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Abstract: Aeromonas hydrophila is a ubiquitous Gram-negative opportunistic pathogen in the freshwa-
ter environment and the most common cause of bacterial septicemia in aquaculture. In this study,
we investigated the impact of carvacrol, a natural monoterpenoid found in herbs, on the virulence
of A. hydrophila in vitro and the antibacterial effect in combination with antibiotics. The minimum
inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of carvacrol against
A. hydrophila NJ-35 were 125 µg/mL and 250 µg/mL, respectively. Carvacrol could inhibit the
virulence factors (biofilm, protease, exopolysaccharide, and hemolysin) of A. hydrophila, and the
antibiofilm potential of carvacrol was further verified by microscopic detection. Transcriptional
analyses showed that the gene expression of flaB, ompA, aha, ahp, ela, act, aerA, AhyR, and hly were
marked as downregulated. The checkerboard assay results showed that carvacrol did not have
an antagonistic effect in combination with antibiotics (florfenicol, enrofloxacin, thiamphenicol, or
doxycycline hydrochloride) commonly used in aquaculture but possessed an additive-synergistic
effect with neomycin sulfate. In vivo studies demonstrated that carvacrol protected grass carp
(Ctenopharyngodon idella) from A. hydrophila infection. Our results indicated that carvacrol possessed
significant anti-bacterial and anti-virulence effects on A. hydrophila.
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1. Introduction

Aeromonas hydrophila, a common Gram-negative pathogenic bacterium, is ubiqui-
tously dispersed in freshwater environments and is considered an important opportunistic
pathogen of fish, amphibians, reptiles, and mammals. Outbreaks of bacterial septicemia
in fish caused by A. hydrophila annually result in severe economic loss in aquaculture.
Owing to the extended use of antibiotics required to control this bacterial disease, resistant
strains of A. hydrophila have been detected to have a broad drug-resistance spectrum and
high drug-resistance rate [1]. Bardhan and Abraham (2021) reported that most motile
aeromonads (74.29%–94.44%) were multiple-antibiotic-resistant (MAR), with a MAR index
in the range of 0.33–1.00 [2]. To control and prevent A. hydrophila infection, new, effective,
and environmentally friendly antibiotic alternatives and strategies are needed. Recently,
anti-virulence therapy has attracted much attention and been considered as an alterna-
tive to the killing of pathogens [3]. Anti-virulence therapy involves interfering with the
virulence factors or virulence-associated processes of pathogens to reduce their virulence
capacity. Previous studies have demonstrated that the use of anti-virulence medications
in conjunction with antibiotics can boost the effectiveness of antibiotics and reduce the
required dosage [4].

Phytochemicals are chemical compounds derived from plants, which exert good
bacteriostatic activity and have been suggested as alternatives to antibiotics [5]. Carvacrol,
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the primary component of oregano essential oil, is extracted from the plant Origanum
vulgare [6]. Studies have demonstrated that carvacrol is a broad-spectrum antibacterial
drug with potent inhibitory activity against Enterobacter cloacae, Escherichia coli, Pseudomonas
aeruginosa, Vibrio cholerae, Staphylococcus aureus, Chromobacterium violaceum, and Clostridium
difficile [7–13]. Moreover, carvacrol has been detected to possess antioxidant, antiviral,
antifungal, and anti-inflammatory effects [14–18].

Currently, carvacrol is used as a natural food preservative because of its antimicrobial
properties. However, there is a lack of research on its use for treating diseases in fish. To
explore the impact of carvacrol on pathogenic bacterium, A. hydrophila is critical to expand
its utility in aquaculture. Here, we detected the antimicrobial activity of carvacrol and
its impact on the growth, gene expression (flaB, ompA, aha, ahp, ela, act, aerA, AhyR, and
hly), and activity of virulence factors (biofilm, protease, exopolysaccharide, and hemolysin)
in A. hydrophila. In addition, we tested the synergistic effects of carvacrol combined with
antibiotics against A. hydrophila.

