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Abstract: Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease associated with
synovial tissue proliferation, pannus formation, cartilage destruction, and systemic complications.
Currently, advanced understandings of the pathologic mechanisms of autoreactive CD4+ T cells, B
cells, macrophages, inflammatory cytokines, chemokines, and autoantibodies that cause RA have
been achieved, despite the fact that much remains to be elucidated. This review provides an updated
pathogenesis of RA which will unveil novel therapeutic targets.
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1. Introduction

Rheumatoid arthritis (RA) is a chronic, inflammatory, systemic autoimmune disease
that is associated with progressive disability, systemic complications, and early death [1,2].
RA is characterized by synovial inflammation and hyperplasia, production of autoanti-
bodies including rheumatoid factor (RF) and anti-citrullinated protein antibody (ACPA),
cartilage and bone deformities, and systemic features including cardiovascular, pulmonary,
psychological, skin, and skeletal disorders [2].

In recent decades, we have obtained new genetic and pathogenetic insights along with
new developments in RA disease assessment and therapeutic strategies, which have led
to the approval of a variety of novel therapies [3]. In this review, we focus on the roles of
diverse immune cells along with the wide spectrum of molecular mechanisms involved
in the pathogenesis and clinical expression of RA, as well as their possible contribution to
treatment response and precision medicine.

2. Epidemiology

Most epidemiological studies in RA have been conducted in Western countries, show-
ing an RA prevalence in the range of 0.5–1.0% in the US [4]. In general, women are 2–3 times
more likely to develop RA than men. Indeed, the cumulative lifetime risk of developing
adult-onset RA has been roughly estimated at 3.6% for women and 1.7% for men [5,6].

RA has a strong genetic component. Twin studies have estimated the heritability of
RA to be approximately 60% [7]. This number is observed in ACPA-positive patients, while
estimates of seronegative diseases are lower. However, the disease concordance of identical
twins is only 12–15%, indicating that environmental factors also play an important role in
susceptibility.

About 100 loci have been identified across genomes harboring RA susceptibility
variants by genome-wide association studies [8–10], with fine mapping [11], candidate
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gene approaches [12,13], and a meta-analysis of genome-wide association studies involving
>100,000 individuals [14]. In particular, specific class II human leukocyte antigen (HLA; also
known as major histocompatibility complex (MHC)) loci, which encode MHC molecules
that may contain a shared epitope, show a very strong susceptibility to RA, consistent with
classical findings [15].

Smoking, silica exposure, and periodontal disease are environmental risk factors for
developing RA [16–18].

Both genetic and environmental risk factors contribute to RA, and multiple risk factors
may be required before the threshold at which RA is triggered. Disease progression
includes asymptomatic synovitis and the initiation and dissemination of autoimmunity
against altered auto-proteins that can occur years before clinical symptoms begin [3].

3. Diagnosis

The diagnosis of RA is based on the 2010 American College of Rheumatology (ACR)/
European League Against Rheumatism (EULAR) classification criteria (Table 1) [19]. Appli-
cation of these criteria provides a score of 0–10, with a score of ≥6 being satisfactory for the
diagnosis of definite RA. The 2010 ACR/EULAR criteria included serologic testing (RF or
ACPA). The diagnostic criteria for ACPA are presentation of an early disease course and
prediction of an aggressive disease course [20].

Table 1. The 2010 ACR/EULAR classification criteria for RA.

Classification Criteria for RA (Total Score ≥ 6 is Considered Satisfactory for the
Diagnosis of RA) Score

joint involvement
(swollen or tender

joint)

1 large joint (shoulders, elbows, hips, knees, and ankles) 0
2–10 large joints 1

1–3 small joints (with or without involvement of large joints) * 2
4–10 small joints (with or without involvement of large joints) 3

>10 joints (at least 1 small joint) ** 5

serology

Negative RF and negative ACPA (≤upper limit of normal
(ULN)) 0

Low-positive RF or low-positive ACPA (≤ULN and ≤3 times) 2
High-positive RF or high-positive ACPA (≤3 times) 3

acute-phase
reactants

Normal CRP and normal ESR 0
Abnormal CRP or abnormal ESR 1

duration of
symptoms

<6 weeks 0
≥6 weeks 1

CRP = C-reactive protein; ESR = erythrocyte sedimentation rate. * “Small joints” refers to the metacarpophalangeal
joints, proximal interphalangeal joints, second through fifth metatarsophalangeal joints, thumb interphalangeal
joints, and wrists. ** In this category, at least 1 of the involved joints must be a small joint; the other joints can
include any combination of large and additional small joints, as well as other joints not specifically listed elsewhere
(temporomandibular, acromioclavicular, sternoclavicular, etc.).

