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Simple Summary: Advanced gastric cancer remains a malignancy with a poor prognosis, with a
median survival of about 12–15 months. In recent years, immune checkpoint inhibitors have emerged
as a new standard of care for several malignancies, including advanced gastric cancer, and have
demonstrated good clinical benefit in some populations. In this review paper, we describe the current
status of immunotherapy in gastric cancer, with a focus on molecular and immunological profiles,
biomarkers, major clinical trials, and novel immunotherapies.

Abstract: Immune checkpoint inhibitors (ICIs) such as anti-programmed cell death-1 (PD-1) or
programmed cell death ligand-1 (PD-L1) monoclonal antibodies have prolonged survival in various
types of malignancies, including advanced gastric cancer (AGC). Nivolumab, a monoclonal anti-PD-1
antibody, showed an improvement in overall survival at a later-line therapy in unselected AGC
patients in the ATTRACTION-2 study or in combination with chemotherapy as first-line therapy in
the global CheckMate-649 study. Another monoclonal anti-PD-1 antibody, pembrolizumab, showed
single agent activity in tumors with high microsatellite instability or high tumor mutational burden.
Furthermore, a recent KEYNOTE-811 study demonstrated significant improvement in response
rate with pembrolizumab combined with trastuzumab and chemotherapy for HER2-positive AGC.
Based on these results, ICIs are now incorporated into standard treatment for AGC patients. As
a result of pivotal clinical trials, three anti-PD-1 antibodies were approved for AGC: nivolumab
combined with chemotherapy as first-line treatment or nivolumab monotherapy as third- or later-line
treatment in Asian countries; pembrolizumab for previously treated microsatellite instability-high
(MSI-H) or tumor mutational burden-high AGC, or pembrolizumab combined with trastuzumab
and chemotherapy for HER2-positive AGC in the United States; and dostarlimab for previously
treated MSI-H AGC in the United States. However, a substantial number of patients have showed
resistance to ICIs, highlighting the importance of the better selection of patients or further combined
immunotherapy. This review focused on molecular and immunological profiles, pivotal clinical trials
of ICIs with related biomarkers, and investigational immunotherapy for AGC.

Keywords: gastric cancer; immunotherapy; immune checkpoint inhibitors; chemotherapy; programmed
cell death-1; programmed cell death ligand-1

1. Introduction

Gastric cancer is the fourth leading cause of cancer death in the world and the fifth
most common malignant tumor [1]. Combination regimens, including a fluoropyrimidine
and a platinum agent (plus trastuzumab as an anti HER2 monoclonal antibody for HER2-
positive cases) at first-line and paclitaxel with or without ramucirumab at second-line, are
standard treatment for advanced unresectable or recurrent gastric cancer (AGC). However,
the median survival of AGC is still approximately 12–15 months and introduction of
newer treatment is required [2–5]. Recently, immune checkpoint inhibitors (ICIs) have
emerged as new standard treatment in several malignancies, including AGC with favorable
clinical benefit in some populations [6–10]. In AGC, pembrolizumab, a humanized IgG4
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monoclonal antibody against programmed cell death-1 (PD-1), can be used as second-
line or subsequent treatment for patients with microsatellite instability-high (MSI-H) or
tumor mutational burden-high (TMB-H) [11,12]. Most recently, based on the interim
results of KEYNOTE-811, pembrolizumab received accelerated approval by the Food and
Drug Administration (FDA) in combination with trastuzumab, first-line chemotherapy for
patients with HER2 positive AGC [13]. Another anti-PD-1 antibody, nivolumab, showed
a survival benefit in third-line or subsequent treatment in an Asian patient population
irrespective of PD-L1 expression (ATTRACTION-2) or in first-line treatment combined
with standard cytotoxic agents (CheckMate-649) [14,15]. On the other hand, dostarlimab,
an anti-PD-1 antibody, demonstrated a favorable ORR in the GARNET trial in MMR-D
patients with non-endometrial solid tumors [16], and was granted accelerated approval
by the FDA. Furthermore, clinical trials of several investigational immunotherapies are
ongoing in AGC, including anti-PD-1 antibody plus anti-CTLA4 antibody, ICIs plus other
targeted agents, and chimeric antigen receptor T (CAR-T) cell therapies. In this review,
we will discuss current status of immunotherapy for gastric cancer (Figure 1), including
molecular and immunological profiles, pivotal clinical trials of ICIs with related biomarkers,
and investigational immunotherapy.

Figure 1. This figure shows current position of immunotherapy for advanced gastric cancer. Abbrevi-
ations: CPS: PD-L1 combined positive score; T-DXd: trastuzumab deruxtecan.