2. Materials and Methods
2.1. Chemical Agents and Bacterial Strain

Carvacrol (>99% HPLC purity; CAS no. 499-75-2) and the antibiotics florfenicol,
enrofloxacin, thiamphenicol, doxycycline hydrochloride, and neomycin sulfate were pur-
chased from Aladdin (Shanghai, China). Carvacrol was dissolved in dimethyl sulfox-
ide (DMSO, Sigma) to obtain a stock solution of 20.48 mg/mL and then diluted with
Luria–Bertani (LB) or sterile distilled water. The antibiotics tested in this study are
approved and commonly used fishery drugs against bacterial diseases in aquaculture
in China.

A. hydrophila NJ-35, a common epidemic strain isolated from diseased carp and do-
nated by Prof. Yongjie Liu (College of Veterinary Medicine, Nanjing Agricultural Univer-
sity), was cultured in LB medium at 28 ◦C [19].

2.2. Drug Sensitivity Tests

The susceptibility of A. hydrophila NJ-35 to carvacrol was determined using the broth
microdilution method recommended by the Clinical and Laboratory Standards Institute
(CLSI) [20]. The two-fold serial microdilution method was used in 96-well flat-bottomed
polystyrene microtiter plates to determine the minimum inhibitory concentration (MIC) of
carvacrol against A. hydrophila NJ-35. A. hydrophila (1 × 108 CFU/mL) was inoculated into
fresh LB broth containing different concentrations of carvacrol (0, 7.8125, 15.625, 31.25, 62.5,
125, 250, and 500 µg/mL). Negative and positive controls consisted of wells containing only
LB and wells containing LB including bacteria, respectively. The plates were incubated at
28 ◦C for 24 h. The MIC was defined as the lowest concentration of carvacrol in the broth at
which no bacterial growth was observed. The minimum bactericidal concentration (MBC)
of carvacrol against A. hydrophila NJ-35 was determined using the plate colony-counting
method. The suspension of each well (100 µL) with no visible growth was inoculated into
LB agar, and colonies were counted after 24 h at 28◦C. The same amount of DMSO was
added to the control group. The MIC of antibiotics against A. hydrophila NJ-35 used in
this study was also determined according to the above methods. All experiments were
performed in triplicate.

The effect of sub-MIC carvacrol on the growth of A. hydrophila NJ-35 was determined
according to the method described in a previous study [21]. Briefly, A. hydrophila NJ-
35 with an initial inoculum of 1 × 108 CFU/mL was diluted into LB broth containing
different sub-inhibitory concentrations of carvacrol (1/2 MIC, 1/4 MIC, 1/8 MIC, 1/16 MIC,
1/32 MIC, and 1/64 MIC) before incubating the cultures for 24 h at 28◦C with continual
shaking (180 rpm/min). LB medium containing 1% DMSO was used as the negative
control, and LB broth without carvacrol was used as the blank control. The absorbance of
the culture at 600 nm was measured every 2 h using a Multiskan GO spectrophotometer.
The growth experiments were repeated thrice.
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2.3. Synergistic Effect Assay

The synergistic action of carvacrol and selected antibiotics was tested by the checker-
board assay [22]. Florfenicol (FLF), enrofloxacin (ENF), doxycycline hyclate (DOH), thi-
amphenicol (THM), and neomycin sulfate (NES) are commonly permitted antibiotics used
in aquaculture practices. The concentrations of carvacrol and antibiotics used in the study
were set from their two MIC values and were serially diluted in two-fold steps (1/16 MIC,
1/8 MIC, 1/4 MIC, 1/2 MIC, 1 MIC). All tests were performed in triplicate. The synergistic
action of carvacrol and antibiotics was detected by checkerboard assay and calculation of
the FIC (fractional inhibitory concentration) index. The FIC index values were interpreted
according to previous studies [23–25]: synergism (FICI ≤ 0.5), additivity (0.5 < FICI ≤ 1),
indifferent (1 < FICI ≤ 2), and antagonism (FICI > 2). The test results were also shown with
isobolograms generated with synergistic concentrations of carvacrol and antibiotics [26].