In addition to RF and ACPA, antibodies to mutant citrullinated vimentin (MCV)
may be useful additional biomarkers in an array of diagnostic tools for RA. Anti-MCV
antibodies recognize a protein that is derived from apoptotic macrophages and is present
in the synovium of RA patients [21]. A meta-analysis showed that anti-MCV antibodies
demonstrate comparable diagnostic value to anti-CCP and RF, and they can be an effective
diagnostic marker for RA. Thus, anti-MCV antibodies may be an alternative test, used in
patients suspected of RA, but with anti-CCP and RF negative [22].

4. Molecular Mechanisms in the Pathogenesis
4.1. Synovium

Synovial tissue in RA patients can be considered as tertiary lymphoid tissue (TLT) or
an ectopic lymphoid structure (ELS). Its structure resembles the secondary lymphoid tissue
where T cell and B cell differentiation occurs. TLTs are correlated with autoantibody titers,



Int. J. Mol. Sci. 2022, 23, 905 3 of 15

inflammatory cytokine levels, and disease severity in RA patients, indicating that TLTs are
related to the persistent inflammation in RA [23].

There are two important pathogenetic changes in the synovial membrane of RA. Re-
garding the first, the intima is greatly expanded due to the increase in and activation of
both synoviocyte types—macrophage-like synoviocytes (MLSs) and fibroblast-like synovio-
cytes (FLSs), which are prominent sources of cytokines and proteases, including integrins,
selectins, and members of the immunoglobulin superfamily. MLSs produce a variety of
pro-inflammatory cytokines, including IL-1, IL-6, and tumor necrosis factor (TNF)-α [3].
FLSs express not only IL-6, but also huge amounts of matrix metalloproteinases (MMPs)
and small-molecule mediators (prostaglandins and leukotrienes) [24]. In addition, FLSs aid
in the activation of immune responses by interacting with immune cells and by supporting
ELS formation in synovial tissues [25]. The second is infiltration of adaptive immune cells
into the synovial sublining. This leads to hallmark “pannus” formation at cartilage–bone
interfaces [26]. Pannus can be composed of macrophages, FLSs, dendritic or plasma cells,
and mast cells, and it mediates damage and erosion formation in later disease [27,28].

Half of the sublining cells are CD4+ memory T cells, which either diffusely infiltrate
tissues or form ectopic germ centers where mature B cells proliferate, differentiate, and
produce antibodies [3]. There are also B cells, plasmablasts, and plasma cells present, many
of which produce RF or ACPAs [29].

4.2. T Cell-Mediated Immune Response in RA

The long-standing association of the human leukocyte antigen (HLA)-DRB1 locus with
patients with RA suggests the influence of T cell selection and antigen presentation in the
induction of autoreactive immune responses [2,30]. RA is driven by CD4+ T lymphocytes,
meaning IL-6 is an important mediator of bony destruction in RA because it regulates
T lymphocyte production and inflammation [31]. Although IFN-γ levels are not high
in the synovial membrane of patients with RA, the cytokine is regarded pivotal in RA
pathogenesis. Not only IFN-γ-producing Th1 cells but also IL-17-producing helper T (Th17)
cells have important roles in RA development [30,32]. There are two types of Th17 cells,
“pathogenic” Th17 cells and “non-pathogenic” Th17 cells, depending on the cytokine milieu
present during the differentiation process. Usually, “pathogenic” Th17 cells are considered
to be positive regulators of immune responses because they produce pro-inflammatory
cytokines, including IL-17A, IL-17F, and IL-22. Conversely, “non-pathogenic” Th17 cells
may secrete immunosuppressive factors such as IL-10 to negatively modulate the immune
response [33]. In RA, pathogenic Th17 cells play a very important role. Among different
cytokines that this Th17 subtype produces is granulocyte-macrophage colony-stimulating
factor (GM-CSF), or IL-22. Some studies have shown that the signaling pathway of IL-22
(GM-CSF) may be activated in RA pathogenesis [34,35].

