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Background: MRI guidance of arterial endovascular interventions could be beneficial as it does not require radiation expo-
sure, allows intrinsic blood-tissue contrast, and enables three-dimensional and functional imaging, however, clinical appli-
cations are still limited.

Purpose: To review the current state of MRI-guided arterial endovascular interventions and to identify the most commonly
reported challenges.

Study Type: Systematic review.

Population: Pubmed, Embase, Web of Science, and The Cochrane Library were systematically searched to find relevant
articles. The search strategy combined synonyms for vascular pathology, endovascular therapy, and real-time MRI
guidance.

Field Strength/Sequence: No field strength or sequence restrictions were applied.

Assessment: Two reviewers independently identified and reviewed the original articles and extracted relevant data.
Statistical Tests: Results of the included original articles are reported.

Results: A total of 24,809 studies were identified for screening. Eighty-eight studies were assessed for eligibility, after
which data were extracted from 43 articles (6 phantom, 33 animal, and 4 human studies). Reported technical success rates
for animal and human studies ranged between 42% to 100%, and the average complication rate was 5.8% (animal studies)
and 8.8% (human studies). Main identified challenges were related to spatial and temporal resolution as well as safety,
design, and scarcity of current MRI-compatible endovascular devices.

Data Conclusion: MRI guidance of endovascular arterial interventions seems feasible, however, included articles included
mostly small single-center case series. Several hurdles remain to be overcome before larger trials can be undertaken. Main
areas of research should focus on adequate imaging protocols with integrated tracking of dedicated endovascular
devices.
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o reduce surgical impact, vascular surgery has been

mainly replaced by minimally invasive endovascular inter-
ventions. Currently, fluoroscopy is the standard imaging
modality to guide these endovascular procedures. This tech-
nique, however, coincides with radiation exposure, and the
administration of contrast agents. Contrary to fluoroscopy,
magnetic resonance imaging (MRI) provides high soft-tissue

contrast without the use of radiation and contrast agents,
since blood itself can be utilized as an intrinsic contrast
agent." This might be beneficial for especially young patients
and patients with renal impairment. Additional advantages of
MRI guidance might improve endovascular procedures. First,
three-dimensional (3D) information can be acquired to
anatomical Second,  functional

improve perception.
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information like flow and perfusion parameters can be
obtained, which may provide insight into the outcomes of
the intervention and may lead to additional adjustments
within the same procedure.” Finally, MRI guidance can
potentially enable minimally invasive bypass surgery, since
the 3D imaging and high soft-tissue contrast make the
guidewire visible outside the vascular system.

The scope of this review is narrowed down to review
MRI-guided endovascular arterial interventions. Although the
first experiments of MRI-guided arterial endovascular inter-
ventions using tracking devices were already described in
1993, research regarding clinical implementation in human
has been scarce. The requirements that must be met before
MRI guidance can be safely used, can potentially explain the
low level of interest for MRI guidance. An important require-
ment is the MRI compatibility and visibility of endovascular
devices such as guidewires and catheters, which poses a com-
plex problem both from a physics and engineering perspec-
tive. Successful methods have been developed for device
visualization using active and passive techniques to track end-
ovascular devices, for example, for cardiac interventions
(Figure 1).> Another requirement for proper MRI guidance is
the preservation of high-quality images while maintaining an
adequate acquisition frame rate.” Furthermore, working
within the MRI environment poses additional challenges
related to patient access, in-room image feedback and team

communication (Figure 2). Nevertheless, recent progress on
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MRI-guided cardiac catheterization and ablation within the
cardiac field showed promising methods which can be trans-
lated to arterial interventions.®”

Several articles have been covering the different require-
ments for MRI-guided endovascular interventions and have
been evaluating various device-tracking techniques and MRI
sequences to optimize the guidamce.gf10 Furthermore, reviews
have been reporting MRI-guided endovascular and cardiac

1,11 describing the different device-

interventions in general
tracking techniques, imaging sequences, and possible clinical
applications. However, a clear and comprehensive overview of
relevant clinical outcomes is not available. Furthermore, an
overview of described pitfalls and other challenges as
described in current literature might be useful to clarify the
stagnant clinical implementation. Hence, the purpose of this
work was to review the feasibility of arterial endovascular
interventions in phantom, animal, and clinical studies and to
identify reported issues that pose the main challenges for clin-

ical implementation.

Materials and Methods

This systematic review was performed in accordance with the PRI-
SMA guidelines and the protocol which was used to guide this
review is  registered in  the = PROSPERO  database
(CRD42019125516). To provide an extensive overview of the field,
we extended our search and included phantom and animal studies.
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Active
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FIGURE 1: Examples of active and passive devices visualization. (a) Gadolinium-filled balloon tip catheter in the superior vena cava.
(b) Stainless steel imaging marker on a passive catheter. (c) Color overlay of the active guidewire (loopless antenna) depicting the
entire device shaft in-plane. (d) Active tracking coils to overlay catheter tip position and orientation on a preacquired image. The
image is required from “real-time MRI guidance of cardiac interventions” by Campbell-Washburn et al.> Copyright permission

obtained.
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FIGURE 2: Example setup for MRI-guided endovascular interventions in a wide-bore 3-T MRI environment within a hybrid procedure
room. Patient access is restricted while the patient is positioned at the center of the scanner bore during real-time imaging. The
interventionalist should maneuver the endovascular device while observing the image feedback on an in-room display, illustrating

challenges of in-bore vascular interventions.