2.4. Biofilm Production Assay

The antibiofilm activity of carvacrol against A. hydrophila NJ-35 was evaluated using
a crystal violet biofilm assay in 96-well cell polystyrene plates [27,28]. A. hydrophila NJ-35
in LB (total volume 200 µL) was inoculated at an initial inoculum of 1×108 CFU/mL
and cultured with carvacrol at final concentrations of 0, 1/64 MIC, 1/32 MIC, 1/16 MIC,
1/8 MIC, and 1/4 MIC at 28 ◦C without shaking for 48 h. The negative control was 1%
DMSO. After incubation, the suspensions were eliminated, and the well was rinsed three
times with double-distilled water (ddH2O) and fixed for 15 min with 10% formaldehyde.
The solutions were drained from the well, and it was allowed to air dry at room temperature.
The biofilms were then dyed with 0.1% crystal violet for 15 min. The microplates were
washed again, and 33% glacial acetic acid was finally added. The optical density (OD) of
each well was measured at 570 nm using a spectrophotometer.

2.5. Microscopic Analysis of Biofilm Formation

To evaluate the antibiofilm potential of carvacrol, microscopic analyses were conducted
following a previous study [29]. Briefly, the biofilm of A. hydrophila was formed on glass
slides (1 cm × 1 cm) with different concentrations of carvacrol (0, 1/16 MIC, 1/4 MIC, and
1 MIC). After incubation, the planktonic cells were eliminated using distilled water. The
glass slides were air-dried and stained with 0.5% crystal violet for 5 min. The excess stain
was rinsed with distilled water. Biofilms on glass slides were examined under 400× and
1000× magnification and before photographing with a digital camera.

2.6. Biofilm Eradication Assay

A biofilm eradication assay was conducted following the method described in
a previous study [30]. Briefly, A. hydrophila NJ-35 (1 × 108 CFU/mL) was introduced into
LB plates and incubated at 28◦C for 24 h. After 24-hour incubation, phosphate-buffered
saline (PBS) was used to wash the plate three times after planktonic cells had been aspi-
rated. Then, equal volumes of LB broth containing different concentrations of carvacrol (0,
1/4 MIC, 1/2 MIC, 1 MIC, and 2 MIC) were added to the wells, while 1% DMSO was used
in the negative control group. Crystal violet-staining was performed to assess the biofilm
biomass at 6 h and 24 h of incubation. The OD of each well was measured at 570 nm using
a spectrophotometer. All assays were performed in triplicate.

2.7. Exopolysaccharide (EPS) Production

The cultivation of A. hydrophila in 24-well plates was similar to that stated in Section 2.4.
The centrifuged precipitates from the cell cultures treated with various doses of carvacrol
(0, 1/16 MIC, 1/8 MIC, and 1/4 MIC) were resuspended in 10 mL buffer containing
0.85% NaCl and 0.22% formaldehyde. EPS was extracted from the aforementioned solutions
by centrifugation at 15,000× g (4◦C, 30 min) and measured using the phenol-sulfuric acid
method [7].
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2.8. Protease and Hemolysis Activity Assays

Protease activity was determined using an azocasein assay [31]. Briefly, the growth of
A. hydrophila in LB broth with sub-inhibitory levels of carvacrol reached an OD600 of 0.6. The
cell-free culture supernatants (CFCS) were collected by centrifugation after culture at 28 ◦C
for 24 h. Next, 1 mL azocasein (3 mg/mL in 50 mmol/L Tris-HCl buffer, pH 8.0) was mixed
with 150 µL of CFCS. After 30 min of incubation at 37 ◦C, 500 µL trichloroacetic acid (10%)
was added to terminate the reaction. The supernatant was collected after centrifugation and
neutralized with NaOH (1 mol/L). Finally, the absorbance (OD400nm) of the supernatant
was measured.

The hemolysis activity was determined as outlined in a previous study [32]. In brief,
sheep erythrocytes (4%) were centrifuged and washed with PBS (pH 7.4). Then, 100 µL
CFCS were added to 900 µL fresh erythrocyte saline suspension (4%). After incubation
for 30 min at 37 ◦C, the mixtures were centrifuged, and the absorbance (OD540 nm) of the
supernatant (200 µL) was measured. The same volume of PBS served as the negative control,
and distilled water served as the positive control (hemolysis: 100%). Hemolysis activity (%)
was defined as [(OD540nm sample − OD540nm negative control) × 100]/OD540nm positive
control. All assays were performed in triplicate.