IL-17 induces pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in the
cartilage, synovial cells, macrophages, and bone cells [36,37]. IL-17 also stimulates the
production of several chemokines, including CXCL1 (KC/Groα), CXCL2 (MIP2α/Groβ),
CXCL8(IL-8), CCL2 (MCP1), CCL7 (MCP3), and CCL20 (MIP-3α). They serve to enhance
inflammation by recruiting neutrophils, macrophages, and lymphocytes to the synovial
membrane [37]. IL-17 deficiency ameliorated the development of arthritis [38,39]. There-
fore, several IL-17A blockers have been evaluated in clinical trials, including the anti-IL-17A
monoclonal antibodies (secukinumab and ixekizumab) and the anti-IL-17 receptor subunit
A monoclonal antibody (brodalumab). However, the results showed no incremental benefit
in patients with background methotrexate who have had an inadequate response to a prior
TNF-α inhibitor [40,41]. Not only IL-17 but also IL-22 promotes inflammatory responses
in RA synovium by inducing proliferation and chemokine production of synovial fibrob-
lasts [42]. In RA, pro-inflammatory mediators may interfere with T cell regulation and
induce T cell plasticity. The inflammatory environment also induces regulatory (Treg) cell
expansion so that large numbers of proliferating Treg cells are detected in the patient’s
inflamed joints [43]. Treg cells may become less functional or even pathogenic in autoim-
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mune inflammatory environments. For example, IL-1β and IL-6 downregulate forkhead
box P3 (Foxp3) expression, and they reduce Treg inhibitory function [30,44]. Foxp3 is a
key regulator or immunosuppressor in Treg cells and participates in the gene expression,
function, and survival of Treg cells. Its expression is regulated by transcriptional regulation,
epigenetic regulation, and post-translational regulation and is essential for the maintenance
of immune self-tolerance [45,46]. The transcription factors Nuclear factor of activated T-
cells (NFAT), signal transducer and activator of transcription 5 (STAT5), and Foxo1 regulate
the expression of Foxp3 by directly interacting with the Foxp3 gene promoter. Elements of
the conserved noncoding sequence (CNS) in the Foxp3 gene region recruit transcription
factors to regulate gene expression [47,48].

In summary, T cells (T helper (Th)1, Th17, Treg, and Th22) initiate a serial cascade
(rolling, arrest, spreading, crawling, and migration) and eventually extravasate from blood
vessels to the inflamed joint [30]. Recent studies have shown that differentiated CD4+ T
cell subpopulations exhibit a high degree of plasticity. That is, FoxP3+ regulatory T cells
(Tregs) and Th1 and Th17 effector T cells demonstrate high levels of plasticity, allowing
functional adaptation to various physiological situations during the immune response via
IL-1, IL-6, IL-12, IL-17, and IFN-γ. Therefore, the plasticity of CD-4+ T cells may have
evolved to remain resilient, as well as stable, making the immune system most flexible to
respond to pathogens and environmental changes. However, this flexibility also includes
potential threats to the host. This is because deregulation of this system increases the risk of
autoimmune development. Therefore, factors regulating Treg and Th17 plasticity could be
goals for immunotherapy targeting the manipulation of the immune system in the setting
of autoimmune diseases [49].

Despite the abundance of T cells in the synovial environment, the functional role
of T cells remains not yet fully understood. Direct targeting of T cells by cyclosporine
or T cell-depleting therapeutics has been shown to be limited or ineffective [50]. On the
other hand, abatacept, an inhibitor of CD28-mediated T cell activation, has been shown
to be effective in regulating inflammation during RA. Abatacept’s efficiency in achieving
remittance in RA can be attributed, in part, to its ability to enhance immune regulatory
cells, particularly IL-35 + IL-10 + regulatory B (Breg) cells [51].

