive. Finally, we also ob-

served (some) variability within United States regions, and we 
stress that repeating our approach at a regional resolution 
within countries could provide a finer-grained understanding 
of the factors that govern the Rt versus residential mobility 
correlations. 

Since this study was solely based on correlation analyses, it 
does not allow conclusions to be drawn on what caused the 
inverted correlations. However, based on the regional variabil-
ity within the United States data, we highly doubt the possibil-
ity that factors such as the overall population density, the health 
system/case reporting system capacities, and the climate could 
explain the inverted correlations on their own. In contrast, pop-
ulation repartition/lifestyle seemed to play a role since most 
rural United States states/regions belonged to group 3, while 
more urban/industrial states/regions belonged to group 1. The 
gross domestic product per capita (GDPpc) or the Human De-
velopment Index (HDI), could also play a role, since group 1 was 
enriched in countries with high GDPpc/HDI; nonetheless, these 

Figure 3. Minimal effective reproduction number (Rt) values correlate with intermediate mobility restrictions. Rt versus transit 
mobility (top) and Rt versus residential mobility (bottom) scatter plots for two exemplary countries, Peru (left, group 2) and Egypt 
(right, group 3), with a time lag of 14 days. Data were fitted with a quadratic model (adjusted R-squared from the quadratic re-
gression model, beta coefficient [multiplied by 100] of the first-level mobility indicator factor in the quadratic regression equa-
tion), which outperformed the linear Pearson model for these countries. The dotted orange horizontal line represents the level of 
Rt=1, below which disease spread is halted.
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parameters alone are not sufficient to fully explain the distri-
bution of countries across the 3 groups, though they can con-
tribute to the variable extent (Supplemental Material 6). Con-
fining populations at home in some countries led to an in-
crease in viral spread within familial units, where social dis-
tancing was not used. This interpretation of the data would 
give weight to sociological factors, such as the size of the fa-
milial unit or the interpersonal distance, in the Rt versus resi-
dential mobility correlations. Data for the mean personal dis-
tance between strangers, acquaintances, and close relations 
have been published for 42 countries [21]. It would be infor-
mative to extend these measurements to cover all 125 coun-
tries analyzed in our study and systematically analyze the links 
between interpersonal distances and Rt versus residential mo-
bility correlations. 

We stress that in order to make relevant comparisons of the 
viral spread versus mobility correlations across countries, we 
have restricted our analysis to 2020 data (i.e., prior to mass 
vaccination). One consequence is that our dataset does also 
not account for potential effects of the Delta/Omicron vari-
ants, or other variants of concern, on Rt versus mobility corre-
lations. While this means that our findings are unlikely to be 
biased by the difference in contagion dynamics between the 
new variants and the original SARS-CoV-2 strain, it also means 
that similar analyses of disease spread versus mobility data af-
ter December 2020 would be required to account for the par-
ticularities of variants of concerns. Rt computations might also 
be confounded by isolated events affecting contagion at a 
broad scale, such as superspreading events. However, such 
events are likely impactful in very early stages of the pandemic 
as demonstrated in Korea by Lim et al. [22], while our conclu-
sions are based on data aggregated until the end of 2020, well 
after the pandemic rise in most countries. Hence, we believe 
that our results, based on a comprehensive analysis over a 
long time period, are robust against isolated early pandemic 
events. It is, yet, in theory possible that superspreading events 
played a role in the association of positive correlations between 
Rt and residential mobility in group 1, particularly in early stag-
es of the pandemic. Moreover, our analysis was limited to cor-
relation analyses, and therefore is not sufficient to draw con-
clusions on the causes of opposite sign Rt/mobility correlations 
in different countries/regions. Our analysis of the variability 
within United States data makes it possible to rule out certain 
geographic or demographic factors as being the sole sources 
of positive Rt/mobility correlations, yet our analysis overlooks 

sociological or ethnic/genetic factors. In particular, it is possi-
ble that the link between movement restriction and disease 
spread is affected by other mitigation measures and individual 
behaviors that would have strong national specificities. 

In conclusion, in this work, we have identified 3 groups of 
countries where correlations between the SARS-CoV-2 Rt and 
residential mobility were qualitatively opposite during the first 
year of the pandemic, or where minimal Rt values correlated 
with intermediate mobility restrictions. Our results underline 
the importance of systematically characterizing Rt versus mo-
bility correlations at a regional/national resolution, in order to 
understand the country-specific range of mobility control that 
minimizes the Rt and optimally adjust movement restriction 
policies to mitigate COVID-19 spread. Our work took a first 
step at closing this gap. We believe that our results could guide 
the refinement of mobility restriction policies differentially 
across countries in the future. 
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