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Abstract: As a public health emergency of international concern, the highly contagious coronavirus
disease 2019 (COVID-19) pandemic has been identified as a severe threat to the lives of billions of
individuals. Lung cancer, a malignant tumor with the highest mortality rate, has brought significant
challenges to both human health and economic development. Natural products may play a pivotal
role in treating lung diseases. We reviewed published studies relating to natural products, used alone
or in combination with US Food and Drug Administration-approved drugs, active against severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and lung cancer from 1 January 2020 to
31 May 2021. A wide range of natural products can be considered promising anti-COVID-19 or anti-
lung cancer agents have gained widespread attention, including natural products as monotherapy
for the treatment of SARS-CoV-2 (ginkgolic acid, shiraiachrome A, resveratrol, and baicalein) or lung
cancer (daurisoline, graveospene A, deguelin, and erianin) or in combination with FDA-approved
anti-SARS-CoV-2 agents (cepharanthine plus nelfinavir, linoleic acid plus remdesivir) and anti-lung
cancer agents (curcumin and cisplatin, celastrol and gefitinib). Natural products have demonstrated
potential value and with the assistance of nanotechnology, combination drug therapies, and the
codrug strategy, this “natural remedy” could serve as a starting point for further drug development
in treating these lung diseases.

Keywords: natural product; SARS-CoV-2; lung cancer; United States Food and Drug Administration-
approved drug; natural remedy

1. Introduction

As a traditional source for modern pharmaceutical discovery and potential drug leads,
natural products have played an integral role in treating patients due to their unique
structural, chemical, and biological diversity [1–3]. The current race to identify efficacious
drugs, natural products with promising therapeutic effects has attracted significant at-
tention, especially for the prevention and treatment of lung diseases, such as pulmonary
fibrosis [4], asthma [5], acute lung injury [6], chronic obstructive pulmonary disease [7],
defective pulmonary innate immunity [8], coronavirus disease 2019 (COVID-19) [9], and
lung cancer [10]. Among the myriad of known lung maladies, COVID-19 and lung cancer
are currently the most important public health concerns and burdens worldwide [11,12].

The highly contagious COVID-19 pandemic, caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has spread quickly across all continents [13,14].
Presently, this global pandemic has posed a significant threat to the lives of billions of
individuals through human-to-human transmission [15,16]. In this scenario, the rapid
discovery of efficacious agents against the fast-spreading COVID-19 pandemic is currently
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a top priority of research across the world [17]. Lung cancer, globally, is a malignant tumor
with the highest mortality rate (accounting for 18% of all cancer deaths), and the five-year
survival rate is very low (only 10% to 20%) [18]. Non-small cell lung cancer (NSCLC), a
subtype of lung cancer with the highest incidence rate (accounting for about 85% of lung
cancer [19]), has brought significant threats and challenges to human life and health as well
as social and economic development. In this context, more aggressive drug trial protocols
investigating anti-lung cancer agents are another top research priority [20].

Significant progress had been made in the understanding of natural products active
against COVID-19 and lung cancer. However, there has been no hierarchical review (natural
product, monotherapy, or in combination with a US Food and Drug Administration (FDA)-
approved drug) covering the use of natural products (including natural product-based
nanoparticles) as high-quality therapeutic agents for the treatment of COVID-19 or lung
cancer in the literature. To underline systematically the potential importance of natural
products, including their biological activity and underlying molecular mechanisms, this
review will focus on the current knowledge of potential anti-COVID-19 or anti-lung cancer
agents. To explore the therapeutic value of natural products better, we have focused on
the current progress in representative chemical components against SARS-CoV-2 and lung
cancer based on evidence from promising in vitro studies published from 1 January 2020 to
31 May 2021 by interrogating online databases (such as Google Scholar, ACS Publications,
Wiley, MDPI, Web of Science, Science Direct, Springer, PubMed, and X-MOL), rather than
taking an exhaustively literature-driven approach. Our purpose is to provide a promising
“natural remedy” for the treatment of lung cancer and COVID-19.

2. Natural Products as Monotherapy for the Treatment of SARS-CoV-2

Natural products have demonstrated potential value, which supports this strategy as
an indispensable research focus in the fight against the COVID-19 epidemic [21,22]. The
chemical structures of the components described in this section are shown in Figure 1. The
SARS-CoV-2 main protease (Mpro), also called the 3C-like protease (3CLpro), has a vital
function in viral replication and is, therefore, a preferred drug target [23]. The papain-like
protease (PLpro), another prime therapeutic target, plays an essential role in maturing
viral RNA polyproteins and dysregulation of host inflammation [24]. Ginkgolic acid, a
phenolic acid, is an essential component of the traditional herbal medicine Ginkgo biloba
(EGb) [25]. A study has demonstrated that ginkgolic acid is characterized by half-maximal
inhibitory concentration (IC50) values of 1.79 µM and 16.3 µM against SARS-CoV-2 Mpro

and SARS-CoV-2 PLpro, respectively [26]. The study unambiguously showed that ginkgolic
acid exerts good dual-inhibitory effects through its irreversible binding to SARS-CoV-2
cysteine proteases [26].

Angiotensin-converting enzyme 2 (ACE2), an essential ingredient of the renin–
angiotensin–aldosterone system (RAAS), is a critical host cell surface receptor for viral
infection [27]. The glycosylated spike protein (S protein) plays an essential role in medi-
ating viral entry via interactions with the ACE2 cell surface receptor [28]. Hypocrellin A
and shiraiachrome A, two-axial chiral perylenequinones, have been reported to exhibit
potent effects on the infected monkey Vero E6 cell line by inhibiting the activity of the
SARS-CoV-2 S protein at EC50 values of 0.22 µM and 0.21 µM, respectively, while at doses
of up to 10 µM, these presented no observable cytotoxicity against these cells [29].

Transmembrane protease serine 2 (TMPRSS2), a critical factor enabling SARS-CoV-2
infection, can interact with ACE2 [30]. It has been reported that platycodin D, a triter-
penoid saponin isolated from Platycodon grandiflorum, prevents TMPRSS2-driven infection
in vitro by impairing membrane fusion [31]. Platycodin D has IC50 values of 0.69 µM and
0.72 µM for SARS-CoV-2 pseudovirus (pSARS-CoV-2) overexpression of ACE2 (ACE2+)
and ACE2/TMPRSS2+, respectively, and IC50 values of 1.19 µM and 4.76 µM for SARS-CoV-
2 in TMPRSS2-negative Vero cells and TMPRSS2-positive Calu-3 cells, respectively [31].
Resveratrol, a remarkable phytoalexin, may effectively inhibit the replication of SARS-CoV-
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2 S protein in Vero E6 cells at an EC50 of 4.48 µM [32], and has an excellent safety tracking
record, with no cytotoxicity even up to a concentration of 150 µM [33].
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The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is another promising
target that regulates the replication of the viral genome [34]. Corilagin, a non-nucleoside
inhibitor, is a gallotannin isolated from the medicinal plant Phmllanthi Fructus [35]. Corila-
gin has been reported to inhibit SARS-CoV-2 infection with an EC50 value of 0.13 µM in a
concentration-dependent manner by preventing the conformational change of RdRp and
inhibits SARS-CoV-2 replication [36]. Furthermore, corilagin, as identified via molecular
dynamics simulation-guided studies, could also be used as an endogenous Mpro candidate,
with an 88% anti-SARS-CoV-2 Mpro activity at concentrations of 20 µM in vitro [37].

Bafilomycin B2, which can be isolated from Streptomyces sp. HTL16, indicates enhanced
inhibitory potency against SARS-CoV-2 at IC50 values of 5.11 nM (in the full-time approach)
and 8.32 nM (in the pretreatment-of-virus approach) in Vero E6 cells, respectively [38].
While bafilomycin B2 has demonstrated potential effectiveness in inhibiting the viral entry
process, evidence of its utility as anti-SARS-CoV-2 agents in vivo is currently insufficient.