2.9. Quantitative Real-Time PCR

qRT-PCR was used to assess the influence of carvacrol on gene expression of different
virulence. A. hydrophila was treated with carvacrol (0, 1/4 MIC) for 20 h, and 1% DMSO was
used as a negative control. Total RNA was extracted following the guidance and instruction
of the RNAiso Plus kit (Takara, Daling, China). RNA quantities and concentrations were
determined using a Nanodrop 2000 Spectrophotometer (Thermo Scientific, Waltham, MA,
USA). Double-stranded cDNA was synthesized using Hiscript RT supermix for qPCR with
a gDNA wiper (Vazyme, Nanjing, China). Real-time PCR was performed using SYBR green
real-time PCR mix (Bio-Rad) on a CFX real-time PCR detection system (Bio-Rad, Hercules,
CA, USA). The mRNA expression of targeted genes (flaB, aha, ompA, ahp, act, aerA, hly, ela,
and AhyR) was normalized to the internal control (rpoB gene). Each assay was performed
in triplicate. The gene-specific primers used in this study are listed in Table S1.

2.10. Challenge Test

Grass carp (Ctenopharyngodon idella) (fish, n = 75; body weight, 50 ± 6 g) were assigned
to three 500 L circular tanks with 25 fish each after a week of adapted rearing. The negative
and positive control groups were fed a basal diet, while the carvacrol dietary group was fed
a basal diet supplemented with 1.0 g/kg carvacrol. Fish were fed twice daily at 9 a.m. and
5 p.m. The bacterial suspension of A. hydrophila was adjusted to 5.0 × 107 CFU/mL with
0.85% sterile saline. Intraperitoneal injection was used in this artificial challenge [29,31].
After 1-week pre-feeding, each fish in the positive control group and dietary carvacrol
group was intraperitoneally injected with 200 µL of bacterial suspension, while the negative
control group was intraperitoneally injected with an equal volume of 0.85% sterile saline.
Challenged fish were observed daily, and the mortality was recorded for 5 days.

2.11. Statistical Analysis

Statistical analyses of the differences between each group were performed with
one-way ANOVA using Tukey’s multiple comparison posttest using SPSS 20.0 software.
Data are presented as the mean ± standard error (SE) of three independent experiments.
The survival rate was analyzed using the Kaplan–Meier estimate method, and the sig-
nificance of different groups was analyzed with the log-rank test. A p-value < 0.05 was
considered to indicate a statistically significant difference.
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3. Results
3.1. Inhibitory Effect of Carvacrol on A. hydrophila NJ-35

The MIC and MBC of carvacrol against A. hydrophila NJ-35 were 125 µg/mL and
250 µg/mL, respectively. As shown in Figure 1A, carvacrol at sub-MICs (1/4 MIC,
1/8 MIC, 1/16 MIC, 1/32 MIC, and 1/64 MIC) had no significant influence on the growth of
A. hydrophila NJ-35 (p < 0.05). However, the 1/2 MIC of carvacrol exhibited weak inhibitory
activity against A. hydrophila NJ-35. Furthermore, the sub-inhibitory concentrations were
selected to study the effect of carvacrol on the virulence of A. hydrophila.
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3.2. Synergistic Effect of Carvacrol Combined with Antibiotics 

Figure 1. Antibiofilm activity of carvacrol against Aeromonas hydrophila. (A). The effect of car-
vacrol on A. hydrophila growth according to MIC and sub-MICs. Carvacrol concentration: Control
(0), MIC (125 µg/ml), 1/2 MIC (62.5 µg/ml), 1/4 MIC (31.25 µg/ml), 1/8 MIC (15.625 µg/ml),
1/16 MIC (7.8125 µg/ml), 1/32 MIC (3.90625 µg/ml), and 1/64 MIC (1.953125 µg/ml). (B). The effect
of carvacrol on biofilm formation in A. hydrophila. (C). The effect of carvacrol on preformed biofilms
of A. hydrophila. (D). The effect of carvacrol on exopolysaccharide (EPS) production by A. hydrophila.
Data are presented as the mean ± standard error (SE) of three independent experiments. The results
were analyzed with one-way ANOVA using Tukey’s multiple comparison posttest. a–d: Values with
different letters are significantly different (p < 0.05), while those with similar letters are not. MIC,
minimum inhibitory concentration.