2. Molecular and Immunological Profiles in Gastric Cancer

In 2014, the Cancer Genome Atlas (TCGA) study proposed four molecular subtypes of
gastric cancer: Epstein–Barr virus (EBV), MSI, chromosomal instability (CIN), and genomi-
cally stable (GS), based on analysis of somatic copy numbers, whole-exome sequencing
(WES), DNA methylation profiling, messenger RNA sequencing, microRNA sequencing,
and reverse-phase protein array [17]. EBV-positive tumors have the poorly differentiated
adenocarcinoma, with a high content of immune cells and high expression of PD-L1 and
PD-L2 [18–22]. In the TCGA study, EBV-positive tumors exhibit recurrent PIK3CA and
ARIDIA mutations, extreme DNA hypermethylation and high amplifications of JAK2, PD-
L1, and PD-L2. MSI-H tumors exhibit elevated mutation rates (including frameshifts or
missense mutations) and hypermethylation (including hypermethylation at the MLH1
promoter), resulting in the enhanced expression of neoantigens [17]. Consequently, MSI-H
tumors display high infiltration with CD8+ T cells, presumably due to the recognition of
a high number of neoantigens and its corresponding expression of immune checkpoints,
such as PD-L1 in the tumor microenvironment [23]. GS tumors are typically enriched
for the diffuse histology and mutations of CDH1 and RHOA or CLDN18–ARHGAP fu-
sion [24–27]. CIN tumors are frequently observed at the gastroesophageal junction/cardia
with recurrent TP53 mutation and relatively high amplifications of receptor tyrosine kinase
(RTKs) genes [17]. Transcriptomic analysis in the TCGA study demonstrated the significant
upregulation of immune cell signaling in the EBV-positive or MSI-H subtypes compared
with the GS or CIN subtypes [28].

In stage IV AGC, EBV-positive and mismatch repair (MMR)-deficient (MMR-D) tumors
are identified in 6.2% and 6.2% cases, respectively [22]. As mentioned above, EBV-positive
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or MSI-H tumors have distinct immunological profiles, which might lead to a favorable
response to ICIs [29,30]. Moreover, MSI-H/MMR-D AGC patients have been reported to be
associated with shorter progression-free survival (PFS) on first-line cytotoxic chemotherapy,
but achieved durable response from subsequent anti-PD-1 therapy [30]. Recently, the
majority of CIN tumors have been reported to exhibit T cells’ exclusion and infiltrating
CD68+ macrophages [31]. GS tumors showed enrichment of CD4+ T cells, tumor-associated
macrophages, and B cells, and half of cases displayed tertiary lymphoid structures [31].
Thus, targeting immune-suppressive macrophages or other upregulated pathways might
enhance ICIs in the CIN or GS subtypes.

Analysis of more than 1000 gastric cancer samples demonstrated that in comparison
with Asian tumors, non-Asian gastric cancers had higher expression of T cell markers (CD3,
CD45R0, and CD8), including CTLA-4 signaling and lower expression of the immunosup-
pressive T regulatory cell marker FOXP3 [32]. These differences in immunological profiles
warrant further investigation, together with comparison of response to ICIs between the
Asian and non-Asian population.

PD-L1 combined positive score (CPS), which has been defined as number of PD-L1-
positive cells, including tumor cells, macrophages, and lymphocytes, divided by the total
number of tumor cells and multiplied by 100, is currently used for selection of ICIs in
several malignancies such as AGC [15,33–38]. Impact of CPS on clinical outcomes with ICIs
in AGC will be described in the next session.

3. Clinical Trials of Immunotherapy for Gastric Cancer with Related Biomarkers
(PD-L1, MSI, and TMB)

Table 1 summarizes 18 major clinical trials for immunotherapy for AGC: 8 for anti-
PD-1/PD-L1 monotherapy, 4 for anti-PD-1/PD-L1 antibody plus chemotherapy, 2 for
anti-PD-1 antibody plus HER2-targeted therapy, 2 for anti-PD-1 antibody plus anti-CTLA4
antibody, 3 for anti-PD-1 antibody plus multikinase inhibitors, and 1 trial for chimeric
antigen receptor T (CAR-T) cell therapies.

3.1. Anti-PD-1/PD-L1 Monotherapy

In the phase III ATTRACTION-2 trial, nivolumab as an anti-PD-1 monoclonal antibody
improved overall survival (OS) compared with the placebo in patients with AGC after
two or more previous lines of chemotherapy (median OS 5.26 months vs. 4.14 months;
hazard ratio (HR) = 0.63; p < 0.0001) [14]. PFS (median 1.61 months vs. 1.45 months;
HR ≥ 0.60; p < 0.0001) and objective response rate (ORR) (11.2% vs. 0%; p < 0.0001) were
also improved with nivolumab. These results led to the approval of nivolumab for AGC in
Asian countries. An exploratory analysis of ATTRACTION-2 suggested no relationship
between survival benefit and PD-L1 expression on tumor cells, although tumor samples
were available from less than 40% of patients. Any-grade treatment-related adverse events
(TRAEs) had occurred in 43% of patients treated with nivolumab, including 10% grade 3
or 4 events. All-grade TRAEs reported in 5% or more of patients with nivolumab were
pruritus (9%), diarrhea (7%), rash (6%), and fatigue (5%). Common grade 3 or 4 TRAEs
with nivolumab included decreased appetite, diarrhea, fatigue, and increased aspartate
transaminase. Another anti-PD-1 monoclonal antibody, pembrolizumab, showed ORR
of 11.6% at third-line or later-line in a phase II KEYNOTE-059 trial [34]. ORR was 15.5%
for patients with PD-L1-positive tumors (CPS ≥ 1) as assessed by 22C3 IHC assay, while
ORR was 6.4% for those with CPS < 1. Meanwhile, the global phase III trial (JAVELIN 300)
of avelumab (anti-PD-L1 antibody) failed to show an OS improvement compared with
investigators’ choice of third-line chemotherapy, which included paclitaxel or irinotecan in
patients with AGC [39].
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Table 1. This table shows pivotal clinical trials of anti-PD-1/PD-L1 therapies for gastric cancer.