Literature Search

To evaluate the available literature on arterial endovascular interven-
tions, we performed a systematic search. A librarian was consulted
for the search strategy. Details of the search strategy are shown in
Supporting Information SA. In short, the search consisted of the fol-
lowing three components; vascular pathology, endovascular therapy,
and real-time MRI guidance. Pubmed, Embase, Web of Science,
and The Cochrane Library were systematically searched. Reference
lists of systematic reviews that were identified within the search, were

screened for missing but relevant articles.

Data Collection

The articles retrieved from the search were imported in endnote and
duplicates were automatically removed.'® Afterwards, two readers
(L.W. and H.N.) independently screened the title and abstract of
the remaining articles. Studies were selected for full-text screening if
the inclusion criteria for human studies, as shown below, were met
according to at least one of the readers. Full-text articles were
retrieved and reviewed and disagreements were resolved via consen-
sus or by consulting a third author (J.F.). Screening and selection of
the preclinical studies were performed by one reader. Rayyan QCRI,

a free web-based tool, was used throughout the screening process.17

Study Selection Criteria

Studies describing clinically relevant outcomes after MRI-guided
endovascular arterial interventions were included in this review.
Articles were excluded if the technical success was not reported.
Furthermore, articles were only eligible for inclusion if they reported
the number of subjects, subject types and, intervention types.
All matching studies until September 2021 were included without
restrictions on study type or language. Studies regarding cardiac,
interventions were

valvular, and (chemo)embolization

excluded.

venous,
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Data Extraction

Data extraction for human studies was conducted by two reviewers
(L.W. and H.N.) and disagreements were discussed and solved via
consensus or by consulting a third author (J.F.). Using a structured
data collection form, the following data were retrieved: the last name
of the first author, full title, publication year, intervention type, out-
come parameters, results, and sample size. Furthermore, details
regarding MRI field strength, real-time MRI sequences, and used
devices were extracted. Data extraction for phantom and animal
studies was performed similarly by one observer. Study outcomes are
presented using descriptive statistics. Due to heterogeneity of the
data, the small subject sizes, and the lack of relevant control groups
within the studies, risk of bias assessment and meta-analysis were
not performed.

Results
Eligible Studies
Using the search strategy, presented in Supporting

Information S1, 24,808 articles were identified. After dupli-
cates were removed, 17,796 studies were selected for title and
abstract screening. Using the title and abstract screening,
88 full-text articles were assessed for eligibility and 42 articles
were included for data extraction. Screening the reference list
of the relevant reviews provided one additional eligible article,
which was also included in the data extraction process. The
PRISMA 2020 flowchart (Figure 3) illustrates the details of
the selection process. The interrater agreement was 99.3% for
the title and abstract selection process and 95.7% for the full-
text selection process. Disagreements were resolved using con-

sensus by both observers.

Study Characteristics
A total of 43 studies were finally included. Six studies

described phantom experiments only. Interventions in

Volume 56, No. 5
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FIGURE 3: PRISMA 2020 flowchart.

animals were performed in 33 of 43 studies with one study
also describing phantom experiments.” The retrieved data is
summarized in Table 1. The interventions in the phantom
and animal studies were balloon angioplasty (14/39), ste-
nting (16/39), embolectomy (1/39), aneurysm repair
(1/39), or a combination of balloon angioplasty and ste-
nting (7/39).

Four out of the 43 selected studies (9.3%) described
MRI-guided endovascular interventions in humans. One
study described iliac artery stent placement (13 patients),
three studies described balloon angioplasty in peripheral leg
arteries (15 patients), aortic coarctations (5 patients), and
hemodialysis access grafts (4 patients). The human studies
were performed in institutions located in Europe (Germany
(3/4), the Netherlands (1/4)). All human studies were publi-
shed in 2006 or earlier.

The maximum number of living subjects (human or
animal) within the selected studies was 15. Four studies com-
pared MRI-guided endovascular interventions with fluoros-

41,42,56, .
657 wo studies compared outcomes for

2,10

copy guidance,
active and passive tracking,” " and one study evaluated the
effect of low and high main magnetic field on the out-
comes.”® The definition of technical success, as defined by
each article, was reported and differed amongst the varying
studies. Examples of reported technical outcomes are artery
diameter change, change in functional parameters, and

whether or not the stent was correctly placed.

November 2022

Details regarding MRI field strength, sequence, and
devices used for the different studies are summarized in
Table 2. The most frequently used field strength was 1.5 T
and the sequences used for real-time imaging were mainly
gradient echo or steady-state free precession sequences.

Study Outcomes

TECHNICAL SUCCESS AND CLINICAL OUTCOMES. The
technical success, as defined by the authors of each study, was
100% in the six phantom studies, however, the sample size in
five of six studies was one. Within the 33 animal studies,
technical success ranged between 42% and 100%. A total of
11 out of 39 (8%) animal and phantom studies reported out-
comes regarding the stenosis degree, arterial diameter, or
functional parameters, all of which showed improvement after
MRI-guided endovascular interventions.

The technical success within human studies ranged
from 50% to 93%. Out of 38 interventions, 31 were success-
ful, resulting in an overall success rate of 82%. The study
from Bartels et al only succeeded to perform angioplasty in
two of four subjects. The reason for the failed attempts was
frequent arm motion in one patient and recoiling of the ste-
nosis in another patient.'® All reported clinical outcomes,
such as the ankle-brachial index, reduction of stenosis, flow,
and arterial diameter, showed improvement after MRI-guided

procedures.
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Field
strength

15T

15T

15T

15T

15T

15T

15T

15T

05T

02T

15T

Tracking sequence

2D GRE, TR/TE: 14/9.2 msec, FA:
10°, ST: N.A., FR: 0.5 fps

2D FLASH, TR/TE: 11/5.64 msec,
FA: 25°, ST: 6 mm, FR: 2 fps

SSEP with radial k-space filling,
TR/TE: 3.3/1.6 msec, FA: 45°, ST:
6-8 mm, FR: 9 fps