3.2. Synergistic Effect of Carvacrol Combined with Antibiotics

Regarding the synergistic potential of carvacrol in combination with antibiotics, the
results showed that carvacrol had no antagonistic effect with any of the tested antibiotics.
Carvacrol combined with neomycin sulfate showed an additive effect on A. hydrophila NJ-35
(FICI = 0.563, Figure S1). The indifferent effect was presented along with enrofloxacin,
florfenicol, doxycycline hyclate, and thiamphenicol (FICI = 1.100, 1.063, 1.062, and 1.500,
respectively). Generally, carvacrol had no significant synergistic effect with the antibiotics
tested in this study; however, a 2- to 16-fold decrease in the MIC of the antibiotics was
documented in the synergy tests (Table S2).
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3.3. Antibiofilm Activity of Carvacrol

The inhibition of carvacrol at sub-MICs (1/4 MIC, 1/8 MIC, 1/16 MIC, 1/32 MIC, and
1/64 MIC) on the biofilm formation of A. hydrophila NJ-35 was measured using crystal violet
biofilm assays (Figure 1B). The presence of DMSO did not significantly affect the biofilm
formation of A. hydrophila NJ-35 (p > 0.05). In contrast, carvacrol significantly inhibited
A. hydrophila biofilm formation at all tested concentrations (p < 0.05); this inhibitory effect
was significantly enhanced when co-cultured with carvacrol at concentrations of 1/8 MIC
and 1/4 MIC (p < 0.05).

Carvacrol demonstrated a significant biofilm eradication effect on A. hydrophila NJ-35
(Figure 1C). At 6 h and 24 h of treatment, carvacrol showed a killing effect on mature
biofilms at a sub-inhibitory concentration (1/4 MIC). Moreover, the biofilm eradication
effect increased with treatment time and carvacrol concentration.

Light microscopic observation further confirmed the antibiofilm potential of carvacrol
against A. hydrophila. In the control group, a well-structured biofilm matrix was observed
on the slides, while in treated groups (1/16 MIC, 1/4MIC, and MIC), the biofilm-forming
cells and biofilm-covered surface area showed dose-dependent attenuation (Figure 2).
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Figure 2. Microscopic analyses of A. hydrophila biofilm formation treated with carvacrol. The images
were taken at magnifications of 400× and 1000×.

3.4. Quantification of EPS Production

At sub-inhibitory concentrations, EPS quantification revealed that carvacrol signifi-
cantly reduced EPS production by A. hydrophila, and the maximum reduction was observed
at a 1/4 MIC dose (Figure 1D) compared to the untreated control (p < 0.05). Additionally,
DMSO (negative control) did not significantly affect the EPS production of A. hydrophila
NJ-35 compared to the control (p > 0.05).

3.5. Effect of Carvacrol on Protease and Hemolytic Activities

Carvacrol markedly decreased the protease production of A. hydrophila NJ-35 in a dose-
dependent pattern (Figure 3). The protease activity was the lowest in the 1/4 MIC treatment
group. Carvacrol at ≤1/8 MIC did not impact the hemolytic activity of A. hydrophila
NJ-35 (p > 0.05); however, 1/4 MIC carvacrol significantly inhibited the hemolytic activity
(p < 0.05).

3.6. Modulation of A. hydrophila Virulence Gene Expression by Carvacrol

Carvacrol dramatically reduced the expression of A. hydrophila NJ-35 virulence genes
(Figure 4). Compared to the control, carvacrol (1/4 MIC, 1/64 MIC) treatment obviously
downregulated expression of flaB (0.60-fold, 0.49-fold), aha (0.47-fold, 0.71-fold), ompA
(0.30-fold, 0.59-fold), act (0.52-fold, 0.49-fold), aerA (0.63-fold, 0.52-fold), and hly (0.53-fold,
0.50-fold). Additionally, the 1/4 MIC carvacrol downregulated expression of ahp (0.57-fold),
ela (0.07-fold), and AhyR (0.86-fold).
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3.7. Protective Effects of Carvacrol on Grass Carp against A. hydrophila Infection

The artificial challenge test showed that carvacrol increased the survival of grass carp
with A. hydrophila infection, while no death was observed in the negative group (Figure 5).
At 5 days post injection, all of the fish in the basal diet and carvacrol groups were dead.
The survival rate in the positive group was 24.00%, while that in the carvacrol group was
56.00%. The survival rate in the carvacrol group was significantly increased compared to
that in the positive control group (log-rank test, p < 0.05). The moribund grass carp showed
hemorrhagic septicemia symptoms, and bacteria isolated from diseased fish (spleen and
kidney) were confirmed as A. hydrophila.
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4. Discussion

Bacterial septicemia caused by A. hydrophila infection is a serious threat to healthy aqua-
culture [19]. However, the use of antibiotics against this disease has attracted increasing
awareness of drug resistance and food safety. Phytochemicals possess good antibacterial
activity, suggesting that they may be an alternative to antibiotics against bacteria such as
A. hydrophila, A. sobria, Citrobacter freundii, and Raoultella ornithinolytica [24,33].