Line Phase Trial Region Patient Selection
(Cohort)

Arms (Regimen) Primary
Endpoint

OS PFS ORR

Med HR p Med HR p % p

monotherapy

3rd or later III ATTRACTION-2 Asia all
Nivo

OS
5.26

0.63 <0.0001
1.61

0.60 <0.0001
11.2 -

Placebo 4.14 1.45 0 -

3rd or later II KEYNOTE-059 Global
all Pemb ORR

(all & CPS ≥ 1)
5.6 - - 2.0 - - 11.6 -

CPS ≥ 1 Pemb 5.8 - - 2.1 - - 15.5 -

3rd III JAVELIN 300 Global all
Avel

OS
4.6

1.1 0.81
1.4

1.73 >0.99
2.2 -

physician’s choice 5.0 2.7 4.3 -

2nd III KEYNOTE-061 Global CPS ≥ 1
Pemb

OS & PFS
9.1

0.82 0.0421
1.5

1.27 -
16 -

PTX (80 mg/m2) 8.3 4.1 14 -

1st III KEYNOTE-062 Global

CPS ≥ 1
(HER2-neg)

Pemb
OS

(CPS ≥ 1)
(CPS ≥ 10)

PFS
(CPS ≥ 1)

10.6
0.91 -

2
1.66 -

15
-

XP/FP 11.1 6.4 37.2

CPS ≥ 10
(HER2-neg)

Pemb 17.4
0.69 -

2.9
1.1 -

25
-

XP/FP 10.8 6.1 38

1st III JAVELIN 100 Global

all (HER2-neg)
FOLFOX/XELOX→ Avel

OS (all & TPS ≥ 1)

10.4
0.91 0.1779

3.2
1.04 -

13.3
-

FOLFOX/XELOX→ cont 10.9 4.4 14.4

TPS ≥ 1
FOLFOX/XELOX→ Avel 16.2

1.13 0.6352
4.1

1.04 -
-

-
FOLFOX/XELOX→ cont 17.7 9.7 -

2nd or later II KEYNOTE-158 Global

MSI-H/dMMR GC Pemb

ORR

NR - - 11 - - 45.8 -

TMB-H

Pemb

11.7 - - 2.1 - - 29 -

TMB-H (not MSI-H) - - - - - - 28 -

Not-TMB-H 12.8 - - 2.1 - - 6 -

2nd or later I GARNET
cohort F Global dMMR or POLEmut

non-endometrial solid tumors Dostarlimab ORR - - - - - - 38.7 -

+chemotherapy

1st III KEYNOTE-062 Global

CPS ≥ 1
(HER2-neg)

Pemb + XP/FP
OS

(CPS ≥ 1)
(CPS ≥ 10)

PFS
(CPS ≥ 1)

12.5
0.85 0.05

6.9
0.84 0.04

48.6
-

XP/FP 11.1 6.4 37.2

CPS ≥ 10
(HER2-neg)

Pemb + XP/FP 12.3 0.85 0.16
5.7

0.73 -
53

-
XP/FP 10.8 6.1 38

1st III CheckMate-649 Global

CPS ≥ 5
(HER2-neg)

XELOX/FOLFOX + Nivo

OS & PFS
(CPS ≥ 5)

14.4
0.71 <0.0001

7.7
0.68 <0.0001

60 -

XELOX/FOLFOX 11.1 6 45 -

CPS ≥ 1
(HER2-neg)

XELOX/FOLFOX + Nivo 14
0.77 <0.0001

7.5
0.74 -

60 -

XELOX/FOLFOX 11.3 6.9 46 -

All
(HER2-neg)

XELOX/FOLFOX + Nivo 13.8
0.8 0.0002

7.7
0.77 -

58 -

XELOX/FOLFOX 11.6 6.9 46 -
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Table 1. Cont.