4.3. B Cell-Mediated Immune Response in RA

The functions of B cells, namely, autoantibody production, antigen presentation, and
cytokine secretion, are related to the pathogenesis of RA (Figure 1) [23,52].
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4.3.1. Autoantibody Production

Autoantibodies are mainly secreted and produced by Toll-like receptor (TLR) driven
autoreactive B cells after differentiation into plasma cells [53]. The cross-reactivity of some
proteins with post-translational modification (PTM) and foreign antigens may lead to the
expansion of autoreactive B cells in RA [54]. Additionally, excessive activation-induced
cytidine deaminase (AID) expression in B cells of RA patients associates with the high
levels of T helper cell cytokines IFN-γ and IL-17, leading to the development of anti-CCP
and RF [55]. Proliferation of germinal center B cells replaces the naive circulating B cells
that currently form the follicular mantle region. The germinal center has two zones: the
dark zone (filled with dividing GC B cells known as centroblasts), and the light zone (filled
with follicular dendritic cells (FDCs) with surface-bound antigens). FDCs bind antigens in
the form of immune complexes. Dividing centroblasts acquire somatic hypermutations in
immunoglobulin variable region genes [56]. The autoantibodies of RA mainly include RF,
ACPA, anti-modified citrullinated vimentin antibody, anti-carbamylated protein antibody,
anti-PAD-4 antibody, and anti-GPI antibody. Among the RA-related autoantibodies, ACPA
has the most remarkable prognostic value concerning RA onset among symptomatic at-risk
patients [57]. There are some differences between RF and ACPA. ACPA-positive B cells
undergo multiple rounds of germinal center responses that lead to a high level of somatic
hypermutations and isotype switching. In contrast, RF-positive B cells undergo several
rounds of germinal center responses with only a modest number of somatic mutations
including two transcription factors (BACH2 and SOX11) and can be activated by innate
immune mechanisms, while ACPA-positive B cells show enriched differentially expressed
genes associated with T cell-dependent B cell differentiation. Therefore, the citrulline-
specific immune response produces relatively stable long-living plasma cells and ACPA
autoantibodies, whereas the RF response is characterized by the generation of short-living
plasma cells and fluctuating RF levels (Figure 2) [58].
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Rheumatoid factor (RF) is an antibody that recognizes the Fc portion of immunoglobulin-
G (IgG). Additionally, RF was the first type of autoantibody detected in RA and used in the
1987 ACR classification criteria for RA [59]. Although the classical Waaler–Rose assay relies
mainly on IgM antibodies, RF activity can be found in almost all types of immunoglobulins



Int. J. Mol. Sci. 2022, 23, 905 6 of 15

(IgA, IgG, and IgM) [60]. Various titers and isotypes of RF can be observed in a wide range
of different diseases [61], and high titers of IgM and IgA are thought to be highly indicative
of RA [62]. Whether RF levels correlate with clinical disease activity is in debate. RF levels
have the potential to revert and convert during the early course of disease. Additionally,
RF fluctuations are not associated with clinical outcomes [63]. Nevertheless, RF remains a
useful diagnostic marker of RA used in routine clinical practice [64].

Anti-citrullinated protein antibodies (ACPAs) are an important parameter to help rheuma-
tologists set a diagnosis of early RA and start initial treatment [65]. Since inflammation plays
a central role in the pathogenesis of RA, it has been suggested and demonstrated that ACPA
can activate immune cells and upregulate pro-inflammatory cytokine production [64].