Carvacrol is an antimicrobial drug with potential microbiological activities against
fish bacterial pathogens [34,35]. Bandeira Junior et al. (2018) reported that the MIC and
MBC of carvacrol against A. hydrophila ATCC 7966 were 100 µg/mL and 200 µg/mL,
respectively, which was similar to our results [33]. However, the mechanism underlying the
antibacterial action of carvacrol has not been fully elucidated. One potential explanation is
that carvacrol can disrupt bacterial envelopes. Previous studies have revealed that carvacrol
could damage the integrity of the bacterial cell membrane, causing bacterial lysis, leakage
of cytoplasmic contents, and even death [36,37]. Notably, the high antibacterial activity of
carvacrol is attributed to the presence of a polar functional group [38]. In addition, studies
have shown that the intracellular targets of essential oil may be related to its antimicrobial
properties [39]. However, the target of carvacrol against A. hydrophila remains unclear and
requires further investigation.

Recent research has shown that the inhibition of virulence is a promising strategy
against pathogenic bacterial infection [40]. Such an anti-virulence therapy could consist
of either inhibiting certain virulence factors (e.g., biofilm, hemolysin, and protease) or,
specifically, interfering with the regulation of virulence factor expression (e.g., quorum
sensing system).

Biofilm formation is a process by which microbial cells aggregate to form collectives
embedded in a self-produced extracellular matrix [41]. Biofilms improve the capability of
bacteria to combat antimicrobials, hence increasing their harm to the host immune system
and diminishing the effectiveness of antimicrobials [42,43]. Therefore, inhibiting biofilm
formation is a crucial method for impeding bacterial infections. Studies have demonstrated
that carvacrol can inhibit bacterial biofilm formation at sub-MICs, with a stronger impact
reported at higher concentrations [44,45]. Liu et al. (2021) reported that the biofilm for-
mation of Enterobacter cloacae was inhibited by carvacrol at sub-inhibitory concentrations
of 64 and 128 µg/mL, and carvacrol decreased biofilm thickness and extrapolymeric ma-
trix excretion, as evidenced by microscopic investigations [7]. In this research, carvacrol
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significantly inhibited the formation of A. hydrophila NJ-35 biofilms at sub-MICs, with
an increased inhibitory effect observed with increasing carvacrol concentration. This result
was also confirmed by microscopic observation. Moreover, the treatment of mature biofilms
is more challenging than that of early stage biofilms and exhibits increased drug resistance.
After culturing A. hydrophila for 24 h, the biofilms appeared to reach a maximum density,
after which no further increase occurred [46]. In this study, we demonstrated a strong
biofilm eradication effect of carvacrol on A. hydrophila NJ-35.

EPS is the extrapolymeric matrix component of bacteria encapsulated in the biofilm [47].
During colonization, A. hydrophila could produce extracellular polymeric substances,
thereby resulting in the development of mature biofilms. Hence, biofilms lacking EPS
barriers are more likely to expose bacteria to the drug action and host immune system. In
this study, the EPS production was apparently inhibited by carvacrol at sub-MICs. Similarly,
carvacrol inhibited A. hydrophila NJ-35 biofilms at sub-MICs in a manner that correlated
well with the attenuated production of EPS.

Hemolysins and proteases are the crucial extracellular virulence factors produced
by A. hydrophila [48]. By damaging host tissues, these enzymes allow pathogens to gain
nutrients and spread [49]. We observed that carvacrol has a concentration-dependent effect
on the synthesis of proteases by A. hydrophila NJ-35. However, carvacrol could only inhibit
the hemolysis of A. hydrophila NJ-35 until the carvacrol concertation reached 1/4 MIC.
Conversely, carvacrol could decrease the hemolytic activity of A. hydrophila MF 372510 at
sub-inhibitory concentrations [33]. This discrepancy may be due to the different strains of
A. hydrophila used.