Line Phase Trial Region Patient Selection
(Cohort) Arms (Regimen) Primary

Endpoint
OS PFS ORR

Med HR p Med HR p % p

1st III ATTRACTION-4 Asia all (HER2-neg)
XELOX/SOX + Nivo

OS & PFS
17.5

0.90 0.257
10.5

0.68 0.0007
57.5

0.0088
XELOX/SOX 17.2 8.3 47.8

1st III ORIENT 16 China

CPS ≥ 5
(HER2-neg)

XELOX + Sint

OS
(CPS ≥ 5 & all)

18.4
0.660 0.0023

7.7
0.628 0.0002

- -

XELOX 12.9 5.8 - -

All
(HER2-neg)

XELOX + Sint 15.2
0.766 0.0090

7.1
0.636 <0.0001

58.2 -

XELOX 12.3 5.7 48.4 -

+HER2-taregeted therapy

1st III KEYNOTE-811 Global HER2-pos
FP/XELOX + Tmab + Pemb

OS & PFS
- - - - - - 74.4

0.00006
FP/XELOX + Tmab - - - - - - 51.9

1st II/III MAHOGANY
Cohort A Global HER2 3+, CPS ≥ 1,

non-MSI-H Margetuximab+ Retifanlimab ORR NR - - 6.4 - - 52.5 -

+anti-CTLA4 antibody

2nd or later I/II CheckMate-032 Global esophagogastric cancer

Nivo 3 mg/kg

ORR

6.2 - - 1.4 - - 12 -

Nivo 1 + Ipi 3 6.9 - - 1.4 - - 24 -

Nivo 3 + Ipi 1 4.8 - - 1.6 - - 8 -

1st III CheckMate-649 Global

CPS ≥ 5
Nivo 1 + Ipi 3

OS
(CPS ≥ 5)

11.2
0.89 0.2302

2.8
1.42 -

27 -

XELOX/FOLFOX 11.6 6.3 47 -

all
Nivo 1 + Ipi 3 11.7

0.91 -
2.8

1.66 -
23 -

XELOX/FOLFOX 11.8 7.1 47 -

+multikinase inhibitor

3rd or later Ib REGONIVO Japan GC Rego + Nivo DLT 12.3 - - 5.6 - - 44 -

1st or 2nd II EPOC1706 Japan all Lenva + Pemb ORR NR - - 7.1 - - 69 -

3rd or later II LEAP-005 Global GC Lenva + Pemb ORR 5.9 - - 2.5 - - 10 -

CAR-T

2nd or later I CT041-CG400 China
all CT041 Safety and

tolerability

- - - - - - 48.6 -

GC* CT041 9.5 - - 5.6 - - 57.1 -

* Dose level of 2.5 × 108 for at least 2 prior lines of therapy. Abbreviations: OS: overall survival; PFS: progression-free survival; ORR: objective response rate; med: median (months);
HR: hazard ratio; p: p value; CPS: PD-L1 combined positive score; TPS: tumor proportion score; GC: gastric cancer; Pemb: pembrolizumab; Nivo: nivolumab; Sint: sintilimab; Avel:
avelumab; cont: continuation of the same chemotherapy; PTX: paclitaxel; Nivo1: nivolumab 1 mg/kg; Nivo3: nivolumab 3 mg/kg; Ipi1: ipilimumab 1 mg/kg; Ipi3: ipilimumab 3
mg/kg; Rego: regorafenib; Lenva: lenvatinib; DLT: dose limiting toxicity.
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In the second-line setting (KEYNOTE-061), pembrolizumab did not significantly im-
prove PFS and OS compared with paclitaxel in patients with PD-L1 CPS ≥ 1 [33]. In the
first-line setting (KEYNOTE-062), pembrolizumab was non-inferior to chemotherapy for
OS in patients with CPS≥ 1 [36]. The crossing of survival curves in both the KEYNOTE-061
and KEYNOTE-062 suggested that some patients treated with pembrolizumab had early
disease progression with poor prognosis. Exploratory analyses of these trials found the
trend toward better clinical outcomes in patients with MSI-H or high PD-L1 expression
(CPS ≥ 10) to suggest that these biomarkers may be useful for better selection of patients
who might derive greater benefit from PD-1 blockade immunotherapy [38,40]. Although
maintenance avelumab monotherapy was compared with continued chemotherapy or best
supportive care after induction of first-line treatment in the phase III trial of avelumab
(JAVELIN 100), it failed to show superior OS, either in all randomized patients or in a
PD-L1-positive (≥1% of tumor cells) patient cohort [41]. In an exploratory subset analysis,
a CPS ≥ 1 population by 22C3 assay showed a trend for longer OS with avelumab.