The above evidence supports the potential value of the above natural products as
therapeutic agents for the treatment of the novel SARS-CoV-2 infection, suggesting more
validation studies (both in vitro and in animal models as well as on humans) could be
encouraged to perform. Besides the above-mentioned molecules, several other natural
products have also been shown to exhibit potent anti-SARS-CoV-2 activities in vitro. Table 1
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summarizes a range of studies investigating the in vitro effects of anti-SARS-CoV-2 agents
since 2020.

Table 1. Other natural products with anti-SARS-CoV-2 activities in vitro.

No. Name Structure EC50 or IC50 (µM) Strain Refs

1 Acetoside
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Traditional Chinese medicines have attracted considerable attention due to their abil-
ity to effectively inhibit SARS-CoV-2 [63–65]. For example, the Qingfei Paidu decoction
(QFPD) has shown an ability to treat COVID-19 patients at all stages with excellent clinical
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efficacy (cure rate >90%) [66,67]. Shuanghuanglian oral liquid or injection (SHL), another
well-known traditional Chinese medicine, dose-dependently inhibits SARS-CoV-2 Mpro

replication [68]. In addition to the above-mentioned QFPD and SHL, several other tra-
ditional Chinese medicines (such as Kegan Liyan oral liquid and Toujie Quwen granule)
listed in Table 2 contain Scutellaria baicalensis Georgi (Chinese name: Huangqin), whose
major component is baicalein, exerts a marked anti-SARS-CoV-2 effect (IC50 of 0.94 µM,
and SI > 212) [69]. Furthermore, it is crucial to investigate how herbal medicine affects
SARS-CoV-2 infection by studying its active ingredients. To elucidate the underlying
molecular mechanisms, a crystal structure of SARS-CoV-2 Mpro complexed with baicalein
was constructed at a resolution of 2.2 Å (the Protein Data Bank (PDB) ID: 6M2N) [68].
Analysis of the core of the substrate-binding pocket revealed multiple interactions (such as
hydrogen bonding with Leu141/Gly143 and Ser144/His163, π–π interactions with Cys145
and His4, and hydrophobic interactions with Met49 and His41), which effectively blocked
SARS-CoV-2 replication via noncovalent incorporation [68]. The relevant studies [70–72]
provided direct data for a better understanding of the molecular mechanisms of Chinese
herbal medicine by studying its active ingredients.

Table 2. Registered clinical trials relating to traditional Chinese medicine prescriptions containing baicalein (active ingredient
of Huangqin) for treatment of COVID-19 patients (Chinese Clinical Trial Registry, www.chictr.org/cn/ (accessed on
31 January 2021).

Baicalein (The Active
Ingredient of

Huangqin)

Molecular Mechanisms
of Baicalein

Herbal Formula Containing
Huangqin

Registration
Number

Sample Size of
the Control

Group
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3. Natural Products as Monotherapy for the Treatment of Lung Cancer

There is no doubt that natural products have always been recognized as promising anti-
lung cancer agents. Daurisoline, an autophagy blocker, is a bisbenzylisoquinoline alkaloid
extracted from the herbal medicine Nelumbo nucifera Gaertn [74]. The chemical structures
of the molecules discussed in this section are shown in Figure 2. Daurisoline increases the
degradation of β-catenin by targeting heat shock protein 90 (HSP90) directly and decreases
the expression of MYC proto-oncogene (c-MYC) and cyclin D1, which resulted in cell
cycle arrest at the G1 phase in human lung cancer A549 cells and Hop62 cells lines to
exert its anti-lung cancer activity [75]. More importantly, in animals, daurisoline has been
reported to be a promising anti-lung cancer agent (by inhibiting tumor growth in lung
cancer xenografts) with no observable side effects, thus highlighting a potential role for
daurisoline in the treatment of lung cancer [75]. Another recent study has shown that
daurisoline can effectively inhibit SARS-CoV-2 replication at IC50 values of 3.664 µM and
0.875 µM in Vero E6 cells and in human pulmonary alveolar epithelial cells (HPAEpiC),
respectively [49].

www.chictr.org/cn/
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Graveospene A, isolated from the leaves of Casearia graveolens, is a new clerodane
diterpenoid that has been reported to induce apoptosis in A549 cells with an IC50 value
of 1.9 µM by inducing cell cycle arrest in phase G0/G1 [76]. Deguelin, a protein kinase B
(AKT) kinase inhibitor, is isolated from the African plant Mundulea sericea (Leguminosae)
and is commonly used to inhibit the growth of several types of human cancer cell lines [77].
Deguelin promoted the phosphorylation of myeloid cell leukemia sequence-1 (Mcl-1)
protein and induced the inhibition of the wildtype and mutated epidermal growth factor
receptor (EGFR)-Akt signaling pathway, which resulted in activation of downstream
GSK3β/FBW7 and profound anti-NSCLC activity with no obvious side effects in vivo [78].

Licochalcone A is a natural flavonoid derived from Xinjiang licorice and Glycyrrhiza
inflata. Licochalcone A is known to possess a broad spectrum of activities with important
pharmacological effects in various cancer cell lines [79]. Licochalcone A can significantly
increase autophagic cytotoxicity (in both A549 and H460 cell lines) and downregulated
the expression of c-IAP1, c-IAP2, XIAP, survivin, c-FLIPL, and RIP1, apoptosis-related
proteins via inhibiting the activity of phosphorylated extracellular signal-regulated kinase
(ERK) and autophagy [80]. In addition, licochalcone A has been reported to abolish the
expression of programmed death ligand-1 (PD-L1) by increasing reactive oxygen species
(ROS) levels in a time-dependent manner and interfering with protein translation in cancer
cells [81]. Further, licochalcone A can inhibit PD-L1 translation likely through the inhibition
of the phosphorylation of 4EBP1 and activation of the PERK-eIF2α signaling pathway [81].
Licochalcone A plays a vital role in reversing the ectopic expression of key microRNA
(miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p) to elicit lung cancer
chemopreventive activities both in vivo and in vitro [82]. In addition, licochalcone A has
been reported to inhibit EGFR signaling and reduced the expression of Survivin protein
in a cap-dependent translation manner to exhibit profound activity in mutated NSCLC
cells [83].

Erianin, a novel dibenzyl compound, can be isolated from the traditional herbal
medicine Dendrobium chrysotoxum Lindl and has been proposed as an apoptosis-inducing
agent in human lung cancer cells [84]. The main mechanisms of its anti-lung cancer activity
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involve the induction of ferroptosis by activating Ca2+/calmodulin signaling, inhibition of
cell proliferation and metastasis, and induction of cell cycle arrest in phase G2/M [85].

Tutuilamide A, isolated from marine cyanobacteria Schizothrix sp., is a novel cyclic pep-
tide reported to exhibit moderate cytotoxicity activity in the H-460 human lung cancer cell
line with an IC50 value of 0.53 µM [86]. Tutuilamide A, with the help of the vinyl chloride
side chain, showed enhanced inhibitory potency with high selectivity (IC50 0.73 nM) for
human neutrophil elastase, which is associated mainly with the migration and metastasis
of lung cancer cells [87]. Besides the above-mentioned molecules, Table 3 also exhibits
other natural products (including their underlying molecular mechanisms) with notable
anti-lung cancer activities reported since 2020.

Table 3. The mechanism involved in anticancer activities of other natural products (reported since 2020).