2D FLASH with flow compensation.
TR/TE: 14.0/6.1 msec. FA: 30°, ST:
8 mm, FR: 0.53 fps

GRE, TR/TE: 8.4/3.6 msec, FA: 10°,
ST: 8.5 mm, FR: 0.33 fps

Fast-spoiled GRE, TR/TE:
9.9/2.5 msec, FA: N.A., ST: 5 mm,
FR: 4.2 fps

FGRE, TR/TE: 7.7/3.6 msec, FA: 10°,
ST: N.A., FR: 2 fps

GRE with radial k-space filing, TR/TE:
8.4-13.4/3.3-3.6 msec, FA: 8-13°,
ST: 8.5-10 mm, FR: 20 fps

GRE, TR/TE: 13.2/44.9 msec, FA:
30°, ST: N.A, FR: 0.1/0.2 fps

FLASH, TR/TE: 120/14 msec, FA:
30-50°, ST: 10 mm, FR: 0.1 fps

TABLE 2. MRI Field Strength, Sequence, and Endovascular Device Types Used in the Included Studies

Endovascular device type

Plastic coated glass fiber guidewire and
nonbraided balloon catheters, both enhanced
with paramagnetic dysprosium oxide ring-
markers (Cordis Europa N.V., Roden, The
Netherlands)

Guidewire (Terumo; Leuven, Belgium), balloon
catheter (Wanda, Boston Scientific; Ratingen,
Germany)

Custom-made 0.035-inch PEEK guidewire,
balloon catheter (Tyshak II, NuMed,
Ontario, Canada)

Nitinol guidewire (Cope; Cook, Bloomington,
Ind & Terumo, Tokyo, Japan), angiographic
catheter (Cook), self-expanding nitinol stent
(Memotherm; Bard-Angiomed, Karlsruhe,
Germany), angjoplasty balloon catheter (Blue
Max; Meditech/Boston Scientific, Watertown,
MA)

Self-expandable stent (Cook Europe,
Bjaeverskov, Denmark) within an MR-
compatible catheter

Custom-made loopless catheter antenna,
balloon catheter (MediTech/Boston Scientific,
Watertown, MA)

Two active (electrical dipole and coaxial line)
custom-made stents created using stainless
steel wall stents from Schneider (Biilach,
Switzerland)

Prototype nitinol stent (ZA stent, Cook Europe,
Bjaeverskov, Denmark), nitinol guidewire
(Cook Europe), fiberglass guidewire with
multiple dysprosium markers (Cordis, Roden,

The Netherlands), balloon catheter (Cordis)

with dysprosium markers

Guidewire (Glidewire; Terumo, Somerset, NJ),
iliac stent deployment system (Angiomed;
Bard, Karlsruhe, Germany)

Radifocus guidewire (Terumo Europe, Leuven,
Belgium) with iron oxide nanoparticles,
balloon catheter (Cristal, Balt Extrusion,
Montmorency, France), Easy Wallstent
(Schneider (Europe), Biilach, Switzerland)

Winch Guidewire (Nycomed Amersham
Medical Systems, Paris, France), monorail

Volume 56, No. 5
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TABLE 2. Continued

Field
strength

15T

15T

15T

15T

02T

15T

15T

15T

15T

Nijsink et al.: Current State of MRI-Guided Endovascular Arterial Interventions

Tracking sequence

T2-weighted turbo SE, TR/TE:
59/4.2 msec, FA: 140°, ST: 6 mm,
FR: 0.15 fps

Time-resolved 3D, TR/TE:
5.8/1.4 msec, FA: 30°, ST: 2.6 mm,
FR: 0.4 fps

Time-resolved 3D, TR/TE:
5.7/1.4 msec, FA: 30°, ST:40 mm,
FR: 0.9 fps

Single-phase 3D, TR/TE: 6.2/1.6 msec,

FA: 45°, ST: 1 mm, Acquisition
time: 21.4 s

Fast-spoiled GRE, TR/TE:
5.0/1.4 msec, FA: N.A,, ST: N.A,,
FR: 3 fps

GRE, TR/TE: 12/2.2 msec, FA: 10°,
ST: 10 mm, FR: 20 fps

bSSFP, TR/TE: 3.4/1.7 msec, FA: 60°,
ST: 5-30 mm, FR: 2.2 fps
T1-weighted turbo field echo, TR/TE:
3.9/1.3 msec, FA: 60°, ST: 5—
30 mm, FR: 2.0 fps

2D spoiled GRE, TR/TE:
5.0/2.0 msec, FA: 25°, ST: 6-8 mm,
FR: 1.6 fps

SSFP, TR/TE: 1.99/1.6 msec, FA: 5°
or 45°, ST: 8-10 mm, FR: 8 fps

2D GRE with spiral k-space filling,
TR/TE: 31/4.9 msec, FA: 26°, ST:
10 mm, FR: 10 fps

GRE, TR/TE: N.A,, FA: 20-35°, ST:
30 mm, FR: 9-15 fps

SSFP, TR/TE: 3.5/1.7 msec, FA: 60°,
ST: 6 mm, FR: 8 fps

Endovascular device type

coronary angioplasty balloon catheter
(Manfield, Meditech, Boston, MA)

Nitinol guidewire (Boston Scientific,
Watertown, MA), 5F cobra selective visceral
catheter, balloon catheter

Custom-made loopless catheter antenna,
balloon catheter (MediTech/Boston Scientific,
Watertown, MA)

Balloon catheter (Cordis, Roden, The

Netherlands) with micro coils

0.035-inch guide wire (Microvena, White Bear
Lake, Minn), self-expanding nitinol stent
(Memotherm; Angiomed, Karlsruhe,
Germany)

