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A B S T R A C T

The unique advantage of optical-resolution photoacoustic microscopy (OR-PAM) is its ability to achieve high-
resolution microvascular imaging without exogenous agents. This ability has excellent potential in the study
of tissue microcirculation. However, tracing and monitoring microvascular morphology and hemodynamics
in tissues is challenging because the segmentation of microvascular in OR-PAM images is complex due to the
high density, structure complexity, and low contrast of vascular structures. Various microvasculature extraction
techniques have been developed over the years but have many limitations: they cannot consider both thick
and thin blood vessel segmentation simultaneously, they cannot address incompleteness and discontinuity in
microvasculature, there is a lack of open-access datasets for DL-based algorithms. We have developed a novel
segmentation approach to extract vascularity in OR-PAM images using a deep learning network incorporating
a weak signal attention mechanism and multi-scale perception (WSA-MP-Net) model. The proposed WSA
network focuses on weak and tiny vessels, while the MP module extracts features from different vessel sizes.
In addition, Hessian-matrix enhancement is incorporated into the pre-and post-processing of the input and
output data of the network to enhance vessel continuity. We constructed normal vessel (NV-ORPAM, 660 data
pairs) and tumor vessel (TV-ORPAM, 1168 data pairs) datasets to verify the performance of the proposed
method. We developed a semi-automatic annotation algorithm to obtain the ground truth for our network
optimization. We applied our optimized model successfully to monitor glioma angiogenesis in mouse brains,
thus demonstrating the feasibility and excellent generalization ability of our model. Compared to previous
works, our proposed WSA-MP-Net extracts a significant number of microvascular while maintaining vessel
continuity and signal fidelity. In quantitative analysis, the indicator values of our method improved by about
1.3% to 25.9%. We believe our proposed approach provides a promising way to extract a complete and
continuous microvascular network of OR-PAM and enables its use in many microvascular-related biological
studies and medical diagnoses.
. Introduction

Photoacoustic imaging (PAI) can non-invasively detect the internal
nformation of the biological tissues from cells to organs based on the
hotoacoustic effect, which is of great significance for non-destructive
maging research in life science [1–3]. Due to the high blood absorption
n the near-infrared region, PAI exhibits unique superiority in imaging
ascular structures without exogenous contrast agents. In addition,
he PAI also obtains the functional information of tissues in vivo,
uch as blood oxygen saturation and metabolic rate of oxygen [4].
ptical resolution photoacoustic microscopy (OR-PAM), a major form
f PAI, images vascular networks at very high resolution, especially the
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capillaries. Segmenting microvasculature structures in OR-PAM image
is essential for preclinical and clinical applications. For example, the
segmented network provides a clear and complete vessel visualization
for tracing and monitoring hemodynamics in brain function study;
the quantitative analysis, such as vessel density and tortuosity, of the
segmented vessel network could provide clinically relevant morphology
indicators to evaluate the angiogenesis in tumor development and
blood vessel normalization in cancer treatment [5–8]. For quantitative
analysis, the accurate segmentation of the microvascular network is the
most critical and primary step in image analysis. The lack of precise
segmentation would lead to suboptimal applications.
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Many approaches have been reported to implement the vessel seg-
mentation of photoacoustic images from OR-PAM. Initially, the vessel
segmentation for OR-PAM was implemented based on the traditional
thresholding method [9]. This method is simple and easy to use and is
based only on the intensity information of signals. This technique failed
to detect many capillaries and could not extract continuous vessels. In
recent years, vessel segmentation based on Hessian matrix enhance-
ment has become popular in photoacoustic imaging. This technique
enhances low-contrast microvessels with tubular structures [10–14]. In
2014, Yang et al. were the first to develop a method of integrating
multi-scale Hessian matrix enhancement and region-growing algorithm
to segment the vascular structures in OR-PAM images [10]. Based on
Yang et al.’s method, H. Zhao et al. proposed a 3D Hessian matrix-
based method to segment rat iris vessels from images acquired by
OR-PAM [11]. Recently, Sun et al. presented a 3D two-branch vessel
segmentation framework based on intensity information (i.e., thresh-
olding) and structure information (i.e., Hessian matrix). Compared to
the single-branch method, this model could extract more complete
tumor vessels [12]. Recently, several studies for segmenting the OR-
PAM images have been reported. Q. Zhao et al. developed an advanced
version of Ref. [10] to extract the binary vascular network in the tumor
OR-PAM images [13] and applied it to monitor tumor growth. Mai
et al. applied multi-scale Hessian enhancement and adaptive threshold
segmentation to mouse ear tumor images and quantitatively studied the
changes in blood vessels before and after photodynamic therapy [14].