No. Name Structure Mechanism of Anti-Lung Cancer Refs

1 Acovenoside A
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factor 2 
[113] 

19 Liriopesides B 

 

Reduced proliferation, and induced apoptosis 

and cell cycle arrest, inhibited the progression 

of the cell cycle from the G1 to the S phase 

[114] 

Restriction of β-catenin nuclear
transportation [102]

11 Formononetin
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8 Ellagic acid 
 

Inhibited tumor growth, increased p-AMPK, 

and suppressed hypoxia-inducible factor 1α 

levels  

[99] 

9 Erianthridin 
 

Attenuated extracellular signal-regulated ki-

nase activity and mediated apoptosis, matrix-

degrading metalloproteinases (MMPs) expres-

sion 

[100,101]  

10 Eugenol  Restriction of β-catenin nuclear transportation [102] 

11 Formononetin 
 

Inhibited EGFR-Akt signaling, which in turn 

activates GSK3β and promotes Mcl-1 phos-

phorylation in NSCLC cells 

[103,104] 

12 Gallic Acid 
 

Inhibited of EGFR activation and impairment, 

inhibition of phosphoinositide 3-kinase (PI3K) 

and AKT phosphorylation 

[105,106] 

13 Glochidiol 

 

Inhibited tubulin polymerization [107] 

14 Gracillin 

 

Inhibited both glycolysis and mitochondria-

mediated bioenergetics, induced apoptosis 

through the mitochondrial pathway 

[108,109] 

15 Hispidulin 
 

Promoted apoptosis by hispidulin via in-

creased generation of ROS 
[110] 

16 Icaritin 

 

Downregulated the immunosuppressive cyto-

kine (TNF-α, IL10, IL6) and upregulated 

chemotaxis (CXCL9 and CXCL10) 

[111] 

17 Isoharringtonine 

 

Induced death tumor spheroids by activating 

the intrinsic apoptosis pathway 
[112] 

18 Kaempferol 
 

Inhibitor of nuclear factor erythroid 2-related 

factor 2 
[113] 

19 Liriopesides B 

 

Reduced proliferation, and induced apoptosis 

and cell cycle arrest, inhibited the progression 

of the cell cycle from the G1 to the S phase 

[114] 

Inhibited EGFR-Akt signaling, which
in turn activates GSK3β and promotes
Mcl-1 phosphorylation in NSCLC cells

[103,104]

12 Gallic Acid
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chemotaxis (CXCL9 and CXCL10) 
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Induced death tumor spheroids by activating 

the intrinsic apoptosis pathway 
[112] 

18 Kaempferol 
 

Inhibitor of nuclear factor erythroid 2-related 

factor 2 
[113] 

19 Liriopesides B 

 

Reduced proliferation, and induced apoptosis 

and cell cycle arrest, inhibited the progression 

of the cell cycle from the G1 to the S phase 

[114] 

Inhibited of EGFR activation and
impairment, inhibition of

phosphoinositide 3-kinase (PI3K) and
AKT phosphorylation

[105,106]

13 Glochidiol
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Induced death tumor spheroids by activating 

the intrinsic apoptosis pathway 
[112] 

18 Kaempferol 
 

Inhibitor of nuclear factor erythroid 2-related 

factor 2 
[113] 

19 Liriopesides B 

 

Reduced proliferation, and induced apoptosis 

and cell cycle arrest, inhibited the progression 

of the cell cycle from the G1 to the S phase 

[114] 

Inhibited tubulin polymerization [107]
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8 Ellagic acid 
 

Inhibited tumor growth, increased p-AMPK, 

and suppressed hypoxia-inducible factor 1α 

levels  

[99] 

9 Erianthridin 
 

Attenuated extracellular signal-regulated ki-

nase activity and mediated apoptosis, matrix-

degrading metalloproteinases (MMPs) expres-

sion 

[100,101]  

10 Eugenol  Restriction of β-catenin nuclear transportation [102] 

11 Formononetin 
 

Inhibited EGFR-Akt signaling, which in turn 

activates GSK3β and promotes Mcl-1 phos-

phorylation in NSCLC cells 

[103,104] 

12 Gallic Acid 
 

Inhibited of EGFR activation and impairment, 

inhibition of phosphoinositide 3-kinase (PI3K) 

and AKT phosphorylation 

[105,106] 

13 Glochidiol 

 

Inhibited tubulin polymerization [107] 

14 Gracillin 

 

Inhibited both glycolysis and mitochondria-

mediated bioenergetics, induced apoptosis 

through the mitochondrial pathway 

[108,109] 

15 Hispidulin 
 

Promoted apoptosis by hispidulin via in-

creased generation of ROS 
[110] 

16 Icaritin 

 

Downregulated the immunosuppressive cyto-

kine (TNF-α, IL10, IL6) and upregulated 

chemotaxis (CXCL9 and CXCL10) 

[111] 

17 Isoharringtonine 

 

Induced death tumor spheroids by activating 

the intrinsic apoptosis pathway 
[112] 

18 Kaempferol 
 

Inhibitor of nuclear factor erythroid 2-related 

factor 2 
[113] 

19 Liriopesides B 

 

Reduced proliferation, and induced apoptosis 

and cell cycle arrest, inhibited the progression 

of the cell cycle from the G1 to the S phase 

[114] 

Inhibited both glycolysis and
mitochondria-mediated bioenergetics,

induced apoptosis through the
mitochondrial pathway

[108,109]

15 Hispidulin
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8 Ellagic acid 
 

Inhibited tumor growth, increased p-AMPK, 

and suppressed hypoxia-inducible factor 1α 

levels  

[99] 

9 Erianthridin 
 

Attenuated extracellular signal-regulated ki-

nase activity and mediated apoptosis, matrix-

degrading metalloproteinases (MMPs) expres-

sion 

[100,101]  

10 Eugenol  Restriction of β-catenin nuclear transportation [102] 

11 Formononetin 
 

Inhibited EGFR-Akt signaling, which in turn 

activates GSK3β and promotes Mcl-1 phos-

phorylation in NSCLC cells 

[103,104] 

12 Gallic Acid 
 

Inhibited of EGFR activation and impairment, 

inhibition of phosphoinositide 3-kinase (PI3K) 

and AKT phosphorylation 

[105,106] 

13 Glochidiol 

 

Inhibited tubulin polymerization [107] 

14 Gracillin 

 

Inhibited both glycolysis and mitochondria-

mediated bioenergetics, induced apoptosis 

through the mitochondrial pathway 

[108,109] 

15 Hispidulin 
 

Promoted apoptosis by hispidulin via in-

creased generation of ROS 
[110] 

16 Icaritin 

 

Downregulated the immunosuppressive cyto-

kine (TNF-α, IL10, IL6) and upregulated 

chemotaxis (CXCL9 and CXCL10) 

[111] 

17 Isoharringtonine 

 

Induced death tumor spheroids by activating 

the intrinsic apoptosis pathway 
[112] 

18 Kaempferol 
 

Inhibitor of nuclear factor erythroid 2-related 

factor 2 
[113] 

19 Liriopesides B 

 

Reduced proliferation, and induced apoptosis 

and cell cycle arrest, inhibited the progression 

of the cell cycle from the G1 to the S phase 

[114] 

Promoted apoptosis by hispidulin via
increased generation of ROS [110]

16 Icaritin
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8 Ellagic acid 
 

Inhibited tumor growth, increased p-AMPK, 

and suppressed hypoxia-inducible factor 1α 

levels  

[99] 

9 Erianthridin 
 

Attenuated extracellular signal-regulated ki-

nase activity and mediated apoptosis, matrix-

degrading metalloproteinases (MMPs) expres-

sion 

[100,101]  

10 Eugenol  Restriction of β-catenin nuclear transportation [102] 

11 Formononetin 
 

Inhibited EGFR-Akt signaling, which in turn 

activates GSK3β and promotes Mcl-1 phos-

phorylation in NSCLC cells 

[103,104] 

12 Gallic Acid 
 

Inhibited of EGFR activation and impairment, 

inhibition of phosphoinositide 3-kinase (PI3K) 

and AKT phosphorylation 

[105,106] 

13 Glochidiol 

 

Inhibited tubulin polymerization [107] 

14 Gracillin 

 

Inhibited both glycolysis and mitochondria-

mediated bioenergetics, induced apoptosis 

through the mitochondrial pathway 

[108,109] 