The FDA also granted accelerated approval to pembrolizumab for patients with
previously treated MSI-H/MMR-D tumors, including AGC based on the durable response
in several trials [11,42,43]. The phase II trial of pembrolizumab (KEYNOTE-158) showed
ORR of 37.2% for 94 patients with MSI-H/MMR-D non-colorectal cancers [11]. In this trial,
11 of 24 patients with AGC achieved an objective response (ORR, 45.8%), with median
PFS of 11.0 months and median OS was not reached. Moreover, a subgroup analysis of
KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 showed consistent efficacies with ORR
of 57%, 47%, and 57% for patients with MSI-H/MMR-D AGC, respectively [40]. In addition,
post-hoc analysis of KEYNOTE-061 and KEYNOTE-062 suggested remarkable survival
benefit for pembrolizumab in MSI-H patients. Most recently, the GARNET study (Cohort
F) of dostarlimab (anti-PD-1 antibody) showed ORR of 38.7% in MMR-D patients with
non-endometrial solid tumors (ORR of 37.5% for AGC) [16], leading to FDA accelerated
approval to dostarlimab for advanced dMMR solid tumors with VENTANA MMR RxDx
Panel. Currently, MSI-H/MMR-D is one of the most consistent predictive biomarkers
for ICIs. However, approximately half of MSI-H/MMR-D patients did not respond to
ICIs, highlighting the importance of identifying predictive biomarkers associated with
unresponsiveness to these agents. Recently, our study revealed that TMB-low and PTEN
mutations are predictors of a negative response to PD-1 blockade in 45 MSI-H/dMMR
gastrointestinal tumors, including 18 AGC [44]. Interestingly, three of the four patients
with TMB-low tumors had AGC, which might be due to geographic heterogeneity of MLH1
expression as previously reported [29]. Kwon and colleagues also reported that in the
phase II trial of pembrolizumab in MSI-H AGC, non-responders had frequent mutations
and upregulations in the Wnt/β-catenin pathway and an abundance of cancer-associated
fibroblasts [45]. These findings might lead to further development of combination ICIs
therapies for MSI-H/MMR-D AGC.

It is well known that TMB-high was associated with favorable clinical outcomes
in patients receiving ICIs across multiple cancer types [46,47]. Indeed, in the phase II
KEYNOTE-158 trial, TMB-high (defined as ≥10 mut/Mb using FoundationOne CDx™
assay) solid tumors with pembrolizumab were associated with higher ORR of 29% (28%
after excluding MSI-H vs. non-TMB-high 6%) and higher 6-, 12-, and 24-month PFS
rates compared with non-TMB-high [12]. Based on these results, pembrolizumab and
FoundationOne CDx™ as a companion diagnostic assay have been approved by the FDA
for patients with TMB-high solid tumors. Post-hoc biomarker analysis of KEYNOTE-061
and KEYNOTE-062 also demonstrated associations between TMB and favorable clinical
efficacy with anti-PD-1 therapy, warranting further evaluation in other clinical trials, such
as the CheckMate-649 trial [48,49].

3.2. Anti-PD-1/PD-L1 Antibody Plus Chemotherapy

Recently, outcomes of four pivotal phase III trials (KEYNOTE-062, ATTRACTION-4,
CheckMate-649, and ORIENT-16), investigating the addition of anti-PD-1 antibodies to first-
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line chemotherapy for AGC, have been presented [15,36,50,51]. In the global KEYNOTE-062
trial, chemotherapy in combination with pembrolizumab fail to show benefits in OS and PFS
in both CPS ≥ 1 and CPS ≥ 10 populations, although ORR was higher in pembrolizumab
plus chemotherapy (49% vs. 37% in CPS ≥ 1) [36]. Recently, in the global CheckMate-649
trial of nivolumab plus chemotherapy (CapeOX or FOLFOX) compared with chemother-
apy, met both primary endpoints of OS (median 14.4 months vs. 11.1 months; HR 0.70;
p < 0.0001) and PFS (median 7.7 months vs. 6.0 months; HR 0.68; p <0.0001) in patients
with PD-L1 CPS≥ 5 using PD-L1 IHC 28–8 pharmDx assay (Dako) as well as the secondary
endpoints of OS (median 14.0 months vs. 11.3 months; HR 0.77; p < 0.0001) in those with
CPS ≥ 1 and OS (median 13.8 months vs. 11.6 months; HR 0.80; p ≥ 0.0002) in all random-
ized patients [15]. The unstratified HRs for OS with nivolumab plus chemotherapy versus
chemotherapy were 0.92 in patients with CPS < 1 and 0.94 in those with CPS < 5, with
significant interaction between OS and CPS observed at the cutoff of 5 (p ≥ 0.0107) but
not at the cutoff of 1 (p ≥ 0.2041). Patients with nivolumab plus chemotherapy achieved
higher ORR than in those with chemotherapy in the CPS ≥ 5 population (60% vs. 45%).
Moreover, higher ORR was observed across PD-L1 CPS cutoffs, including CPS < 1 and <5.
The magnitude of survival benefit was greater in patients with MSI-H tumors [15]. Mean-
while, in ATTRACTION-4 conducted in Asian countries without patient selection based on
PD-L1 expression, adding nivolumab to chemotherapy (SOX or CapeOX) improved PFS
(HR 0.68; p < 0.001) and ORR (58% vs. 48%) but not OS (HR 0.90; p ≥ 0.26) [50]. A higher
proportion of patients in the control arm receiving subsequent therapy in ATTRACTION-4
(68% including 27% with ICIs) than in CheckMate-649 (41% including 8% with ICIs) might
blur positive effects on OS in ATTRACTION-4. There was also a difference in the propor-
tion of patients with gastroesophageal junction cancer between the two trials: about 8%
in ATTRACTION-4 and about 18% in CheckMate-649, which also included about 12% of
esophageal adenocarcinoma, although it may not be enough to explain the difference in
OS results between two trials [15,52]. Most recently, in ORIENT-16 conducted in China,
chemotherapy in combination with sintilimab (PD-1 inhibitor) was superior to chemother-
apy for OS in both CPS ≥ 5 (median 18.4 vs. 12.9 months; HR 0.660; p ≥ 0.0023) and all
randomized populations (median 15.2 vs. 12.3 months; HR 0.766; p ≥ 0.0090), with longer
PFS and higher ORR [51]. In these four pivotal trials, grade 3 or 4 TRAEs increased by ap-
proximately 10% in anti-PD-1 antibodies plus chemotherapy compared with chemotherapy
alone, but these are manageable. Based on the results of CheckMate-649, FDA approved
the addition of nivolumab to standard chemotherapy (fluoropyrimidine and oxaliplatin)
as the first-line treatment for AGC patients irrespective of PD-L1 CPS, but NCCN guide-
lines recommend it as a preferred regimen only for patients with PD-L1 CPS ≥ 5 [53]. In
Asian countries (Japan, Korea, and China), nivolumab plus chemotherapy combination
has been approved for AGC patients regardless of PD-L1 CPS. Meanwhile, the European
Medicines Agency (EMA) approval is limited to patients with PD-L1 CPS ≥ 5. Japanese
guidelines for the management of patients with metastatic gastric cancer have been stated
as follows: (1) nivolumab plus chemotherapy (SOX, CapeOX or FOLFOX) is recommended
as first-line therapy for AGC; (2) given that CPS was associated with survival outcomes in
CheckMate-649, PD-L1 CPS evaluation should be conducted as much as possible, and (3) in
cases where CPS < 5 or unknown, the decision to treat with nivolumab plus chemotherapy
or chemotherapy alone should be taken with consideration to the patient’s overall fitness
and access to subsequent therapies. Association between PD-L1 expression status and
treatment efficacy of chemotherapy plus anti-PD-1 antibodies should also be investigated in
ongoing phase III KEYNOTE-859 (NCT03675737) and BGBA317 305 (NCT03777657) trials.