Guidewire (Radifocus; Terumo, Tokyo, Japan),
prototype guidewire (Ferro Tip; Somatex),
prototype catheter (Somatex, Berlin,
Germany), balloon catheter (Ultra Thin;
Boston Scientific, Watertown, Mass), balloon-
expandable stents (Palmaz; Cordis, Miami,
Fla), self-expandable stents (Symphony;
Boston Scientific)

0.035-inch polyester and nitinol guidewire,
custom-made stent delivery system with
resonance circuit, nitinol stents (Flexx;

Angiomed, Karlsruhe, Germany)

Amplatz Super-Stiff ST035/180, (Boston
Scientific, Natick, MA), excluder stent-graft,
(W.L. Gore and Associates, Flagstaff, AZ)

Guidewire (Terumo; Boston Scientific, Natick,
Mass), self-expanding nitinol stents (Smart
Stent; Cordis, Miami, Fla), 5-F catheter

Intercept guidewire (Surgi-Vision), nitinol
guidewire (Glidewire, Terumo/Boston
Scientific), platinum—iridium stents
(Cheatham Z stent, NuMed Inc), balloon-in-
balloon dilatation catheter (BIB, NuMed),
prototype cobalt—nickel-chromium alloy
(MP35N) stent (Medtronic)
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TABLE 2. Continued

Field
strength
15T

15T

0.2 and
15T

15T

15T

15T

15T

15T

15T

15T

Tracking sequence

SSFP, TR/TE: 3.8/1.8 msec, FA: 60°,
ST: 8 mm, FR: 4-8 fps

Self-developed interleaved spiral
acquisition, TR/TE: 27.0/4.6 msec,
FA: 30° ST: 5 mm, FR: 16-20 fps

0.2 T: 2D spoiled GRE, TR/TE:
5.0/2.0 msec, FA: 25°, ST: 6-8 mm,
FR: 1.6 fps

1.5 T: 2D spoiled GRE, TR/TE:
5.0/3.0 msec, FA: 70°, ST: 5-7 mm,
FR: 3 fps

TrueFisp, TR/TE: 3/1.5 msec, FA: 80°,
ST: 6 mm, FR: 7 fps

TrueFisp, TR/TE: 4.43/2.22 msec, FA:
70°, ST: 5 mm, FR: NA

Active: SSFP, TR/TE: 2.9/1.45 msec,
FA: 70°, ST: 30 mm, FR: 9 fps

Passive: GRE, TR/TE: 2.3/1.45 msec,
FA: 20°, ST: 30 mm, FR: 7 fps

SSFP, TR/TE: 3.5/1.7 msec, FA: 45°,
ST: 4 mm, FR: N.A.

bFFE, TR/TE: 3.7/1.9 msec, FA: 70°,
ST: 5-30 mm, FR: 5 fps

SSFP, TR/TE: 2.5/1.25 msec, FA: 45°,
ST: 8 mm, FR: N.A.

TrueFISP, TR/TE: 5/2.5 msec, FA:
70°, ST: 5-7 mm, FR: 3 fps

Endovascular device type

Custom-made active guidewire, nitinol
endograft (Vanguard, Boston Scientific,
Natick, MA), three custom-made active self-
expanding endograft designs

Stainless steel guidewire (Guidant Corp., Santa
Clara, CA, USA), nitinol guidewire (Terumo
Corp., Tokyo, Japan), balloon catheter (ACS
RX COMET, Guidant Corp.), stent (Pulse
Medical Systems, Collegeville, PA, USA)

Prototype “Ferro Tip” guidewire (Somatex,
Teltow, Germany), hydrophilic-coated
guidewire (35-inch Radifocus, Terumo,
Tokyo, Japan), 5-6 F prototype catheters,
(Somatex, Teltow, Germany), commercially
available balloon catheters, balloon-
expandable stents (Palmaz, Corinthian; Cordis
Corporation, Miami Lakes, FL) (Omniflex;
Angiodynamics, Queensbury, NY)

Self-expandable stent-graft device (GoreTAG,
W.L. Gore Inc., Flagstaft, AZ)

Guidewire (0.035- inch Radifocus; Terumo,
Tokyo, Japan), angiographic catheter (Torcon
NB Advantage Angiographic Catheter; Cook,
Bloomington, IN), balloon catheter
(OmniFlex; Angio Dynamics, Queensbury,
NY), stent (Palmaz P204 Balloon-Expandable
Intraluminal Stent; Johnson & Johnson,

Warren, NJ)

Loopless antenna guidewire coil (Intercept;
Surgi-Vision, Gaithersburg, Md), 5-F aortic
catheter, renal artery catheter, balloon catheter

(Cordis Europa, Roden, The Netherlands)

Custom-made active gold—silver—gold-plated
nitinol wires with MP35N (cobalt—chromium
alloy) micro coils and tungsten-braided
catheters (Minnesota Medtec) with 1-cm
micro coils, adjusted nitinol guidewire

(Nitrex, ev3)

Nitinol guidewire (AGA Medical Corp., Golden
Valley, MN), self-expanding nitinol stent

(Symphony, Boston Scientific Corp.,
Watertown, MA)

Standard guidewire (Terumo, Tokyo, Japan),
standard balloon catheter (Boston Scientific,

Glen Falls, NY)

Prototype “Ferro Tip” guidewire (Somatex,
Teltow, Germany), steerable hydrophilic-

Volume 56, No. 5
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TABLE 2. Continued