15 Hispidulin 
 

Promoted apoptosis by hispidulin via in-

creased generation of ROS 
[110] 

16 Icaritin 

 

Downregulated the immunosuppressive cyto-

kine (TNF-α, IL10, IL6) and upregulated 

chemotaxis (CXCL9 and CXCL10) 

[111] 

17 Isoharringtonine 

 

Induced death tumor spheroids by activating 

the intrinsic apoptosis pathway 
[112] 

18 Kaempferol 
 

Inhibitor of nuclear factor erythroid 2-related 

factor 2 
[113] 

19 Liriopesides B 

 

Reduced proliferation, and induced apoptosis 

and cell cycle arrest, inhibited the progression 

of the cell cycle from the G1 to the S phase 

[114] 

Downregulated the
immunosuppressive cytokine (TNF-α,
IL10, IL6) and upregulated chemotaxis

(CXCL9 and CXCL10)

[111]

17 Isoharringtonine
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8 Ellagic acid 
 

Inhibited tumor growth, increased p-AMPK, 

and suppressed hypoxia-inducible factor 1α 

levels  

[99] 

9 Erianthridin 
 

Attenuated extracellular signal-regulated ki-

nase activity and mediated apoptosis, matrix-

degrading metalloproteinases (MMPs) expres-

sion 

[100,101]  

10 Eugenol  Restriction of β-catenin nuclear transportation [102] 

11 Formononetin 
 

Inhibited EGFR-Akt signaling, which in turn 

activates GSK3β and promotes Mcl-1 phos-

phorylation in NSCLC cells 

[103,104] 

12 Gallic Acid 
 

Inhibited of EGFR activation and impairment, 

inhibition of phosphoinositide 3-kinase (PI3K) 

and AKT phosphorylation 

[105,106] 

13 Glochidiol 

 

Inhibited tubulin polymerization [107] 

14 Gracillin 

 

Inhibited both glycolysis and mitochondria-

mediated bioenergetics, induced apoptosis 

through the mitochondrial pathway 

[108,109] 

15 Hispidulin 
 

Promoted apoptosis by hispidulin via in-

creased generation of ROS 
[110] 

16 Icaritin 

 

Downregulated the immunosuppressive cyto-

kine (TNF-α, IL10, IL6) and upregulated 

chemotaxis (CXCL9 and CXCL10) 

[111] 

17 Isoharringtonine 

 

Induced death tumor spheroids by activating 

the intrinsic apoptosis pathway 
[112] 

18 Kaempferol 
 

Inhibitor of nuclear factor erythroid 2-related 

factor 2 
[113] 

19 Liriopesides B 

 

Reduced proliferation, and induced apoptosis 

and cell cycle arrest, inhibited the progression 

of the cell cycle from the G1 to the S phase 

[114] 

Induced death tumor spheroids by
activating the intrinsic apoptosis

pathway
[112]

18 Kaempferol
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8 Ellagic acid 
 

Inhibited tumor growth, increased p-AMPK, 

and suppressed hypoxia-inducible factor 1α 

levels  

[99] 

9 Erianthridin 
 

Attenuated extracellular signal-regulated ki-

nase activity and mediated apoptosis, matrix-

degrading metalloproteinases (MMPs) expres-

sion 

[100,101]  

10 Eugenol  Restriction of β-catenin nuclear transportation [102] 

11 Formononetin 
 

Inhibited EGFR-Akt signaling, which in turn 

activates GSK3β and promotes Mcl-1 phos-

phorylation in NSCLC cells 

[103,104] 

12 Gallic Acid 
 

Inhibited of EGFR activation and impairment, 

inhibition of phosphoinositide 3-kinase (PI3K) 

and AKT phosphorylation 

[105,106] 

13 Glochidiol 

 

Inhibited tubulin polymerization [107] 

14 Gracillin 

 

Inhibited both glycolysis and mitochondria-

mediated bioenergetics, induced apoptosis 

through the mitochondrial pathway 

[108,109] 

15 Hispidulin 
 

Promoted apoptosis by hispidulin via in-

creased generation of ROS 
[110] 

16 Icaritin 

 

Downregulated the immunosuppressive cyto-

kine (TNF-α, IL10, IL6) and upregulated 

chemotaxis (CXCL9 and CXCL10) 

[111] 

17 Isoharringtonine 

 

Induced death tumor spheroids by activating 

the intrinsic apoptosis pathway 
[112] 

18 Kaempferol 
 

Inhibitor of nuclear factor erythroid 2-related 

factor 2 
[113] 

19 Liriopesides B 

 

Reduced proliferation, and induced apoptosis 

and cell cycle arrest, inhibited the progression 

of the cell cycle from the G1 to the S phase 

[114] 

Inhibitor of nuclear factor erythroid
2-related factor 2 [113]

19 Liriopesides B
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8 Ellagic acid 
 

Inhibited tumor growth, increased p-AMPK, 

and suppressed hypoxia-inducible factor 1α 

levels  

[99] 

9 Erianthridin 
 

Attenuated extracellular signal-regulated ki-

nase activity and mediated apoptosis, matrix-

degrading metalloproteinases (MMPs) expres-

sion 

[100,101]  

10 Eugenol  Restriction of β-catenin nuclear transportation [102] 

11 Formononetin 
 

Inhibited EGFR-Akt signaling, which in turn 

activates GSK3β and promotes Mcl-1 phos-

phorylation in NSCLC cells 

[103,104] 

12 Gallic Acid 
 

Inhibited of EGFR activation and impairment, 

inhibition of phosphoinositide 3-kinase (PI3K) 

and AKT phosphorylation 

[105,106] 

13 Glochidiol 

 

Inhibited tubulin polymerization [107] 

14 Gracillin 

 

Inhibited both glycolysis and mitochondria-

mediated bioenergetics, induced apoptosis 

through the mitochondrial pathway 

[108,109] 

15 Hispidulin 
 

Promoted apoptosis by hispidulin via in-

creased generation of ROS 
[110] 

16 Icaritin 

 

Downregulated the immunosuppressive cyto-

kine (TNF-α, IL10, IL6) and upregulated 

chemotaxis (CXCL9 and CXCL10) 

[111] 

17 Isoharringtonine 

 

Induced death tumor spheroids by activating 

the intrinsic apoptosis pathway 
[112] 

18 Kaempferol 
 

Inhibitor of nuclear factor erythroid 2-related 

factor 2 
[113] 

19 Liriopesides B 

 

Reduced proliferation, and induced apoptosis 

and cell cycle arrest, inhibited the progression 

of the cell cycle from the G1 to the S phase 

[114] 

Reduced proliferation, and induced
apoptosis and cell cycle arrest,

inhibited the progression of the cell
cycle from the G1 to the S phase

[114]
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Table 3. Cont.

No. Name Structure Mechanism of Anti-Lung Cancer Refs
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20 Nagilactone E 

 

Activated the c-Jun N-terminal kinases, in-

creased the phosphorylation, and promoted 

the localization of c-Jun in the nucleus  

[115,116] 

21 
8-Oxo-epiberber-

ine 
 

Inhibited TGF-β1-induced epithelial-mesen-

chymal transition (EMT) possibly by interfer-

ing with Smad3 

[117] 

22 Parthenolide 
 

Reduced the phosphorylation of EGFR and 

downstream signaling pathways mitogen-ac-

tivated protein kinase (MAPK)/ERK, inhibited 

PI3K/Akt/FoxO3α signaling 

[118–120] 

23 PDB-1 

 

Suppressed lung cancer cell migration and in-

vasion via FAK/Src and MAPK signaling 

pathways 

[121] 

24 Polyphyllin I 

 

Induced autophagy by activating AMPK and 

then inhibited mTOR signaling, promoted 

apoptosis, modulated the PI3K/Akt signaling 

[122,123] 

25 Quercetin 
 

Inhibited proliferation and induced apoptosis [124] 

26 Silibinin 
 

Inhibited cell proliferation, migration, inva-

sion, and EMT expression 
[125] 