Multiple studies have demonstrated that elevated ACPA levels are present in preclini-
cal RA, and the presence of ACPA is highly specific for predicting the future development
of RA, with a specificity of 85–95% and a sensitivity of 67% [66–68]. Therefore, ACPAs have
been included in the widely used ACR/EULAR 2010 classification criteria [20]. ACPAs are
directed against citrulline residues on proteins or peptides. Citrullination is an irreversible
PTM of arginine mediated by enzymes called peptidyl arginine deaminases (PADs) [64].
Consequently, many citrullinated proteins (fibrinogen, a-enolase, vimentin, and collagen
type II) have been shown to be recognized by ACPA [69–72]. In mouse models, murine
and passively transferred human ACPAs substantially contributed to arthritis [73]. In vitro
studies have shown that ACPA exerts a biological function, particularly by binding to
Fc receptors expressed by immune cells of the myeloid lineage and activating the com-
plement system through classical and alternative pathways [74]. It was demonstrated
that complexes consisting of citrullinated fibrinogen and ACPA (CitFibr-ACPA) present
in the RA synovial membrane can stimulate macrophages via dual engagement of TLR-4
and FcγR, resulting in the synergistic induction of TNF-α production. This suggests a
potential role for citrullination in increasing the efficacy of endogenous innate immune
ligands and providing insight into the mechanisms by which anti-citrulline autoimmu-
nity may contribute to the pathogenesis and spread of inflammation in RA [75–77]. In
particular, the strong FcR-mediated or complement-dependent pathogenic potential of
immune complexes containing both ACPA and IgM or IgA RF has been established using
autoantibodies from RA patients [78]. Additionally, another ACPA-mediated mechanism
of TNF-α induction that may operate in RA has been described. Through binding to
surface, over-expressed, citrullinated glucose-regulated protein 78 on RA peripheral blood
mononuclear cells, ACPAs selectively activate the ERK1/2 and JNK signaling pathways to
enhance IKK-α phosphorylation, which leads to the activation of NF-κB and the production
of TNF-α [79].

The pathogenic activity of ACPA in RA is also associated with the induction of neu-
trophil cellular traps (NETosis), a specific type of cellular death that consists in the extrusion
of the intracellular material (DNA, histones, IL-17A, TNF-α, granular and cytoplasmic pro-
teins) by neutrophils. Anti-citrullinated vimentin antibodies were shown to potently induce
NET formation [80]. Accelerated NETosis in RA is a source of citrullinated autoantigens
and PAD enzymes that can citrulline extracellular proteins when released from intracellular
compartments [80,81], further promoting ACPA production. Thus, stimulation of NET
formation by ACPA could perpetuate inflammatory and autoimmune processes in RA [74].

In some studies, ACPA specific for mutated citrullinated vimentin (MCV) purified
from the serum of RA patients bound to the surface of osteoclasts and osteoclast progenitor
cells, induced their differentiation, and activated bone-resorbing activity [82]. All these
ACPA-mediated processes may be involved in the development and vicious cycle of RA.

4.3.2. Antigen Presentation

There are three main types of antigen-presenting cells in the human body: dendritic
cells (DC), macrophages, and B cells. The presentation of specific antigens via B cell antigen
receptor occurs with very high efficiency and results in the activation of cognate T cells [83].
In RA, B cells, such as APCs, present their own antigens to CD4+ T helper cells, primarily.
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CD4+ helper T cells are divided into follicular helper cells (Tfh) and peripheral helper
cells (Tph). The majority of reports revealed that in the blood of RA patients, there is an
increase in the circulating Tph and Tfh cell frequency, compared to healthy controls [84].
Pathogenic Th17 cells secrete pro-inflammatory cytokines such as IL-21, which play key
roles in synovial inflammation via B cell activation, proliferation, differentiation, affinity
maturation, and antibody production [83,85]. The level of serum interleukin (IL)-21 in RA
patients showed a positive correlation with the erythrocyte sedimentation rate (ESR), RF,
C-reactive protein (CRP), and ACPA [86].

4.3.3. Cytokine Secretion

The synovial membrane of RA patients contains a complex network of cytokines that
are related to the development of RA. B cells in the peripheral blood of RA patients can
secrete many cytokines including CCL3, TNF-α, IFN-γ, IL-6, IL-1β, IL-17, and IL-18 [23,87].
TNF-α can increase the expression of RANKL by B cells in the presence of IL-1β, thereby
promoting the formation of osteoclasts [88,89].

Regulatory B (Breg) cells are a type of B cell that exerts immunosuppressive functions.
Breg cells are mainly responsible for the production of anti-inflammatory cytokines (IL-10,
TGF-β, and IL-35). Therefore, Breg cells may inhibit RA progression [23,90,91]. Human
Breg cells are predominantly enriched in transitional (CD19+CD24hiCD38hi) and memory
(CD19+CD24hiCD27+) B cells [23]. RA patients with active disease had reduced numbers
of CD19+CD24hiCD38hi B cells in the peripheral blood compared to patients with inactive
disease or healthy individuals. These results suggest that CD19+CD24hiCD38hi B cells
with a regulatory function may fail to prevent the development of autoimmune responses
and inflammation in patients with active RA [92]. Additionally, CD19+CD24hiCD38hi B
cells can reduce ACPA production while inhibiting the production of inflammatory factors
such as IFN-γ and IL-21 by T cells in RA patients [23].