Field
strength

15T

15T

15T

15T

3T

15T

Nijsink et al.: Current State of MRI-Guided Endovascular Arterial Interventions

Tracking sequence

GRE T1-FLASH, TR/TE:
8.12/5.24 msec, FA: 21°, ST: 5 mm,
FR: 2/3 fps

TrueFISP, TR/TE: 5.3/5.2 msec, FA:
80°, ST: 10 mm, FR: 1 fps

GRE T1-FLASH, TR/TE:
8.12/5.24 msec, FA: 21°, ST: 5 mm,
ER: 2/3 fps

bSSFP, TR/TE: 2.6/1.3 msec, FA: 40°
or 50°, ST: 8 mm, FR: 3.4 fps

SSEP, TR/TE: 3/1.3 msec, FA: 8°, ST:
8 mm, FR: N.A.

bSSFP, TR/TE: 283/2.18 msec, FA:
60°, ST: 10 mm, FR: 5 fps

Endovascular device type

coated wire (35-inch Radifocus; Terumo,
Tokyo, Japan), C-1 catheter (Somatex),
balloon catheter (Ultra Thin; Boston
Scientific, Watertown, MA), balloon-
expandable Palmaz Corinthian stent (Cordis
Corporation, Miami Lakes, FL), Omni Flex
stent (Angiodynamics, Queensbury, NY)

Guidewire (Biotronik Vascular Intervention,
Buelach, Switzerland) with iron oxide
nanoparticles (MagnaFy; MagnaMedics
GmbH, Aachen, Germany), balloon catheter
(Pheron, Biotronik), self-expandable stent
(Astron, Biotronik), self-expandable stent
(Wallstent; Boston Scientific, Maple Grove,
MN)

Guidewire (Biotronik Vascular Intervention,
Buelach, Switzerland) with iron oxide
nanoparticles (MagnaFy; MagnaMedics
GmbH, Aachen, Germany), vertebral catheter
(SOFTouch, Merit Medical, Galway,
Ireland), 4-French Cobra 2 catheter (Merit
Medical) both enhanced with Magnafy

markers

Stent (Peiron, Biotronik, Buelach, Switzerland),
nonbraided 4 French vertebral catheter
(SOFTouch, Merit Medical, Galway,
Ireland), self-expandable nitinol stent (Astron,
Biotronik), nonbraided Shepherd Flush
catheter (Merit Medical), balloon catheter
(Pheron, Biotronik), balloon-expandable stent
(Peiron, Biotronik)

Custom-made fiberglass compound wire, cobra
angiography catheter (Supertorque 65 cm,
0.038,” Cordis), ACN1 angiography catheter
(Cook Inc.), cobra angiography catheter
(Glidecath 5F, 65 cm, Terumo, Japan),
balloon catheter, microcatheter (Terumo,
Japan), self-expanding stent catheter (Jostent
SelfX, Abbott Vascular Devices, The
Netherlands)

Cooke guidewire (Cook Bloomington, IN),
cobra catheter (Cook), balloon catheter
(Aachen Resonance, Aachen, Germany), drug-
eluting balloon “Elutax SV” (Aachen

Resonance)

Custom-made aramid guidewires with small
iron particles, Radiofocus Glidecath Cobra
catheter (Terumo Europe, Leuven, Belgium)
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Endovascular device type

Custom-made PEEK fiber thread catheter with
an embedded wireless resonant circuit

Custom-made Teflon-coated fiber-optic
guidewire with gold-plated tip, Cragg
EndoPro system (MinTec, Endotech Lid.,
Freeport, Grand Bahama, The Bahamas)

Fiber-optic guidewire (Cordis, Roden, The
Netherlands) with dysprosium oxide rings,
nonbraided angioplasty balloon catheter
(Cordis) with dysprosium oxide rings

Custom-made guidewire with five dysprosium
rings, balloon catheter with two dysprosium
rings

Custom-made PEEK polymer guidewire with
iron particle coating (Biotronik vascular
intervention, Beulach, Switzerland), standard
catheter (Schneider GmbH, Beulach,
Switzerland), balloon catheter (FOX PTA
catheter, Abbot Laboratories Vascular
Enterprises Ltd., Beringen, Switzerland)

Fiber-optic guidewire (SEDI, Couronnes,
France) with titanium oxide markers
(Magpaint Europe, Veldhunten, The
Netherlands), angiographic catheter (Terumo,
Tokyo, Japan) with titanium oxide markers,
Valiant stent-graft (Medtronic Vascular, Santa
Rosa, CA)

Prototype guidewire (EPflex GmbH, Dettingen/
Erms, Germany) with iron oxide
nanoparticles (MagnaFy; MagnaMedics
GmbH, Aachen, Germany), Straight catheter
(Beacon Tip Royal Flush, Cook Ine.,
Bloomington, IN), multipurpose catheter
(Soft-Vu, AngioDynamics, Latham, NY),
PTA Balloon catheter (Workhorse IT,
AngioDynamics, Latham, NY). All catheters

were enhanced with a resonant circuit

bFFE: balanced fast field echo; (b)SSFP: (balanced) steady-state free precession; FA: flip angle; (f)GRE: (fast) gradient echo; FLASH: fast
low angle shot; FR: frame rate; N.A.: not available; (£)SE: (fast) spin echo; ST slice thickness; TrueFISP: true fast imaging with steady-