27 Sinomenine 

 

Downregulated expression of MMPs and 

miR-21, suppressed α7 nicotinic acetylcholine 

receptors expression 

[126–128] 

28 Toxicarioside O 

 

Decreased the expression of trophoblast cell 

surface antigen 2, resulting in inhibition of the 

PI3K/Akt pathway and EMT program 

[129] 

29 Vincamine 
 

Interaction with the apoptotic protein 

caspase-3 
[130] 

30 Xanthohumol  

Suppressed ERK1/2 signaling and reduced the 

protein levels of FOS-related antigen 1, de-

creased the mRNA level of cyclin D1 

[131] 

4. Natural Products in Combination with the FDA-Approved Drugs Inhibit  

SARS-CoV-2 

Activated the c-Jun N-terminal
kinases, increased the

phosphorylation, and promoted the
localization of c-Jun in the nucleus

[115,116]

21 8-Oxo-
epiberberine
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Activated the c-Jun N-terminal kinases, in-

creased the phosphorylation, and promoted 

the localization of c-Jun in the nucleus  

[115,116] 

21 
8-Oxo-epiberber-

ine 
 

Inhibited TGF-β1-induced epithelial-mesen-

chymal transition (EMT) possibly by interfer-

ing with Smad3 

[117] 

22 Parthenolide 
 

Reduced the phosphorylation of EGFR and 

downstream signaling pathways mitogen-ac-

tivated protein kinase (MAPK)/ERK, inhibited 

PI3K/Akt/FoxO3α signaling 

[118–120] 

23 PDB-1 

 

Suppressed lung cancer cell migration and in-

vasion via FAK/Src and MAPK signaling 

pathways 

[121] 

24 Polyphyllin I 

 

Induced autophagy by activating AMPK and 

then inhibited mTOR signaling, promoted 

apoptosis, modulated the PI3K/Akt signaling 

[122,123] 

25 Quercetin 
 

Inhibited proliferation and induced apoptosis [124] 

26 Silibinin 
 

Inhibited cell proliferation, migration, inva-

sion, and EMT expression 
[125] 

27 Sinomenine 

 

Downregulated expression of MMPs and 

miR-21, suppressed α7 nicotinic acetylcholine 

receptors expression 

[126–128] 

28 Toxicarioside O 

 

Decreased the expression of trophoblast cell 

surface antigen 2, resulting in inhibition of the 

PI3K/Akt pathway and EMT program 

[129] 

29 Vincamine 
 

Interaction with the apoptotic protein 

caspase-3 
[130] 

30 Xanthohumol  

Suppressed ERK1/2 signaling and reduced the 

protein levels of FOS-related antigen 1, de-

creased the mRNA level of cyclin D1 

[131] 

4. Natural Products in Combination with the FDA-Approved Drugs Inhibit  

SARS-CoV-2 

Inhibited TGF-β1-induced
epithelial-mesenchymal transition
(EMT) possibly by interfering with

Smad3

[117]

22 Parthenolide
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Activated the c-Jun N-terminal kinases, in-

creased the phosphorylation, and promoted 

the localization of c-Jun in the nucleus  

[115,116] 

21 
8-Oxo-epiberber-

ine 
 

Inhibited TGF-β1-induced epithelial-mesen-

chymal transition (EMT) possibly by interfer-

ing with Smad3 

[117] 

22 Parthenolide 
 

Reduced the phosphorylation of EGFR and 

downstream signaling pathways mitogen-ac-

tivated protein kinase (MAPK)/ERK, inhibited 

PI3K/Akt/FoxO3α signaling 

[118–120] 

23 PDB-1 

 

Suppressed lung cancer cell migration and in-

vasion via FAK/Src and MAPK signaling 

pathways 

[121] 

24 Polyphyllin I 

 

Induced autophagy by activating AMPK and 

then inhibited mTOR signaling, promoted 

apoptosis, modulated the PI3K/Akt signaling 

[122,123] 

25 Quercetin 
 

Inhibited proliferation and induced apoptosis [124] 

26 Silibinin 
 

Inhibited cell proliferation, migration, inva-

sion, and EMT expression 
[125] 

27 Sinomenine 

 

Downregulated expression of MMPs and 

miR-21, suppressed α7 nicotinic acetylcholine 

receptors expression 

[126–128] 

28 Toxicarioside O 

 

Decreased the expression of trophoblast cell 

surface antigen 2, resulting in inhibition of the 

PI3K/Akt pathway and EMT program 

[129] 

29 Vincamine 
 

Interaction with the apoptotic protein 

caspase-3 
[130] 

30 Xanthohumol  

Suppressed ERK1/2 signaling and reduced the 

protein levels of FOS-related antigen 1, de-

creased the mRNA level of cyclin D1 

[131] 

4. Natural Products in Combination with the FDA-Approved Drugs Inhibit  

SARS-CoV-2 

Reduced the phosphorylation of
EGFR and downstream signaling

pathways mitogen-activated protein
kinase (MAPK)/ERK, inhibited
PI3K/Akt/FoxO3α signaling

[118–120]

23 PDB-1
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Activated the c-Jun N-terminal kinases, in-

creased the phosphorylation, and promoted 

the localization of c-Jun in the nucleus  

[115,116] 

21 
8-Oxo-epiberber-

ine 
 

Inhibited TGF-β1-induced epithelial-mesen-

chymal transition (EMT) possibly by interfer-

ing with Smad3 

[117] 

22 Parthenolide 
 

Reduced the phosphorylation of EGFR and 

downstream signaling pathways mitogen-ac-

tivated protein kinase (MAPK)/ERK, inhibited 

PI3K/Akt/FoxO3α signaling 

[118–120] 

23 PDB-1 

 

Suppressed lung cancer cell migration and in-

vasion via FAK/Src and MAPK signaling 

pathways 

[121] 

24 Polyphyllin I 

 

Induced autophagy by activating AMPK and 

then inhibited mTOR signaling, promoted 

apoptosis, modulated the PI3K/Akt signaling 

[122,123] 

25 Quercetin 
 

Inhibited proliferation and induced apoptosis [124] 

26 Silibinin 
 

Inhibited cell proliferation, migration, inva-

sion, and EMT expression 
[125] 

27 Sinomenine 

 

Downregulated expression of MMPs and 

miR-21, suppressed α7 nicotinic acetylcholine 

receptors expression 

[126–128] 

28 Toxicarioside O 

 

Decreased the expression of trophoblast cell 

surface antigen 2, resulting in inhibition of the 

PI3K/Akt pathway and EMT program 

[129] 

29 Vincamine 
 

Interaction with the apoptotic protein 

caspase-3 
[130] 

30 Xanthohumol  

Suppressed ERK1/2 signaling and reduced the 

protein levels of FOS-related antigen 1, de-

creased the mRNA level of cyclin D1 

[131] 

4. Natural Products in Combination with the FDA-Approved Drugs Inhibit  

SARS-CoV-2 

Suppressed lung cancer cell migration
and invasion via FAK/Src and MAPK

signaling pathways
[121]

24 Polyphyllin I
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Activated the c-Jun N-terminal kinases, in-

creased the phosphorylation, and promoted 

the localization of c-Jun in the nucleus  

[115,116] 

21 
8-Oxo-epiberber-

ine 
 

Inhibited TGF-β1-induced epithelial-mesen-

chymal transition (EMT) possibly by interfer-

ing with Smad3 

[117] 

22 Parthenolide 
 

Reduced the phosphorylation of EGFR and 

downstream signaling pathways mitogen-ac-

tivated protein kinase (MAPK)/ERK, inhibited 

PI3K/Akt/FoxO3α signaling 

[118–120] 

23 PDB-1 

 

Suppressed lung cancer cell migration and in-

vasion via FAK/Src and MAPK signaling 

pathways 

[121] 

24 Polyphyllin I 

 