In all the approaches mentioned above, even though the multi-scale
Hessian matrix can enhance blood vessels of different sizes, it is very
sensitive to the scale of the Gaussian kernel. For example, when the
maximum scale is too large, it results in thin vessels appearing blurred
and deformed; conversely, when it is too small, it makes thick vessels
appear thinner [15]. To overcome this limitation, Zhang et al. proposed
a hybrid segmentation method where segmentation results from the
Hessian matrix, adaptive threshold, and OSTU were fused and applied
to analyze mouse vessel images of OR-PAM. The loss of connectivity
and distortion of vessels resulting from the Hessian filter was repaired
by upward region growth and full diameter at half maximum correction
on each pixel along the vessel skeletons [16].

The tracking method is another typical approach for vessel segmen-
tation and has been used in photoacoustic image analysis [17–20]. This
technique traces the vessels iteratively by starting from a pre-selected
vessel point and locating the next vessel until the entire network is
extracted [17]. Based on the concept of vessel tracking for OR-PAM im-
ages, Li et al. developed an automatic vascular tree extraction algorithm
from the background and other crossed vascular trees [20]. Although
this method exhibited superiorities in segmenting large vessels, it failed
to extract the low-contrast capillaries.

Deep learning (DL) has become popular in medical imaging in
recent years due to its ability to automatically extract essential features
from sample data. Several researchers have applied DL for microvascu-
lar segmentation in photoacoustic images. Boink et al. proposed a DL
algorithm that simultaneously realized the reconstruction and segmen-
tation of PACT images and validated them using phantom data [21].
Yuan et al. proposed a hybrid network composed of U-Net and FCN for
vascular segmentation of OR-PAM images using ground truth images
containing large vessels only [22]. The above two demonstrate the
performance of DL in thick-vessel extraction but have limitations on
thin-vessel segmentation. Recently, a DL model integrated with Hessian
matrix computation was developed by H. Zhao and applied to the
vessel segmentation of OR-PAM images [23]. This method improves the
extraction of continuous small vessels.

In summary, the existing work is limited in extracting the vessels
from OR-PAM images in many ways. The thresholding and tracing
methods cannot provide sufficient segmentation accuracy for microves-
sels. Even though the Hessian matrix methods can improve the continu-
ity in microvascular extraction, it is difficult to select appropriate scale
2

parameters of the Gaussian kernel that can extract thick and thin ves-
sels, often leading to vascular deformation. The DL techniques have the
potential to overcome the limitations of existing techniques. Still, they
cannot achieve high-quality microvascular segmentation, especially for
the thin vessels with low contrast, vital for biological studies such as tu-
mor angiogenesis. In this paper, to overcome the above limitations, we
propose a novel WSA-MP-Net model, where the weak signal attention
(WSA) module is integrated with a multi-scale perception (MP) module
to implement the microvascular segmentation for OR-PAM images. In
this integrated model, the WSA enhances the extraction of thin vessels,
while MP captures the multi-scale features from both thick and thin
vessels. In addition, to address the difficulty in generating ground
truth for the imaged method, a semi-automatic method was developed
to label microvessels in OR-PAM images. We also incorporated pre-
and post-processing operations to improve microvessel continuity by
incorporating Hessian-matrix enhancement. We conducted experiments
on in vivo OR-PAM images to verify the effectiveness and superiority
of our proposed method over other existing methods.

2. Method

The flowchart of the proposed microvascular segmentation model
is shown in Fig. 1. It consists of three main parts: pre-processing,
WSA-MP-Net, and post-processing.