In the second-line setting, a phase II/III trial of QL1604 (anti-PD-1 antibody) plus
nab-paclitaxel versus paclitaxel is being tested (NCT04435652).

In mouse models of triple-negative breast cancer, neoadjuvant treatment with anti-
PD-1 plus anti-CD137 monoclonal antibody has been shown to increase the number of
cancer antigen-specific CD8+ T cells and improve survival compared with primary tumor
resection followed by adjuvant treatment [54]. In fact, clinical trials have demonstrated
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that PD-1 inhibitors with or without conventional chemotherapy as a neoadjuvant setting
have promising antitumor activity in several malignant tumors [55–58]. In gastric cancer,
two phase III KEYNOTE-585 (NCT03221426) and MATTERHORN (NCT04592913) trials to
evaluate adding anti-PD-1/PD-L1 to chemotherapy in a perioperative setting are ongoing.
Additionally, in an adjuvant setting, a phase III trial, ATTRACTION-5 (NCT03006705), is
underway to investigate standard adjuvant chemotherapy with S-1 or capecitabine plus
oxaliplatin in combination of nivolumab for patients with pathological stage III gastric
cancer (including esophagogastric junction cancer) after D2 or more extensive lymph
node dissection.

3.3. Anti-PD-1 Antibody Plus HER2-Targeted Therapy

Several preclinical studies have indicated that trastuzumab increases HER2 internal-
ization and cross-presentation by dendritic cells, upregulates PD-1 and PD-L1, induces
expression of tumor-infiltrating lymphocytes, and modulates expression of major his-
tocompatibility complex class II, resulting in the enhancement of HER2-specific T-cell
responses [59–61]. In a HER2-positive immunocompetent mouse model, anti-PD-1 anti-
body could significantly improve antitumor activity of trastuzumab with the augment
of antibody-dependent cellular cytotoxicity (ADCC) [62]. Phase II trials, evaluating the
efficacy of first-line chemotherapy plus trastuzumab combined with pembrolizumab, have
shown promising results with ORR of 76.7–91% and median PFS of 8.6–13.0 months [63,64].
The subsequent phase III KEYNOTE-811 trial of pembrolizumab plus trastuzumab and
chemotherapy demonstrated a statistically significant 22.7% improvement in ORR in the
pembrolizumab group compared with the placebo group (77.4% vs. 51.9%, p≥ 0.00006) [13].
Complete responses were also more frequently observed in the pembrolizumab group
than in the placebo group (11.3% vs. 3.1%). Moreover, the pembrolizumab group showed
deeper responses than in the placebo group (median change from baseline, 65% versus 49%;
≥80% decrease from baseline, 32.3% vs. 14.8%). Grade 3 or worse adverse events occurred
in 57.1% of the pembrolizumab group versus 57.4% in the placebo group. These interim
results of KEYNOTE-811 led to FDA accelerated approval to adding pembrolizumab to
trastuzumab and chemotherapy in the first-line treatment for patients with HER2 positive
AGC. Results of OS and PFS (dual primary endpoints) are awaited.