The adhesion and toxin of A. hydrophila encoded by aha, flaB, and ompA genes are
located in the outer cell membrane and play an important role in maintaining cytoskele-
tal structure, biofilm formation, nutrition transport, and resistance to host immune sys-
tems [50,51]. In this study, the sub-inhibitory doses of carvacrol exhibited a substantial
downregulatory impact on aha, flaB, and ompA. This result was consistent with anti-biofilm
efficacy of carvacrol against A. hydrophila. The aha and ela genes are mainly responsible
for regulating extracellular proteases secreted by A. hydrophila. Serine protease has ca-
seinolytic activity, and elastase has both elastolytic and caseinolytic activity [52,53]. Here,
we found that carvacrol downregulated both the transcription and translation of ahp and
ela genes in A. hydrophila NJ-35. This suggests that carvacrol triggered the downregula-
tion of pathogenicity-related genes, thereby reducing the virulence and pathogenicity of
A. hydrophila. In addition, toxin genes encoded by the act and hly have been used for
assessing potential pathogenesis of A. hydrophila. Aerolysin is a functional enzyme, which
is extensively homologous to enterotoxins. Studies have demonstrated that thymol could
protect the channel catfish from A. hydrophila infection by inhibiting the transcription of
the aerA gene [40]. Our results also indicated that carvacrol reduced act, aerA, and hly
genes expression.

Quorum sensing (QS) systems are signaling networks that regulate bacterial behavior,
virulence, and biofilm formation [54]. The biofilm development, extracellular protease,
and hemolysin production of A. hydrophila are positively controlled by the QS regulatory
protein AhyR [55]. Here, carvacrol was found to downregulate ahyR gene expression of
A. hydrophila, suggesting its involvement in QS-mediated virulence factor expression.

In this study, the carvacrol-supplemented diet increased the resistance of grass carp
to A. hydrophila infection. Similar results have also been observed in Colossoma macropo-
mum, Ictalurus punctatus, and Carassius auratus [56–58]. Besides the antibacterial capability,
Silva et al. (2021) found that tambaqui (C. macropomum) fed with carvacrol had higher
monocyte and neutrophil counts, phagocytic activity, and a higher survival rate when
exposed to A. hydrophila infection [56]. Thus, we inferred that carvacrol could enhance
the non-specific cellular immune function of grass carp and improve their ability to resist
bacterial invasion.

Essential oils are commonly considered to have multi-target inhibitory effects on
pathogenic bacteria and, in combination with conventional antibiotics, may enhance
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the activity, avoid the emergence of antibiotic resistance, and reduce drug use [59,60].
Pirog et al. (2019) found that essential oils combined with other antimicrobials could de-
stroy yeast and bacterial biofilm, thereby significantly decreasing their MIC [61]. Bandeira
Junior et al. (2019) also found that carvacrol had an additive effect with florfenicol on
A. hydrophila [62]. In this investigation, the antibacterial activity of carvacrol combined with
neomycin sulfate showed an additive effect, suggesting that a combination of conventional
antibiotics with carvacrol is a promising alternative for the control of A. hydrophila infection
in aquaculture.

5. Conclusions

In conclusion, our results demonstrate that carvacrol has antimicrobial and anti-
virulence activities against A. hydrophila NJ-35. The sub-inhibition concentration of car-
vacrol could inhibit protease production, hemolytic activity, EPS production, and biofilm
formation. Meanwhile, carvacrol inhibited the transcription of virulence genes. However,
carvacrol showed no antagonistic effect with antibiotics commonly used in aquaculture,
and supplementation with carvacrol in diet could also increase the survival of grass carp
infected with A. hydrophila.
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concentration index (FICI) of carvacrol in association with different combinations of the antimicro-
bials florfenicol (FLF), enrofloxacin (ENF), doxycycline hyclate (DOH), thiamphenicol (THM), and
neomycin sulfate (NES) against Aeromonas hydrophila NJ-35; Figure S1: Isobolograms. Carvacrol
combined with the neomycin sulfate against A. hydrophila NJ-35 (FICI = 0.563). References [63,64] are
cited in Supplementary Materials.
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