The pre-processing has a two-branch framework. One branch is
used to improve the continuity of small vessels. A high-frequency
emphasis filtering is applied to the input images to enhance the high-
frequency components while preserving low-frequency components. It
is defined as 𝐻ℎ𝑓𝑒 = 𝑎 + 𝑏𝐻ℎ𝑝(𝑢, 𝑣) where 𝐻ℎ𝑝 is the transfer function of
the high-pass filter. 𝑎 is the offset from the origin and 𝑏 is a weighting
factor controlling the contribution from high-frequency. This operator
improves the contrast between blood vessels and the background. How-
ever, some capillaries remain discontinuous with unclear boundaries.
The multi-scale Hessian matrix enhancement, as proposed by Ref. [10],
is then used to further improve the capillaries’ segmentation. In the
second branch of the pre-processing, gamma transformation is used to
enhance the contrast between weak and strong signals in the input
OR-PAM images. The results from the two branches are fed into the
WSA-MP-Net as two-channel data. The WSA-MP-Net provides richer
information on vasculature through network optimization.

The post-processing further enhances the continuity of segmented
results of the DL network. Due to the low intensity of small signals,
many capillaries in the predicted map may remain discontinuous. The
post-processing module performs Hessian matrix enhancement on the
predicted grayscale image to improve the continuity of small blood
vessels. Since it is difficult for the Hessian matrix to select a scale
parameter adaptable to both thick and thin vessels simultaneously, we
set the maximum scale in the vascular response function to be smaller
to focus on enhancing small vessels.

2.1. WSA-MP-Net

The WSA-MP-Net is a four-layer encoder–decoder network with U-
Net as the backbone, as shown in Fig. 1 [24]. Thus, our network has
the same U-shape structure as the U-Net. We have integrated novel
WSA and MP modules on this structure. Two 3 × 3 convolutions are
sed at the beginning to extract low-level features in the input two-
hannel images for the encoder. The image size is then reduced to half
he original using 2 × 2 max-pooling operations. WSA modules are
mployed in the subsequent levels to enhance weak signals. The MP
odule, placed at the lowest level, extracts multi-scale signal features.
P is located at the lowest level because the image size is smallest at

he lowest layer, making it easy to capture features in a broad view.
lso, the number of parameters used in the MP is minimal due to the
mall size of the image. For the decoder, deconvolutions are used to
p-sample the semantic feature maps level by level and concatenate
he feature maps from the encoder.
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Fig. 1. The flowchart of the proposed WSA-MP-Net for extraction of microvasculature from OR-PAM images.
2.2. WSA module

The structure of the WSA module is shown in Fig. 2. 𝑋𝑖 and 𝑌 𝑖

(𝑖 = 1, 2) are the input and output of this module, where 𝑖 represents
the (𝑖 +1) layer of the network. 𝐻 𝑖, 𝑊 𝑖, 𝐶 𝑖 define the feature maps’
height, width, and channels. In WSA, a 3 × 3 convolution with batch
normalization (BN) is applied to extract the features of the input feature
maps. Then, data normalization (𝑁𝑎) and gamma transformation are
used to enhance the contrast of the weak signals. Traditional spatial
attention module (SAM) is then used, with input and output repre-
sented by 𝐺𝑖 ∈ 𝑅𝐻 𝑖×𝑊 𝑖×𝐶 𝑖 and 𝑀 𝑖 ∈ 𝑅𝐻 𝑖×𝑊 𝑖×𝐶 𝑖 , respectively, and are
computed as follows:

𝐺𝑖 = 𝐺𝑎𝑚𝑚𝑎(𝑁𝑎(𝐵𝑁(𝐶𝑜𝑛𝑣3×3(𝑋𝑖)))), 𝑖 = (1, 2) (1)

𝑀 𝑖 = 𝜎(𝐶𝑜𝑛𝑣7×7(𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝐴𝑣𝑔(𝐺𝑖), 𝐶𝑀𝑎𝑥(𝐺𝑖))))⊗𝐺𝑖, 𝑖 = (1, 2) (2)

In Eqs. (1) and (2), 𝛿 represents the ReLU activation, 𝜎 is the sigmoid
function, 𝐶𝐴𝑣𝑔 and 𝐶𝑀𝑎𝑥 are the average pooling and max pooling,
respectively, and ⊗ represents element-wise multiplication.