Furthermore, the phase II trial of margetuximab, an Fc-optimized, anti-HER2 mono-
clonal antibody with increased affinity, demonstrated favorable results when combined
with pembrolizumab with ORR of 24% and DCR of 62% in AGC patients with HER2 IHC3+
tumor in a second-line setting [65]. The phase II/III MAHOGANY trial, evaluating the
efficacy of margetuximab with INCMGA00012 (anti-PD-1 antibody) or MGD013 (anti-
PD-1/anti-LAG3 antibody) plus chemotherapy in previously untreated AGC patients is
underway (NCT04082364). Most recently, in MAHOGANY trial Cohort A, margetuximab
with INCMGA00012 showed ORR of 52.4% [66], warranting further evaluations in the
ongoing trial.

In a phase I trial with HER2-positive solid tumors, ZW25 (an anti-HER2 bispecific
antibody) was well tolerated and demonstrated ORR >30% in AGC [67]. A phase III trial
(HERIZON-GEA-01) of ZW25 with chemotherapy with or without tislelizumab (anti-PD-1
antibody) as a first-line treatment for patients with HER2-positive AGC will be investigated.

Trastuzumab deruxtecan (T-DXd), an antibody-drug conjugate consisting of an anti-
HER2 antibody, a topoisomerase I inhibitor, and a cleavable linker, was shown to im-
prove response rate and OS in patients with HER2-positive AGC previously treated with
trastuzumab-containing chemotherapy compared with third-line or later-line [68]. T-DXd
activated dendritic cells, increased the expression of MHC class I in tumor cells, and en-
hanced the antitumor response to PD-1 blockade in the murine model [69]. An ongoing
phase Ib/II trial, DESTINY-Gastric03, investigates several combinations of T-DXd with
checkpoint inhibitors or other cytotoxic chemotherapies (NCT04379596).
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3.4. Anti-PD-1 Antibody Plus Anti-CTLA4 Antibody

Cytotoxic T lymphocyte antigen 4 (CTLA-4), a key negative regulator of T-cells other
than PD-1/PD-L1, restricts the antitumor immune response. Anti-CTLA-4 antibody binds
to CTLA-4 on activated T cells and prevents T cell inactivation in lymph nodes during
the initial stage of cancer-immunity cycles, while anti-PD-1/PD-L1 antibodies inhibit T
cell inactivation in tumor tissue during the effector phase. Anti-CTLA-4 antibody also
binds to CTLA-4 on regulatory T cells (one of the immune suppressive cells) and eliminates
them by ADCC in tumor tissue [70–72]. The anti-PD-1/PD-L1 antibody plus anti-CTLA-4
antibody combination is expected to have a synergistic effect due to these different mode of
actions between the two antibodies toward the tumor immune microenvironment. Indeed,
the combination therapy with ipilimumab (anti-CTLA-4 antibody) and nivolumab has
demonstrated antitumor activities in several malignancies [73–77]. In the AGC cohort
of CheckMate-032, ORR was higher in patients with 1 mg/kg nivolumab plus 3 mg/kg
ipilimumab (24%) than in those with 3 mg/kg nivolumab (12%) or 3 mg/kg nivolumab
plus 1 mg/kg ipilimumab (8%) [78]. However, in the subsequent phase III CheckMate-649
trial, the enrollment to the cohort of 1 mg/kg nivolumab plus 3 mg/kg ipilimumab was
closed earlier than chemotherapy plus nivolumab or chemotherapy alone arms. First
results of nivolumab plus ipilimumab versus chemotherapy arms have been just recently
reported [79]. Nivolumab plus ipilimumab did not improve OS compared with chemother-
apy in patients with PD-L1 CPS ≥ 5 (median 11.2 months vs. 11.6 months; HR ≥ 0.89,
p ≥ 0.2302); OS in all randomized patients was not statistically tested. Moreover, PFS
benefit was not observed with nivolumab plus ipilimumab versus chemotherapy in ei-
ther CPS ≥ 5 (median 2.8 months vs. 6.3 months) or any of the randomized populations
(median 2.8 months vs. 6.1 months). ORR was lower with nivolumab plus ipilimumab
versus chemotherapy (27% vs. 47% in CPS ≥ 5, 23% vs. 47% in all randomized pop-
ulations), although duration of response was longer in both CPS ≥ 5 (13.2 months vs.
6.9 months) and all randomized populations (13.8 months vs. 6.8 months). Meanwhile,
longer OS (not reached vs. 10.0 months, HR ≥ 0.28) and higher ORR (70% vs. 57%) with
nivolumab plus ipilimumab compared with chemotherapy were observed in all random-
ized patients with MSI-H tumors. Grade 3 or 4 TRAEs were reported in 38% of patients
with nivolumab plus ipilimumab including increased lipase (7%), increased amylase (4%),
and increased ALT/AST (4% each) versus 46% of patients with chemotherapy. Serious
TRAEs (23% vs. 12%) and TRAEs leading to discontinuation (17% vs. 10%) were frequently
observed with nivolumab plus ipilimumab versus chemotherapy. Currently, a phase III trial
(ATTRACTION-6), investigating nivolumab plus 1 mg/kg ipilimumab plus chemotherapy
compared with chemotherapy, is ongoing in Asian countries.