4.3.4. Osteoclast Activation

Bone osteostasis is regulated by a balance between osteoblastic bone formation and
osteoclastic bone resorption. Memory B cells have been described to express NF-κB ligand
(RANKL), a key cytokine that regulates bone homeostasis [93–95]. Therefore, ACPA-
positive RA patients exhibit more pronounced trabecular bone resorption at the distal
radius compared to seronegative RA patients, independent of disease duration, activity,
and treatments [96].

Some experiments have shown that the increasing number of RANKL-expressing
plasma cells enhanced the formation of bone-resorbing osteoclasts. This suggests that
plasma cells promote osteoclastogenesis in RA [97].

4.4. Innate Immunity-Mediated Immune Response in RA

In recent decades, new research has revealed that the innate immune system plays
an important role in the initiation and progression of RA. A variety of innate immune
cells, including monocytes, macrophages, and dendritic cells, are involved in the inflam-
matory response seen in RA patients, and they induce activation of the adaptive immune
system, which plays an important role in the later stages of the disease [98]. Macrophages
are the most abundant immune cells found in RA synovium, where they produce the
predominant pro-inflammatory cytokines involved in RA pathogenesis (TNFα, IL-1β,
and IL-6), with chemoattractant factors (CCL2 and IL-8) and metalloproteinases (MMP-3
and MMP-12) [99,100]. Classically activated macrophages (M1) induce joint erosion, se-
creting mainly pro-inflammatory cytokines such as TNF-α and IL-1. Alternatively, anti-
inflammatory cytokines (mainly IL-10 and TGF-β) activate macrophages (M2) which reg-
ulate inflammation and contribute to angiogenesis, tissue remodeling, and repair [101].
Recent studies have shown that there is an imbalance of macrophage subsets from the
synovial fluid of patients with RA, where the M1/M2 ratio is higher in patients with RA
compared to patients with OA [102].
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Dendritic cells (DCs) have the ability to induce tolerance or autoimmunity depending
on the various signals that they receive from the joint environment [98]. DCs can promote
resistance through several mechanisms, including generation and maintenance of Treg cells,
as well as induction of T cell unresponsiveness [103]. Conversely, the antigen-presenting
ability of DCs may promote priming and/or effector differentiation of self-reactive T cells.
In inflamed RA synovium, most antigen-presenting cells (APCs) are fully differentiated DCs
expressing high levels of class I and II MHCs and T cell co-stimulatory molecules [98,104].
The phenotype and function of DCs play a complex and dichotomous role in the patho-
genesis of RA [98]. There are two major DC subsets involved in the pathogenesis of
RA—conventional DCs (cDCs) and plasmacytoid DCs (pDCs) [104]. cDCs can be broadly
subdivided into two subsets: cDC1 and cDC2, which are specialized in presenting endoge-
nous and exogenous antigens on both MHC-I and II to CD8 and CD4 T cells. On the other
side, pDCs are found circulating in the blood and in peripheral organs and are uniquely
able to rapidly produce large amounts of type I interferons upon viral infection [105].