Although SAM can leverage the network to focus on the desired
features, it still cannot enhance weak vessels due to the low contrast
between the weak signals and the background. To address this, we gen-
erate the location information maps for both weak and strong signals
through threshold segmentation on 𝑀 𝑖, denoted as 𝐴𝑖 and 𝐵𝑖. The weak
signal enhancement (WSE) block is then designed to raise weak vessels’
brightness to match the strength of strong signals. The structure of the
WSE block and visualization of feature maps corresponding to each
operation are shown in Fig. 2(c). In WSE, 𝐺𝑖 is multiplied by 𝐴𝑖 and
𝑀 𝑖 is multiplied by 𝐵𝑖 to obtain the weak signal feature map of 𝐺𝑖 and
strong signal feature map of 𝑀 𝑖, respectively. To improve weak vessels’
signal intensity while keeping strong signals’ brightness, we adjust the
data range of the two feature maps to be consistent with the range of 𝐺𝑖

by normalization (𝑁𝑏). Finally, we add the results of the two branches
to obtain the enhanced maps 𝑊 𝑖, and it is computed using Eq. (3):

𝑊 𝑖 = 𝑁 (𝐺𝑖 ⊗𝐴𝑖) +𝑁 (𝑀 𝑖 ⊗𝐵𝑖), 𝑖 = (1, 2) (3)
3

𝑏 𝑏
The residual connection is performed between inputs and 𝑊 𝑖 to
reduce structural information loss and to accelerate the network con-
vergence. The formula for calculating 𝑌 𝑖 is given in Eq. (4).

𝑌 𝑖 = 𝛿(𝑊 𝑖 + 𝐵𝑁(𝐶𝑜𝑛𝑣1×1(𝑋𝑖))), 𝑖 = (1, 2) (4)

The key operations in WSA are SAM, thresholding, and data nor-
malization. SAM enhances high-contrast signals present in the feature
map. The thresholding is then applied to the SAM results to separate
strong and low-contrast signals. The data normalization then stretches
the amplitude of signals in low-contrast areas to the same data range
as the gamma-transformed features map. As a result, the intensity of
the weak signals in the combined feature map increases to the same
level as that of strong signals, facilitating the subsequent identification
of weak signals. In the above process, the key parameters are exponent
in gamma transformation and threshold, which are set to 0.7 and 0.3,
respectively, in our work.

2.3. MP module

We designed an MP module and added it to the bottom layer of
the network to aggregate multi-scale semantic information, which is an
essential structure of spatial pyramid atrous convolution. Here, atrous
convolutions with expansion rates of 1, 2, and 3 were employed to im-
plement the multi-scale perception. Hierarchical residual connections
were designed before channel concatenation to reduce the gridding
effect of dilated convolutions [25]. The specific structure of MP is
shown in Fig. 3. At first 𝐹1, 𝐹2 and 𝐹3 were obtained using three parallel
atrous convolutions:

𝐹𝑗 = 𝐴𝐶𝑜𝑛𝑣
𝑟𝑗
3×3(𝐹0), 𝑗 = (1, 2, 3) (5)

where 𝑟𝑗 is the dilation rate. The first four branches were then hier-
archically added to obtain 𝐴𝑑1, 𝐴𝑑2 and 𝐴𝑑3. Finally, the multi-scale
information was aggregated through channel concatenation, and the
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Fig. 2. The structure of WSA module. (a) The flowchart of WSA; (b) Illustration of SAM; (c) Illustration of WSE block.
Fig. 3. The structure of MP module.
residual connection was introduced to prevent information loss. The
calculation formula for the final feature maps is:

𝐹6 = 𝐹5 + 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹1, 𝐴𝑑1, 𝐴𝑑2, 𝐴𝑑3) (6)