TABLE 2. Continued
Field
Study strength Tracking sequence
Yang et a®® 15T bSSFP, TR/TE: 3.9/2.0 msec, FA: 10—
20°, ST: 8 mm, FR: 1.5 fps
Phantom studies
Stroman 15T FSE, TR/TE: N.A., FA: N.A., ST:
etal’’ 3 mm, FR: 0.25 fps
Smits 15T GRE with keyhole technique, TR/TE:
et al’? 15/8 msec, FA: 10°, ST: 30 mm, FR:
1.5 fps
van der 15T GRE, TR/TE: 15/9 msec, FA: 10°, ST:
Weide 50 mm, FR: 0.5 fps
et al*’
Mekle 15T bSSFP, TR/TE: 4.31/2.14 msec, FA:
et al”* 3°, ST: 40 mm, FR: 0.9 fps
T1-weighted FLASH, TR/TE: 3.17/
1.0 msec, FA: 70°, ST: 40 mm, FR:
1.1 fps
Attiaetal”® 15T 2D FLASH, TR/TE: 2.36/0.83 msec,
FA: 25°, ST: 20 mm, FR: 2 fps
Rubeetal’® 15T bSSFP, TR/TE: 4.8/6.9 msec, FA: 70°,
ST: 5 mm, FR: N.A.
spiral bSSFP, TR/TE: 3.5/20 msec, FA:
70°, ST: 7 mm, FR: N.A.
FGRE, TR/TE: 3/7.4 msec, FA:
<30/60°, ST: 5 mm, FR: N.A.
state precession; TR/TE: repetition time/echo time; 2D: two-dimensional; 3D: three-dimensional.

COMPLICATIONS. The 33 included animal studies per-
formed a total of 277 interventions. Complications were
reported during 16 interventions, resulting in a complication
rate of 5.8%. The reported complications were: arterial dis-
section (3), endoleak (2), artery rupture/perforation (2), death
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after perforation of aortic coarctation (2), extravascular hema-
toma after wire perforation of the artery (1), contrast extrava-
sation after wire exiting artery (1), arterial dissection with
lethal mediastinal hematoma (1), renal artery occlusion (1),
severe arrhythmia with hemodynamic instability (1), incorrect
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TABLE 3. Challenges Related to MRI-Guided Endovascular Interventions and the Number of Articles Discussing the

Challenges

Challenges

Low temporal/spatial
resolution

Device visibility

Device safety

Usability/design of guidewire
Unavailability of devices

Limited patient access

Lengthy procedure times

Other challenges related to
MRI only: Manual slice
alignment (7)

Tracking issues (4)

No monitor in MRI room (1)

Acoustic noise (1)

Sterility issues (1)

Requirement of a 3D roadmap
(1)

MRI-related exclusion criteria
(1)

Latency of MRI acquisition
(1)

Other challenges related to
MRI and guidewire: Large
stent artifacts (5)

November 2022

Number of articles discussing
the challenges (% from total

included articles) Current state/potential solution

17/43 (39.5%) Faster MRI techniques continue to evolve and
improve. Dedicated imaging protocols are
required per application

14/43 (33.3%) Knowledge of the effects of MRI and marker
parameters can be used to optimize device
visibility. Devices that are integrated with tracking
and/or scanner imaging control could be highly

beneficial
13/43 (30%) Several MRI-compatible CE and FDA-approved

devices are currently available.* However, more
different device types are required to catheterize
all arteries and enable more intervention types.
Furthermore, besides safety, the usability and
design should be adequate. If the incentive for
MRI-guided endovascular interventions will
increase, the industry will likely resolve the issues

regarding safety, usability, and availability of

devices
8/43 (18.6%) See “Device safety”
8/43 (18.6%) See “Device safety”
6/43 (13.9%) Improvements in low-field MRI can facilitate better

patient access and acceptable interventional
imaging capabilities”'

4/43 (9.3%) An integrated workflow utilizing automatic device
tracking and image plane adjustment could
reduce procedure times. In addition, the
procedure time is expected to decrease while
progressing through the learning curve

14/43 (33.3%) Automatic slice adjustment and tracking can be
realized by novel artificial intelligent-based
systems. The absence of physical monitors,
acoustic noise, and sterility issues currently do not
withhold other disciplines from performing
interventions using MRI guidance

10/43 (23.3%) Although specific stents that induce smaller
susceptibility artifacts are available, and lumen
visualization can be improved by reducing

radiofrequency artifacts.”®>” stent artifacts will
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TABLE 3. Continued

Challenges included articles)

Low stent placement accuracy
2)

No artifact size adjustment (2)

Radiofrequency shielding
within stent lumen (1)

Required learning curve (1)

Number of articles discussing
the challenges (% from total

Current state/potential solution

keep causing visibility issues. It is advised to take
these issues into consideration for procedures
where stenting is required

stent placement (1) and incomplete stent deployment (1). In
22 studies, the presence or absence of complications has not
been reported.

Out of four human studies, only one study reported
complications, namely the study of Manke et al.*' In this
study subintimal recanalization (1), misplacement of the stent
(1), minor groin hematoma (3), and femoral artery pseudo-
aneurysm (1) occurred. Complications were absent in two
other human studies, whereas one study did not report the
presence or absence of complications. Neglecting the groin
complications, which are unrelated to the choice of imaging
modality, a total of three complications occurred in 34 inter-
ventions (8.8%).

PROCEDURE TIMES. The procedure time was reported in
one phantom study. The mean procedure time for MRI-
guided balloon angioplasty was 9 minutes.”® Out of the
33 animal studies, 17 reported procedure times, with times
ranging from 2 to 123 minutes. It must be noted that the
definition of procedure times was different for the various
studies and was, in general, not clearly specified. One study
compared the procedure times for MRI-guided renal angio-
plasty in swine with fluoroscopy guidance, with a mean pro-
cedure time of 77 + 46 minutes for MRI guidance and
Raval et al
compared procedure times for angioplasty in chronic total

31 4+ 18 minutes for fluoroscopy guidance.!

iliac artery occlusion with a mean procedure time of 55 and
45 minutes for MRI and fluoroscopy guidance, respectively.*?