Natural killer (NK) cells may be divided into the CD56dim subset and the CD56bright
subset. CD56bright can increase TNF production by CD14+ monocytes in a contact-
dependent manner when activated with IL-12, IL-15, or IL-18 [106]. Granzyme B plays a
role in promoting autoimmunity, generating new epitopes, and inducing direct cartilage
damage [107]. There are three different groups of innate lymphocytes (ILCs): ILC1, ILC2,
ILC3. NK cells belong to the first group. ILCs are mostly tissue-resident cells and are
deeply integrated into the fabric of tissues, and recent studies have revealed that these
cells serve as a bridge between the innate and adaptive immune systems and are charac-
terized by the absence of recombination-activating genes (RAGs)—dependent rearranged
antigen-specific receptors [98]. According to a recent study that examined lymph node
(LN) biopsy specimens from 12 patients in the earliest phase of RA, no difference in the
frequency of total ILC was found, but RA patients had higher numbers of ILC1 and ILC3
in the LNs than seven healthy people. This finding indicates that the ILC distribution in
LNs changes from a homeostatic status to a more inflammatory status before and during
the early stages of RA development [108]. Additionally, further study has shown that ILC3
CCR6+ cells may play some roles in the development of RA through the production of
IL-17 and IL-22 [109]. In contrast to ILC1 and ILC3, ILC2 levels decrease in the synovial
membrane of RA patients, whereas levels are higher in the joint/circulatory system when
RA patients are in remission (96). Recently, IL-9-producing ILC2 cells have been identified
as mediators of molecular and cellular pathways that mediate the resolution of chronic
inflammation. In mice, the absence of IL-9 impaired ILC2 proliferation and activation of
Treg cells and resulted in chronic arthritis with cartilage destruction. In contrast, treatment
with IL-9 promoted ILC2-dependent Treg activation and induced inflammatory resolution.
In addition, patients with RA in remission showed high numbers of IL-9 + ILC2 cells in the
joints and blood [110].

5. Treatments Targeting the Pathogenic Cells and Cytokines
5.1. Currently Approved Biologic/Targeted Syntetic DMARDS

TNF-α is a pro-inflammatory cytokine produced when inflammation occurs by
macrophages and monocytes [111]. Binding to two distinct receptors (TNFR1 and TNFR2)
establishes different signaling cascades that can trigger the apoptosis, differentiation, pro-
liferation, and migration of inflammatory cells [112]. TNF-α inhibitors have been used
clinically to counterbalance the high TNF levels accounting for joint inflammation in
RA [111]. Currently available TNF inhibitors are etanercept, infliximab, adalimumab, goli-
mumab, and certolizumab pegol. TNF-α inhibitors have markedly improved treatment
outcomes in RA [113].

Rituximab is a chimeric monoclonal antibody that targets the CD20 molecule expressed
on the surface of 95% of human B cells. Additionally, the use of rituximab to deplete all B
cells except pro-B cells and plasma cells is currently the most widely used treatment for
RA [23,114].
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Abatacept (CTLA4-Ig) has been approved and successfully used to treat RA. Abatacept
inhibits the co-stimulation and activation of T cells, leading to the downregulation of
inflammatory mediators by binding to CD80 and CD86 on the surface of B cells [115].

IL-6 has been proved to be a central cytokine in RA pathogenesis by contributing to the
production of acute-phase proteins involved in the systemic progression of RA. The first IL-
6 blocker was tocilizumab, a humanized anti-IL-6 receptor monoclonal antibody. Recently,
sirukumab, olokizumab, clazakizumab, and sarilumab have been developed [116,117].

Janus kinase (JAK) mediates signaling through IL-6R and many other transmem-
brane receptors (cytokine receptors, G protein-coupled receptors, receptor tyrosine ki-
nases) [118,119]. JAK inhibitors are small molecule-targeted therapeutics and are the first
oral options to compare favorably with conventional biological disease-modifying an-
tirheumatic drugs (DMARDs); tofacitinib, baricitinib, and upadacitinib are the first JAK
inhibitors commercially available [120].

5.2. Therapeutic Approaches under Evaluation in Humans

Plasmablasts and plasma cells play very important roles in many autoimmune diseases,
such as rheumatoid arthritis (RA). In vitro experiments show that daratumumab (an anti-
CD38 monoclonal antibody) ablates plasma cells and plasmablasts in PBMCs of RA patients
in a dose-dependent manner. However, the efficacy and safety of daratumumab in the
treatment of RA patients still need to be confirmed [121].