2.4. Imaging system and in vivo experiments

All our photoacoustic imaging experiments were conducted using
the OR-PAM system established by our research group. The details of
the OR-PAM system can be found in [26]. The main features of this
OR-PAM system are a tunable diode-pumped laser system (SPOT-10-
200-532, ELFORLLIGHT) with 1 kHz repetition rate and an ultrasonic
transducer (V214-BB-RM, OlympusNDT) with 50 MHz center frequency
and 100% bandwidth. A laser beam with 532 nm wavelength was
4

emitted to irradiate the biological tissue, and the detected photoa-
coustic signals from the transducer were pre-amplified by using a
commercial electric amplifier (5073R, Olympus). The acquired data
was digitized via a 200-MS/s data acquisition (DAQ) card (CS1422,
GaGe). The 3D ultrasound volumetric dataset of the tissue was captured
by two-dimensional mechanical scanning by the imaging probe, like
the method described in Ref. [23]. We conducted animal experiments
on mouse ears, subcutaneous hepatoma tumors, and brain glioma. All
experimental animal procedures were carried out in compliance with
protocols approved by the Animal Studies Committee of the Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences.

We obtained the human liver cancer cell line (Hep G2) from the
American Type Culture Collection (ATCC) to establish a subcutaneous
hepatoma tumor model. The obtained Hep G2 cells were cultured in
DMEM medium supplemented with 10% (v/v) fetal bovine serum, 1%
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(v/v) penicillin, or 1% (v/v) streptomycin and incubated at 37 ◦C under
a 5% CO2 atmosphere. The cultured Hep G2 cells (1×106) were injected
subcutaneously into the male Balb/c mice ear. For all the data acquisi-
tion, the optical energy per pulse was maintained at approximately 18
mJ/cm2, conforming to the ANSI standard (ANSIZ136.3-2005).

Similarly, to establish an orthotopic glioma model, we cultured
the mouse glioma cell line (GL261) in a DMEM medium containing
10% fetal bovine serum and 1% penicillin at 37 ◦C in a 5% CO2
atmosphere. In the brain glioma imaging experiment, we placed three
male black rats (C57BL/6J, 6–7 week, about 20 g, Zhuhai Baishantong
Biotechnology Co., Ltd.) and anesthetized them with halothane on the
small animal orienting instrument. We cut the scalp and used a cranial
drill to open a 6 × 6 mm cranial window in the anesthetized rats, and
then injected 6 ul of GL261 cells (1 × 106) into the right brain of the
mouse at 1ul/min to a depth of 1 mm. We sealed the cranial window
with film.

We monitored the brain blood vessels of mice every other day
for 14 consecutive days, starting from the 0th day when the window
was closed. We maintained 2% isoflurane anesthesia throughout the
imaging experiment and used a temperature-controlled water bath to
hold brain temperature at 37 ◦C. The light per pulse was kept at 130
nJ for all data collection, well below the American National Standards
Institute safety standard (20 mJ/cm2).

2.5. Construction of datasets

2.5.1. Data partition
Since the vessel network is distributed in whole 3D volume, data

annotation in a single cross-section is difficult and prone to error.
Thus, we do the data label in a sub-volume containing certain depth
information.

For the standard vessel imaging of mouse ears, the acquired 3D data
of size 1568 × 625 × 200 pixels was cropped to 1280 × 512 × 200 pixels to
reduce the calculation burden while keeping the entire vessel structure
intact. The cropped 3D data was cut into ten 3D volumes with each
of size 256 × 256 × 200 pixels. As shown in Fig. 4(a), a 3D volume is
divided into several sub-volumes along the depth direction, with each
consisting of about 3–5 cross sections. Signal features determine the
size of each sub-volume. Specifically, for constructing one sub-volume,
we focus on one important vascular branch and all successive depth
slices belonging to the specific vascular branch are then included in
the sub-volume. The aim is to have a continuous vascular network
in the resulting maximum amplitude projection (MAP) image of the
sub-volume. The MAP along the depth direction was carried out on
each sub-volume to obtain source images (256 × 256 pixels), and ground
truth was produced using these data. For the imaging data from mouse
ear, six 3D volumes were randomly selected as training and validation
sets (five for training and one for validation), while the remaining four
were used as test sets. Fig. 4(c) shows the result of data division in
our experiments, the blue volumes represent the training data, green
volumes represent the validation data, and the yellow volumes are used
as the testing data. Based on this strategy of data division, the adjacent
sub-patches generated from 3D sub-volumes alone the depth direction
of a volume, are uniformly assigned one of the training, validation
or testing datasets. Therefore, in the depth direction, there will be
no situation where adjacent patches are respectively assigned to the
training set and the test set (these patches may have similar signal
distribution). Although this situation may occur in the 𝑥–𝑦 direction,
it can be seen from the MAP images shown in Fig. 4(e) that adjacent
patches in this direction generally have different blood vessel signal
distributions, not result in data leakage in network optimization.