Induced autophagy by activating AMPK and 

then inhibited mTOR signaling, promoted 

apoptosis, modulated the PI3K/Akt signaling 

[122,123] 

25 Quercetin 
 

Inhibited proliferation and induced apoptosis [124] 

26 Silibinin 
 

Inhibited cell proliferation, migration, inva-

sion, and EMT expression 
[125] 

27 Sinomenine 

 

Downregulated expression of MMPs and 

miR-21, suppressed α7 nicotinic acetylcholine 

receptors expression 

[126–128] 

28 Toxicarioside O 

 

Decreased the expression of trophoblast cell 

surface antigen 2, resulting in inhibition of the 

PI3K/Akt pathway and EMT program 

[129] 

29 Vincamine 
 

Interaction with the apoptotic protein 

caspase-3 
[130] 

30 Xanthohumol  

Suppressed ERK1/2 signaling and reduced the 

protein levels of FOS-related antigen 1, de-

creased the mRNA level of cyclin D1 

[131] 

4. Natural Products in Combination with the FDA-Approved Drugs Inhibit  

SARS-CoV-2 

Induced autophagy by activating
AMPK and then inhibited mTOR

signaling, promoted apoptosis,
modulated the PI3K/Akt signaling

[122,123]

25 Quercetin
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Activated the c-Jun N-terminal kinases, in-

creased the phosphorylation, and promoted 

the localization of c-Jun in the nucleus  

[115,116] 

21 
8-Oxo-epiberber-

ine 
 

Inhibited TGF-β1-induced epithelial-mesen-

chymal transition (EMT) possibly by interfer-

ing with Smad3 

[117] 

22 Parthenolide 
 

Reduced the phosphorylation of EGFR and 

downstream signaling pathways mitogen-ac-

tivated protein kinase (MAPK)/ERK, inhibited 

PI3K/Akt/FoxO3α signaling 
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23 PDB-1 

 

Suppressed lung cancer cell migration and in-

vasion via FAK/Src and MAPK signaling 
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24 Polyphyllin I 

 

Induced autophagy by activating AMPK and 
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4. Natural Products in Combination with the FDA-Approved Drugs
Inhibit SARS-CoV-2

The bisbenzylisoquinoline alkaloid cepharanthine can be isolated from the traditional
herbal medicine Stephania cephalantha Hayata [132]. Cepharanthine exhibits a range of
promising bioactivity. It has IC50 values of 0.026 µM, 9.5 µg/mL, and 0.83 µM against
the human immunodeficiency virus type 1 (HIV-1) [133], SARS-CoV [134], and human
coronavirus OC43 (HCoV-OC43) [135], respectively. This alkaloid inhibits SARS-CoV-2
entry in vitro at an IC50 of 0.35 µM without any evident toxicity profile (selectivity index,
[SI] > 70) [136]. Furthermore, the cell death cascade induced by the cellular stress response is
another key target for SARS-CoV-2 [137]. It is worth noting that this bisbenzylisoquinoline
alkaloid, with a good safety profile, is an approved drug in Japan since the 1950s and is
used to treat acute and chronic diseases [132], highlighting that cepharanthine can serve as
a potential therapeutic candidate for the treatment of SARS-CoV-2 infection.

Nelfinavir (Viracept), the first HIV-1 protease inhibitor developed by Agouron Phar-
maceuticals, was approved by the FDA in March 1997 for the treatment of HIV-AIDS [138].
Recently, nelfinavir was shown to be effective at inhibiting SARS-CoV-2 Mpro infection
(IC50 = 3.3 µM) with a low level of toxicity (SI = 3.7) [139]. In addition, nelfinavir inhibited
SARS-CoV-2 replication in vitro with an EC50 of 1.13 µM [140]. Nelfinavir was also effective
at dose-dependently inhibiting SARS-CoV-2 S protein—complete inhibition at the concen-
tration of 10 µM—with no evidence of cellular cytotoxicity [141]. Remarkably, nelfinavir
can also improve lung pathology caused by SARS-CoV-2 infection [142]. Nonetheless,
nelfinavir might not benefit SARS-CoV-2-infected patients by reducing viral loads in the
lungs, just as it does not reduce viral load in hamsters [142].

Taken together, numerous studies have demonstrated the in vitro anti-SARS-CoV-2
activity of cepharanthine (via inhibition of SARS-CoV-2 S protein) and nelfinavir (via inhibi-
tion SARS-CoV-2 Mpro and partly S protein). To reveal the synergistic efficacy (Figure 3) of
the above two molecules in SARS-CoV-2 infected patients, based on models of pharmacoki-
netics, pharmacodynamics, and viral-dynamics, Ohashi et al. constructed a mathematical
prediction model of the therapeutic effects and revealed that the combination of cepharan-
thine (intravenous) and nelfinavir (oral) showed excellent synergistic effects in COVID-19
patients (with viral clearance occurring 1.23 days earlier than with nelfinavir alone; cepha-
ranthine alone showed a minimal effect) [136]. Considering all these factors, including the
critical value of cepharanthine and nelfinavir in anti-SARS-CoV-2 infection, both in vitro
and in animal models and mathematical prediction modeling, further research is needed to
explore whether these molecules exert synergistically augmented activity for the treatment
of SARS-CoV-2 infection in patients. It is worth noting that further research is needed to
explore whether they have anti-SARS-CoV-2 activity in vivo.

Remdesivir (GS-5734, Veklury®), an RdRp inhibitor developed by Gilead Science, was
the first, and currently the only, anti-SARS-CoV-2 drug approved by the FDA (approval
on 22 October 2020) for the treatment of COVID-19 [143–145]. Remdesivir exhibits broad-
spectrum activity against multiple viral infections in vitro, including SARS-CoV, Middle
East respiratory syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), and SARS-CoV-2,
with EC50 values of 0.069 µM, 0.090 µM, 0.012 µM, and 0.77 µM, respectively [146–149].
Furthermore, remdesivir has also been thoroughly explored in animal models. Remdesivir
reduced lung viral loads in MERS-CoV-infected rhesus monkeys [150] and transgenic
Ces1c−/− hDPP4 mice [147], protected Nipah virus-infected African green monkeys [151]
and rhesus macaques from SARS-CoV-2 infection [152]. Moreover, since 2016, the efficacy
and safety of remdesivir have been clinically investigated for the treatment of EBOV
infection [153]. Nonetheless, the FDA-approved remdesivir does not appear highly effective
in the fight against the COVID-19 pandemic [154–156]. In this scenario, the combination of
remdesivir with other small molecules, including natural products and natural-product-
inspired potential anti-SARS-CoV-2 agents, may exhibit a synergistic effect, compared to
remdesivir alone in COVID-19 patients.
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Linoleic acid, an inflammatory response modulator [157] isolated from the traditional
meal Vicia faba [158], significantly suppresses MERS-CoV replication [159]. Toelzer et al. hy-
pothesized that the combination of remdesivir and linoleic acid, an essential diunsaturated
fatty acid, may be superior for treating COVID-19 patients over remdesivir alone [160].
Indeed, the combination of linoleic acid (50 µM) and remdesivir (20 to 200 nM) exerted a
synergistic effect on SARS-CoV-2 replication in human Caco-2 ACE2+ cells in vitro [160].

The synergistic mechanisms involved in the combination of linoleic acid and remde-
sivir shown in Figure 4. To clarify the underlying inhibitory mechanisms of action of
linoleic acid, a cryo-electron microscopy (cryo-EM) model of SARS-CoV-2 S protein com-
plexed with linoleic acid was determined at 2.85 Å resolution (Electron Microscopy Data
(EMD) ID: 11145) [160]. Further analysis of the linoleic acid binding pocket within the S
protein revealed that the hydrocarbon tail of linoleic acid binds to hydrophobic amino
acids. At the same time, the acidic headgroup interacts with a positively charged anchor
(Arg408 and Gln409) to lock the S protein irreversibly. The hydrophobic pocket with a
tube-like shape of the S protein allows a good fit for linoleic acid, and results in reduced
ACE2 interactions, and thus sets the stage for an intervention strategy that targets linoleic
acid binding to SARS-CoV-2 S protein [160].