Bruton’s tyrosine kinase (BTK), a member of the Tec family of nonreceptor tyrosine
kinases, is a cytoplasmic kinase expressed in B cells and myeloid cells [122]. BTK inhibitors
are a new class of drugs that inhibit B cell receptor activation, FC-γ receptor signaling, and
osteoclast proliferation [123]. Therefore, BTK inhibitors are promising new drugs with
potential efficacy in B cell malignancies. Ibrutinib, a first-in-class drug, has become one of
the world’s top five best-selling drugs, opening the door to an era of chemotherapy—free
management of B cell malignancies [124]. Currently, BTK inhibitors are being investigated
to treat a variety of autoimmune diseases, including RA. While the results of BTK inhibitors
in animal models of RA are good, the results of subsequent human clinical trials have been
somewhat ambiguous [123,125].

IL-21 is a potent pleiotropic cytokine involved in the activation/differentiation of
many immune cell types, including B and T cells. IL-21 regulates both innate and ac-
quired immune responses and plays a key role in anti-tumor and antiviral responses, as
well as inflammatory responses that promote the onset of autoimmune and inflammatory
diseases [126]. Some studies suggested that IL-21 has important biological effects in au-
toimmunity and might be a promising therapeutic target for RA [127]. A single dose of
NNC0114-0005 (≤25 mg/kg IV; ≤4 mg/kg SC), a human recombinant anti-interleukin
(IL)-21 monoclonal antibody, was well tolerated in healthy control and RA patients. Accu-
mulation of IL-21-containing complexes suggests neutralization of target cytokines. Based
on this, additional experiments were started to investigate the efficacy of anti-IL-21 [128].

Tabalumab, a monoclonal antibody that neutralizes membrane-bound and soluble
B cell activating factor (BAFF), was tested in patients with active RA who showed an
inadequate response to TNF inhibitors. Although the primary end point was not achieved,
an indication of efficacy was observed at earlier time points [129]. Other study results
showed that neither clinical efficacy nor significant safety signals were observed with
tabalumab, despite evidence of biological activity [130]. More studies are needed.

The CD40/CD40L axis plays a central role in the generation of the humoral immune
response and is an attractive target for the treatment of autoimmune diseases in the clinic.
VIB4920 (formerly MEDI4920) is an Fc-deficient CD40L antagonist that significantly re-
duced disease activity, achieving low disease activity or clinical remission in a phase 1
study [131].
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5.3. Potential Therapeutic Approaches

Autoreactive B cells play an important role in the pathogenesis of rheumatoid arthritis
(RA). To address the selective and persistent problem associated with RA therapy, using the
universal anti-fluorescein isothiocyanate (FITC) chimeric antigen receptor T cells (CAR-T
cells) coupled with FITC-labeled antigenic peptide epitopes, scholars developed a tailored
therapeutic strategy that eliminates recognizing B cell subsets. Additionally, the cytotoxicity
of the CAR-T cells was dependent on the presence of peptides and occurred in a dose-
dependent manner [132].

The therapeutic potential of mesenchymal stem cell transplantation (MSCT) as a
treatment for RA is expected. A proliferation-inducing ligand (APRIL), BAFF, and BAFF
receptors play important roles in the pathogenesis of RA. MSCT suppressed B cells by
decreasing the expression of the BAFF and APRIL genes [133].

Upon exposure to immunogenic stimuli such as microbial pathogens, the initiation
of inflammation and immune responses is mediated by Toll-like receptors (TLRs) which
activate cells of the innate immune system, including monocytes, macrophages, and den-
dritic cells [134]. Additionally, TLRs ligate to natural ligands expressed in RA joints,
leading to joint inflammation and osteoclast destruction. RA synovial tissue fibroblasts, M1
macrophages, Th16 cells, mature osteoclasts, and endothelial cells play important roles in
TLR-mediated RA pathology. Therefore, novel approaches are being tested to target TLR
function [135].

6. Conclusions

RA is a chronic, systemic autoimmune disease associated with proliferation of joint
synovial tissue, formation of pannus, destruction of cartilage, systemic complications, and
early death. The basic feature of RA is an autoimmune disorder in which autoreactive
CD4+ T cells, pathogenic B cells, macrophages, inflammatory cytokines, chemokines, and
autoantibodies are abnormally elevated. Accumulating data show diverse pathogenetic
mechanisms of RA involving complex roles of various immune cells. However, much
remains to be resolved. Through the advanced understandings of the complex mechanisms
of the disease, novel therapies that precisely target pathogenic molecules can be developed.
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