3.5. Anti-PD-1 Antibody Plus Multikinase Inhibitors

Previous preclinical studies reported that inhibition of the VEGF pathway controlled
tumor growth and inhibited the infiltration of immune suppressive cells, such as regulatory
T cells, tumor-associated macrophages, and myeloid-derived suppressor cells, while it in-
creased the mature dendritic cell fraction [80]. Multikinase inhibitors of VEGF receptors and
other receptor tyrosine kinases, such as regorafenib or lenvatinib, substantially decreased
immune suppressive cells and enhanced antitumor activity of PD-1 inhibitors in the in vivo
models [81–83]. Furthermore, immune suppressive cells have been reported to be associ-
ated with rapid progression during ICIs, called hyperprogressive disease (HPD) [84]. Thus,
targeting immune suppressive cells with multikinase inhibitors is expected to reduce HPD
as well as enhance antitumor activity of ICIs. A phase Ib trial of regorafenib plus nivolumab
demonstrated that ORR was 44% and median PFS was 5.6 months for AGC patients [85].
Notably, three of seven AGC patients refractory to previous anti-PD-1 antibodies achieved
an objective response with this combination, supporting the concept of overcoming resis-
tance of PD-1 blockade with regorafenib. A phase III trial (INTEGRATEIIb) of regorafenib
and nivolumab combination compared with standard chemotherapy in third- or later-line
treatment for AGC is being investigated (NCT04879368). In this trial, patients with prior
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ICIs included in stratification factors can be enrolled. In addition, a Japanese phase II trial
of lenvatinib plus pembrolizumab demonstrated promising results in terms of antitumor
efficacy, with ORR of 69% for AGC patients at first- or second-line [86]; however, another
phase II trial of lenvatinib plus pembrolizumab (LEAP-005) found only 10% ORR in the
AGC cohort [87]. The efficacy results in these trials are preliminary in nature as they were
non-randomized phase II trials. Currently, a further phase III (LEAP-015) of lenvatinib plus
pembrolizumab plus chemotherapy, followed by lenvatinib plus pembrolizumab versus
chemotherapy for AGC in the first-line setting, is ongoing (NCT04662710). In the first-line
setting, another phase III trial of camrelizumab (anti-PD-1 antibody) plus chemotherapy
sequenced by apatinib with or without camrelizumab versus chemotherapy for AGC is
also underway (NCT03813784). In the perioperative setting, we are currently conducting a
phase II trial of lenvatinib with pembrolizumab in the neoadjuvant/adjuvant treatment for
gastric cancer (NCT04745988).

3.6. CAR-T

Chimeric antigen receptor T (CAR-T) cell therapies have been enthusiastically investi-
gated in solid tumors as well as hematological malignancy. A preclinical study indicated
that in CLDN18.2-positive GC patient-derived tumor xenograft models, CLDN18.2-specific
CAR-T cells achieved partial or complete tumor elimination [88]. Most recently, a phase I
study of CLDN18.2-targeted CAR-T cell therapy demonstrated promising results with
ORR of 48.6% with manageable safety profiles in gastrointestinal cancer patients [89]. AGC
patients in third- or later-line settings at the dose of 2.5 × 108 CAR-T cells achieved ORR of
61.1% with a median for PFS of 5.6 months and 9.5 months for OS. Additional studies are
currently ongoing (NCT04400383 and NCT04467853).

4. Conclusions

In the first-line setting, recent pivotal clinical trials of anti-PD-1 antibodies plus con-
ventional agents demonstrated clinical activity for both HER2-negative and HER2-positive
AGC. These results have changed the standard of care in the first-line setting for AGC.
However, given the greater efficacy of nivolumab plus chemotherapy in HER2-negative
AGC with higher PD-L1 expression (CPS ≥ 5), it remains unclear whether this combination
could be adopted irrespective of PD-L1 CPS or only for CPS ≥ 5 population. As described
above, FDA and regulatory agencies in Asian countries (Japan, Korea, and China) have ap-
proved the combination of nivolumab and chemotherapy irrespective of PD-L1 CPS, while
EMA and NCCN guidelines have approved or recommended it for AGC with CPS ≥ 5.
We believe that PD-L1 CPS and MSI status should be investigated as much as possible, as
these biomarkers were associated with clinical outcomes. Furthermore, considering that
TRAEs increased in anti-PD-1 antibodies plus chemotherapy compared with conventional
agents, chemotherapy alone should be an option with consideration for a patient’s general
condition, complications such as autoimmune disease, and family support, especially in
patients with CPS < 5.

Considering that a limited number of patients achieved clinical benefit of ICIs, the
development of new immunotherapy is urgently needed. Currently, ICIs plus other targeted
agents such as multikinase inhibitors and CLDN18.2-specific CAR-T cell therapies seem to
be promising in early clinical trials, warranting further evaluations in subsequent studies.
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