Two human studies reported the total procedure time,
with mean times of 73.3 minutes for both angioplasty and
stent placement® and 31.1 minutes for angioplasty alone.'’
The procedure times ranged between 22 and 122 minutes.
Both studies showed a steep learning curve, with average
times of 91 and 38.8 minutes in the first part of the cohort,

and 60 and 26.2 minutes in the second part of the cohort.

COMPARATIVE STUDIES. From the selected studies, seven
studies (one phantom, six animal) made a comparison of
the outcomes between MRI guidance and fluoroscopy

41,42,56,57 2,10

guidance, tracking techniques (active versus passive),
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or between low and high main magnetic field MRL>® In phan-
tom experiments, Rube et al did not find differences in proce-
dure time and success rate between MRI and fluoroscopy
guidance.” Inferior results for MRI guidance compared to fluo-
roscopy in terms of success rate, procedure time, and the num-
ber of complications for renal angjoplasty in swine were
reported by Omary et al.* On the other hand, Raval et al
reported superior results for MRI guidance to treat chronic total
occlusions in swine, showing higher success rates and fewer
complications compared to fluoroscopy guidance.”” Raval et al
reported shorter procedure times for active tracking compared to
the use of passive marker devices for balloon angioplasty in ani-
mals.” This is in concordance with results reported by Frericks
et al.'” Furthermore, the results showed a lower stent placement
accuracy for passive tracking in renal arteries in swine. The com-
parison between low and high magnetic field in MRI guidance
made by Wacker et al showed reduced procedure times for
higher magnetic fields but did not show large differences in

. L 38
technical success rate or stent placement accuracy in pigs.”

CURRENT CHALLENGES. Several challenges for MRI-guided
endovascular interventions are described within the included
articles (Table 3). From the total of 43 included articles,
42 studies reported one or more challenges. MRI-related chal-
lenges were most often mentioned, with low spatial and/or
temporal resolution being a major hurdle and discussed in
17/43 articles. Furthermore, device visibility, safety, and prac-
tical issues (ie, time-consuming manual slice steering, acoustic
noise, and limited patient access) were identified as challeng-
ing factors.

Discussion

This review objectifies outcomes for MRI-guided arterial end-
ovascular treatments and shows that proper investigation of
the clinical value of these procedures is still limited. Overall,
only four studies were identified that performed MRI-guided
endovascular procedures in humans and none of those
compared the outcomes with fluoroscopy, the current gold
standard. Phantom, animal, and human studies showed that
MRI-guided endovascular interventions are feasible, promising,

Volume 56, No. 5



Nijsink et al

and showed improved postprocedural clinical outcomes. How-
ever, the selected eligible studies were predominantly preclinical
or phase I studies, showing the need for additional research to
evaluate the feasibility and clinical relevance of MRI-guided
endovascular interventions.

In general, clinical outcomes, such as arterial diameter,
ankle-brachial index, and arterial flow, improved after MRI-
guided endovascular treatment. The reported outcomes in the
included human studies showed a technical success rate of
MRI-guided endovascular procedures comparable to the suc-
cess rate of peripheral arterial disease patients treated by con-

0
).6 However,

ventional endovascular interventions (76.8%
since no comparative human studies are available, it is diffi-
cult to directly compare these results. The mean complication
rate for MRI-guided arterial endovascular interventions
reported in the included studies is in concordance with com-
plication rates of 3% to 33% for fluoroscopy-guided endo-
vascular interventions, as reported in literature.® Tt should
be, however, noted that the results reported in this review are
extracted from studies with great heterogeneity and varying
complexity. Furthermore, the sample size of the studies was
rather small, making the outcomes less reliable and certainly
prone to underestimation because of the learning curve asso-
ciated with implementing new techniques.

The procedure times for MRI-guided endovascular
procedures are in line with the average times required for
fluoroscopy-guided PTA and stenting (30 minutes to
3 hours).®” The required procedure time, however, depends on
the technical difficulty and intervention type. Animal and
phantom studies that did directly compare MRI guidance with
fluoroscopy guidance showed comparable or prolonged proce-
dure times for MRI-guided procedures. Although longer proce-
dure times are expected for MRI guidance due to several
factors, for example, manual slice adjustments, lower temporal
resolution, and suboptimal tracking, it must be considered that
the MRI-guided procedures in the included studies were novel
and the procedure times will likely decrease after users gain
more experience. The effect of the learning curve has been
demonstrated by three included studies as their results showed
a reduction in procedure times after several procedures.'”*"*?

This review showed that the clinical performance in
terms of technical success, complication rates, and clinical
outcomes appears promising, but that the use of MRI guid-
ance is still associated with several challenges. A frequently
mentioned disadvantage of MRI guidance was related to the
spatial and temporal resolution, resulting in low image qual-
ity. Suboptimal image quality, in combination with manual
and additional steps such as manual slice steering, device visi-
bility, and the use of a 3D roadmap were limiting the use of
MRI guidance and likely prolonged procedure times, in par-
ticular, in early application stages. Also, device visibility,
safety, and usability were reported to be poor. Several studies
have already investigated how the different drawbacks of
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MRI-guided arterial interventions can be overcome. First of
all, several techniques for visualizing the device, such as active
and passive tracking have been proposed and improved. Visi-
bility in passive tracking can be improved by changing the
ferromagnetic properties of the markers or by altering MRI