As for remdesivir, it is a phosphoramidate prodrug, which requires conversion from
the parent drug into the active triphosphate form (GS-443902) [161]. In cells, the triphos-
phate form, GS-443902, can block SARS-CoV-2 replication by evading the “proofreading”
activity of viral RNA sequences [162]. In addition, Yin et al. [34] revealed the cryo-EM struc-
ture of SARS-CoV-2 RdRp in complex with remdesivir (using its triphosphate metabolite
GS-443902) at 2.5 Å resolution (PDB ID: 7BV2) [34]. The cryo-EM structure unambiguously
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demonstrated that GS-443902 could positioned itself at the center of the catalytic site of the
primer RNA, covalently binding to the primer at the 1+ position of the template strand to
terminate chain elongation. Three strong H-bonds with active site residues (ribose -OH
groups: Asp623, Ser682, and Asn691; sugar 2′-OH: Asn691) were identified [34]. Further
research is warranted to establish whether linoleic acid and remdesivir exert synergistic
anti-SARS-CoV-2 effects in vivo. At present, a more well-designed combination drug ther-
apy that exhibits better additive or synergistic effects against COVID-19 is a promising
strategy. However, for COVID-19, the nanodrug strategy (containing natural products and
FDA-approved drugs) remains an open question, and undoubtedly, it has a long way to go.
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5. Natural Products in Combination with the FDA-Approved Anti-Lung Cancer Drugs

As regards lung cancer, significant progress has been made in the research of natural
product-based nanomedicines [163,164] and combination drug therapies [165,166], which
can provide some reference for the related drug discovery and development for COVID-19.
In this section, we mainly focused on the nanodrug strategy (containing natural products
and FDA-approved drugs) to reveal its unique advantage in the research and development
of anti-lung cancer drugs.

Curcumin is one of the main products of the Curcuma longa L. (turmeric) rhizome
extract and has been proposed for its antimicrobial, antimutagenic, antiproliferative, and
neuroprotective activities [167]. Curcumin is considered an ideal scaffold for lung cancer
drug discovery due to its potent antitumor effects against NSCLC [168]. In particular,
several crucial molecular pathways involved in the efficacy of curcumin as an anti-lung
cancer drug involve the vascular endothelial growth factor (VEGF), EGFR, nuclear factor-
κB (NF-κB), and mammalian target of rapamycin (mTOR) pathways [169]. Nonetheless,
the biomedical application of curcumin is currently hindered by its poor aqueous solubility
and low bioavailability [170]. In contrast, cisplatin, already marketed as the first platinum-
based complex approved by the US FDA, has been used therapeutically for a broad range of
cancers such as lung, lymphomas, melanoma, head, and neck cancer [171]. Unfortunately,
the routine clinical practice of cisplatin is often coupled with severe toxic side effects (such
as nephrotoxicity [172], severe hearing loss [173], and cardiotoxicity [174]) and intrinsic or
acquired drug resistance [175].
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Indeed, an efficacy study in NSCLC cells evidenced improved effects of the drug com-
bination of curcumin and cisplatin [176]. An in vitro study showed that curcumin enhanced
cisplatin-induced therapeutic efficacy in lung cancer cell lines A549, H460, and H1299 by
regulating the Cu-Sp1-CTR1 regulatory loop. Furthermore, the promotion of active tar-
geting ability with β-cyclodextrin (β-CD)-modified hyaluronic acid (HA) was identified
as an effective strategy to address cellular uptake, intracellular trafficking, and therapy
performance of the drug delivery systems [177]. Taking all these factors into account, Bai
et al. [178] designed and constructed a β-cyclodextrin-modified hyaluronic acid-based pH-
and esterase-dual-responsive supramolecular codrug combining curcumin and cisplatin
(Figure 5). In detail, the designed guest moiety Cur-Pt was prepared via esterification
reactions between curcumin, oxoplatin, and a molecule of succinic acid. The scheduled
host moiety β-CD-modified hyaluronic acid (HA-CD) was prepared via amidation of the
carboxylate salt sodium hyaluronate with free amine mono-6-deoxy-6-ethylenediamino-β-
CD (β-CD-EDA). Eventually, the desired curcumin and cisplatin nanoparticles (HCPNs)
were developed through a host–guest inclusion strategy and subsequent self-assembled.
Interestingly, in this targeting system, curcumin acted as both the guest molecule and the
chemical anticancer drug.
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In vitro evaluation revealed that the HCPNs could be internalized by cancer cells. Once
inside the cell, curcumin is released under acidic endosomal conditions (pH-responsive), and
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cisplatin is released via reducing of oxoplatin under higher expressed glutathione (GSH)
conditions (esterase-responsive). Moreover, cell-based experiments revealed the effective
cellular toxicity (high efficiency, the IC50 value of 5.4 µM in A549 cells) and active targeting
ability (low toxicity, with low expression levels in normal LO-2 cells) of this novel drug-
delivery system. Given the observed positive synergistic effect in the study, the authors
concluded that HCPNs exhibited improved effects, compared with either monotherapy
with curcumin or cisplatin [178]. The drug delivery and sustained release behavior of Cur
from HCPNs were investigated in vitro at pH 7.4 after 48 h (11% Cur was released) and
pH 5.0 after 48 h (79% Cur was released), respectively, proving the better stability than
Cur alone [178]. Meanwhile, although the Tian group did not proceed further with their
in vivo studies; we suggest additional in vivo studies should be performed to identify the
pharmacokinetic or pharmacodynamic profile of the HCPNs and the synergistic activity
against lung cancer of this codrug.

The disulfide bond, a promising redox-reactive switch in vivo, plays an essential role
in many biological processes [179]. To reduce adverse effects resulting from chemotherapy
regimens, the disulfide-based drug design has attracted great enthusiasm in the synthesis
of prodrug or codrug, and especially for the preparation of functional nanodrugs due to
their high selectivity and biocompatibility [180,181]. The nontoxic nanodrugs are activated
by the excess of GSH in the tumor microenvironment, which provides an essential strategy
for lung cancer-targeting treatment [182].

Celastrol, a typical pentacyclic triterpenoid, can be extracted from traditional herbal
medicines of the Celastraceae family [183]. Celastrol is considered another up-and-coming
natural product for lung cancer treatment due to its potent anti-NSCLC activity via its sup-
pression of Axl protein expression [184], initiating tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL)-mediated apoptotic cell death [185], and suppressing cell inva-
sion [186]. However, the clinical translation and biomedical application of celastrol are
hindered due to its low bioavailability and physiological instability [187].

Gefitinib, approved by US FDA, has been used therapeutically as the first-line agent
in patients with advanced lung cancer [188]. Unfortunately, the routine clinical practice
of gefitinib is often coupled with severe adverse effects, such as pulmonary toxicity [189],
respiratory failure, and severe comorbidities [190]. Following a reasonable design, Wu et al.
developed a GSH-responsive nanodrug (identified as CEL@G-SS-NIR in Figure 6), which
possesses unique therapeutic efficacy for NSCLC in mice models by inhibiting upstream
and downstream EGFR signaling pathways [191]. The nanodrug CEL@G-SS-NIR was
prepared in two steps: preparation of the prodrug and acquisition of the nanocomplex.
As shown in Figure 6, the main molecule G-SS-NIR of the nanodrug CEL@G-SS-NIR was
synthesized through a two-step reaction. First, the key intermediate G-SS was synthesized
successfully in the presence of gefitinib (G), 2-hydroxyethyl disulfide (-SS-), and tiphosgene
via covalent linkage. Next, the near-infrared (NIR-OH) chromophore was bound to the
side chain of the G-SS to form the prodrug G-SS-NIR. The amphiphilic G-SS-NIR readily
self-assembled into spherical nanomicelles in an aqueous medium (driven by the disulfide
bond and the π–π interaction) and was encapsulated concomitantly the hydrophobic serine-
threonine protein kinase (Akt) inhibitor celastrol (marked as CEL) to form CEL@G-SS-NIR.