63-6
parameters. 636

> Furthermore, negative and positive contrast
can be combined to track different devices simultaneously.*®
MRI sequences with optimized signal-to-noise ratio (SNR)
and improved device visibility have been proposed in several
articles.°>® Active tracking using loop coils or resonant coils
enable tracking of multiple devices in real-time with an accu-
racy of approximately 1 mm.®® Heating issues related to
active tracking should be taken into consideration, but it can
be mitigated by using saline coolant®” or MRI-compatible
materials. Although frame rates ~4 frames per second can be
sufficient during fluoroscopy guidance,”” MRI  imaging
sequences using interleaved spiral acquisition can be used to
acquire frame rates of up to 20 frames per second and have
been proposed to guide endovascular interventions.”” These
sequences may resolve the issues of low temporal resolution
mentioned in the included articles.”"”* Spatial resolution and
SNR are inversely correlated and determine the image quality.
The minimum required SNR and resolution, however, will
vary for different vessel sizes and marker visibility. In general,
the spatial resolution should at least be sufficient to visualize
the target vessel, that is, voxel size smaller than the targeted
vessel. Reports investigating MR-guided endovascular
interventions should include SNR measurements to facilitate
better comparison of imaging protocols and come to recom-
mendations on optimized image quality. High-field MRI sys-
tems (21.0 T) can be used to improve the SNR and further
optimize the balance between temporal and spatial resolution,
however, high-field MRI is associated with increased suscepti-
bility artifacts and increased safety risks. Contrary to closed
bore high-field MRI systems, open low-field MRI (<1.0 T)
systems enable improved patient access.”’ An alternative tech-
nique, besides MRI or fluoroscopy guidance, is (intravascular)
ultrasound guidance.”>”* This modality can provide addi-
tional detailed anatomical and functional information during
the endovascular intervention. Ultrasound guidance is, how-
ever, limited because it hardly penetrates bone, is reflected at
tissue—air interfaces, and is operator-dependent.

Availability of suitable MRI-compatible endovascular
devices with CE or FDA approval for use in MRI is crucial,
however many studies reported that suitable devices are
scarcely available.”” Besides the good visibility, the physical
characteristics of the device, such as torque, steerability, and
risk for device kinking should be comparable to, or better
than the current devices. At the moment, a limited number
of CE-, or FDA-approved MRI-compatible guidewires are
commercially available.* If more MRI-conditional devices
become available, faster clinical implementation of MRI-
guided endovascular interventions is possible.”®
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In the included articles, the time-consuming manual
adjustment of imaging planes was considered cumbersome.
Protocols that allow communication with, and controlling of
the MRI system in combination with automatic marker
detection can replace this manual task, reducing the proce-
dure time. Several studies have been investigating these tech-
niques with promising results in preclinical studies.””
Finally, automatic detection and plane adjustment can be
coupled to a robotic manipulator to control the motion of
the endovascular devices. This enables physicians to perform
the procedure without being hindered by limited patient
access.

Although the abovementioned solutions have been pro-
posed and potentially make the barrier to embrace MRI-
guided endovascular procedure lower, the actual clinical
implementation of MRI-guided interventions is still limited.
A reason for this lack of adoption might be the absence of
clinical demand for the advantages of MRI in relation to the
accompanying disadvantages and costs. It can, therefore, be
anticipated that MRI guidance will not be implemented in
standard procedures due to high costs, insufficient quality of
real-time imaging, and limited patient access. In these situa-
tions, the standard fluoroscopy guidance is a cheap and con-
venient technology, serving the requirements for appropriate
guidance without the MRI-related safety risks. On the other
hand, the advantages of MRI guidance in specific cases, for
example, in pediatric or renal impaired patients, might be
substantial, since the lack of radiation and the functional
imaging capabilities could lead to better outcomes. Also,
unconventional procedures, such as minimally invasive endo-
vascular bypass surgery, which are impossible using 2D fluo-
roscopy guidance, can potentially be realized using the
advantages of MRI. Furthermore, diagnostic outcomes, such
as pulmonary vascular resistance, cardiac output, and hemo-
dynamic measurements, can be accurately determined using
MRI-guided catheterization.®" Contrary to diagnostic proce-
dures, MRI-guided cardiac interventions such as balloon
angioplasty, valvuloplasty, or ablation of atrial flutter are
sparse, partly due to the lack of procedure-specific MRI-
compatible devices.*"** Notwithstanding advancements in
MRI and image processing techniques, an increased availabil-
ity of MRI-compatible endovascular devices will be required
to enable wider clinical adoption.

Next to solving the reported challenges, additional
research comparing the outcomes with fluoroscopy guidance
is required before MRI guidance of arterial interventions
should be implemented in the clinical setting. Innovations
with regards to imaging and device tracking can result in
improved outcomes for MRI-guided endovascular interven-
tions. Furthermore, new developments on functional imaging
enable evaluation of postprocedural change in flow or perfu-
sion and make treatment adjustment during the actual proce-
dure possible.®” These innovations will increase the incentive
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to implement MRI guidance for endovascular interventions,
g

however, it remains important to evaluate the cost-

effectiveness and usability.

Conclusion

In conclusion, MRI-guided endovascular interventions in the
arterial system seem feasible, however, in vivo studies, espe-
cially in humans, are sparse and limited to single-center case
series. Although included articles in this review report accept-
able complication rates, technical success, and procedure
times for MRI-guided endovascular interventions, the scarcity
and low quality of data complicate an adequate interpretation
of the actual clinical relevance for MRI guidance. Several
main challenges have been identified that should be addressed
before larger comparative trials can be undertaken. Main areas
of research should focus on adequate imaging protocols,
improved visibility, safety, and usability of MRI-compatible
devices and dedicated algorithms for automatic device track-
ing and slice steering. Furthermore, it should be investigated
which procedures profit from the advantages such as high
soft-tissue contrast and 3D imaging in order to accept the
challenges related to MRI-guided endovascular arterial
interventions.
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