This novel nanodrug CEL@G-SS-NIR possesses a suitable size (average diameter
119 ± 6 nm), outstanding overall drug loading (64.0 ± 1.4 wt.%), and excellent stability in
the blood circulation, and has a rapid release rate of the free molecules (gefitinib, celastrol,
and NIR-OH) at tumor region due to the breaking of the disulfide bonds in the presence of
high levels of GSH [191].
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In vitro, the nanodrug CEL@G-SS-NIR formulation could effectively target the tumor
region due to its enhanced permeability and retention effect and also allowed fluorescent
imaging in vivo, at a predetermined timepoint after tail vein injection, in orthotopic lung
tumors [191]. In the treatment protocol, the mice were randomly divided into five groups
(five mice per treatment group), and after a single treatment cycle, the CEL@G-SS-NIR
group (13.4 mg/kg, intravenously, for 20 days), compared to the control groups, exhibited
stronger NSCLC tumor-suppressive effects [191]. As for the response mechanism involved,
the entire process can be divided into four steps: (i) CEL@G-SS-NIR accumulates in the
lung tumor region, (ii) CEL@G-SS-NIR releases the drug celastrol and the protonated
intermediates (and) through the deprotonated glutathione (GS¯) nucleophilic attack of the
disulfide bond on G-SS-NIR bonds, (iii) this further induces the synchronous releases of
the parent drug gefitinib and the fluorescent dye NIR-OH via an intramolecular cyclization
reaction (thiolate anion moiety reacts with the adjacent carbonyl group), and (iv) finally,
the synergistic anticancer activity is activated by suppressing the phosphatidylinositol
3-kinase/serine threonine protein kinase (PI3K/Akt) signaling pathway by celastrol and
downregulating EGFR signaling pathway by gefitinib. Simultaneously, a fluorescent and
multispectral optoacoustic tomography imaging signal is generated by NIR-OH [192]. This
study showed that disulfide-based and targeted fluorescent nano-prodrugs for treating
NSCLC and tracking drug delivery systems are particularly advantageous.

6. Conclusions and Future Perspectives

COVID-19 and lung cancer, the two most critical lung diseases presenting high mortal-
ity rates, have posed a great challenge and a serious threat to human health and economic
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development. Since 2020, as is well-known, the scientific community has made great efforts
and remarkable inroads in developing promising anti-SARS-CoV-2 and anti-lung cancer
agents through various approaches. In this scenario, numerous natural products have
fueled significant attention and have shown good results as potential therapeutics for
the above-mentioned lung diseases. This review highlighted state-of-the-art of important
natural products (including their underlying molecular mechanisms), covering studies pub-
lished between 1 January 2020 and 31 May 2021, in the treatment of the above-mentioned
lung diseases. We found that natural products can be applied in vitro as monotherapy for
the treatment of SARS-CoV-2 (ginkgolic acid, resveratrol, and baicalein) and lung cancer
(graveospene A, deguelin, and erianin), as well as in combination with the FDA-approved
drug inhibit SARS-CoV-2 (cepharanthine plus nelfinavir, linoleic acid plus remdesivir) and
as codrug formulations with anti-lung cancer activity in vitro (codrug of curcumin and cis-
platin). The evidence revealed herein that natural products could serve as a starting point
for further drug development both in COVID-19 and lung cancer. It is worth noting, how-
ever, that some natural products could be pan-assay interference compounds, which can
give false readouts, and close attention should be paid to decrease futile attempts [193,194].
There is currently very little direct data associated with the clinical effect of natural products
against SARS-CoV-2 infection. To understand better and explore systematically the activity
of natural products, more validation studies, with high-quality evidence (both in vitro and
in animal models as well as on humans), are now needed.

To improve the use of natural products, many intensive research efforts (both in vitro
and in vivo) are still needed to explore the limitations of these agents, such as poor water
solubility, limited oral absorption, low bioavailability, and the poor first-pass effect, which
represent the first step to develop promising anti-COVID-19 or anti-lung cancer agents. It
is clear that a long way is still ahead for us to realize natural product-based drug discovery
and development, as only phase 1–3 clinical trials can ensure that any small molecule
inhibitor can be used as a drug.

More aggressive and well-designed combination drug therapies that exhibit better
additive or synergistic effects against COVID-19 and lung cancer are a promising strategy.
For example, shiraiachrome A exhibits potent effects in Vero E6 cells by inhibiting the
activity of the SARS-CoV-2 S protein at EC50 values of 0.21 µM; bafilomycin B2 presents
enhanced inhibitory potency against SARS-CoV-2 at IC50 values of 5.11 nM in Vero E6
cells by inhibiting the viral entry process; ginkgolic acid has IC50 values of 1.79 µM and
16.3 µM against SARS-CoV-2 Mpro and SARS-CoV-2 PLpro. Combining the properties
of the above-mentioned natural products with FDA-approved drugs (for example, with
nelfinavir or remdesivir) could achieve optimal COVID-19 treatment through multitargeted
mechanisms of action. In addition, a codrug of a natural product with an FDA-approved
drug could achieve a combination booster through multitargeted activity. However, the
codrug strategy remains an open question in the treatment of patients with COVID-19.
Thus, we suggest researchers pay considerable attention to the development of emerging
codrug therapy strategies.

In contrast, precisely fabricated nanodrugs may be a more potent weapon to enhance
biocompatibility, minimize toxicity as well as side effects, achieve long-term circulation in
the body, as well as sustained release, overcome undesired adverse effects, and expand the
modalities of administration (intravenous injection or inhalation). However, for COVID-19,
the nanodrug strategy (containing natural products and FDA-approved drugs) remains
another open question. Fortunately, significant progress has been made in the research
of lung cancer nanomedicines, which can provide some reference for the related drug
discovery and development for COVID-19. There is no doubt that there is a long way to go
and many difficulties to overcome. Nonetheless, natural products have their advantages.
We sincerely hope natural products will be proven a safe and effective “natural remedy”
for the treatment of the above-mentioned lung diseases with the assistance of multiple
techniques and strategies.
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Abbreviations

ACE2 angiotensin-converting enzyme 2
ACE2+ overexpression of ACE2
AKT protein kinase B
ATP adenosine triphosphate
β-CD β-cyclodextrin
3CLpro 3C-Like protease
COVID-19 coronavirus disease 2019
cryo-EM cryo-electron microscopy
EBOV Ebola virus
EC50 half-maximal effective concentration
EGFR epidermal growth factor receptor
EMT epithelial-mesenchymal transition
ERK extracellular signal-regulated kinase
FDA US Food and Drug Administration
GSH glutathione
HA hyaluronic acid
HCoV-229E human coronavirus 229E
HCPNs curcumin and cisplatin nanoparticles
HIV-1 human immunodeficiency virus type 1
IC50 half-maximal inhibitory concentration
MAPK mitogen-activated protein kinase
Mcl-1 myeloid cell leukemia sequence-1
MERS-CoV Middle East respiratory syndrome coronavirus
MMPs matrix-degrading metalloproteinases
Mpro main protease
mTOR mammalian target of rapamycin
NSCLC non-small cell lung cancer
PDB Protein Data Bank
PD-L1 programmed death ligand-1
PI3K phosphoinositide 3-kinase
PLpro papain-like protease
pSARS-CoV-2 SARS-CoV-2 pseudovirus
QFPD Qingfei Paidu decoction
RdRp RNA-dependent RNA polymerase
ROS reactive oxygen species
S protein spike protein
SARS-CoV severe acute respiratory syndrome coronavirus
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
SHL Shuanghuanglian oral liquid or injection
SI selectivity index
TMPRSS2 transmembrane protease serine 2
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