For the mice tumor imaging, the acquired 3D data of size
990 × 1760 × 98 pixels was cropped to 768 × 1536 × 98 pixels. The cropp-
ed 3D data was then divided into 18 3D volumes, with each volume
of size 256 × 256 × 98 pixels. Fourteen 3D volumes were selected for
5

network training and validation (12 for training and 2 for validation),
and the remaining four were used for the test set. A method same to the
normal vessel data was used to construct the tumor vessel dataset as
well, and the corresponding division result of tumor data in this work
is shown in Fig. 4(d).

Data augmentation methods such as cropping, flipping, rotating,
and transposing were employed to increase the number of data pairs.
Finally, the normal vessel dataset (named NV-ORPAM) contains 660
data pairs: 518 for training, 58 for validation, and 84 for testing. There
are 1168 data pairs in the tumor dataset (named TV-ORPAM): 928, 104,
and 136 pairs for training, validation, and testing data, respectively.

2.5.2. Generation of ground truth
Generating the ground truth of microvessels is complex and time-

consuming. To facilitate and speed up the annotation process, we
developed a semi-automatic annotation method to generate ground
truth, as shown in Fig. 4(b). The main idea behind this method is
to produce initial ground truth using traditional image processing
techniques. We employed adaptive histogram equalization and k-means
clustering to obtain the coarsely segmented results. The canny operator
was then used on the coarsely segmented results to extract the vessel
edge and obtain the edge mask. The mask and the segmented vessel
image were multiplied by each other to decrease the distorted vessel
thickness of the k-means method. Subsequently, the small connected
components were removed on this result, and finally, the ground truth
was obtained by fine manual modification.

Notably, most of the discontinuous segments that look like noise or
artifacts in raw photoacoustic images could be real signals originating
from capillaries or microvessels. Specifically, when the capillaries are
too small in diameter, red blood cells can only pass through one
by one, resulting in dot-like signal points in the image under high-
resolution OR-PAM. However, nearby points can be connected to form
the trajectories of the imaged blood vessels, which is the criteria we
use to differentiate vessels from dot-like noises. In addition, blood
vessels are distributed throughout the 3D space with different shapes
and sizes. The blood vessel signals originating from the focal area of
the transducer have larger amplitudes, but they attenuate quickly in the
out-of-focus area. Therefore, in MAP (maximum amplitude projection
along depth, MAP) images, they appear as discrete signal segments
rather than artifacts. While generating ground truth, we did not man-
ually connect discontinuous signal segments. However, to facilitate
the use of data and further augmentation of the data for further re-
search, we have included the raw photoacoustic data in the datasets of
NV-ORPAM and TV-ORPAM. A Supplementary Video-1 on time-frame
OR-PAM images is provided to display these signal characteristics of
microvessels visually. Some noises appearing as bright spots do exist in
photoacoustic images used in our work. When analyzed, these bright
spots appear at the same spot in several consecutive depth slices and
then disappear in subsequent slices. Such behavior is intrinsic to the
signal originating from pores or melanin in biological tissues and can
be considered noise for our segmentation study. Characterization of
these noises on two datasets can be found in Supplementary Video-2
and Video-3.

In summary, while generating ground truth, discontinuous signal
segments and points connecting vessel trajectories are marked as blood
vessels, and small bright spots are marked as noises. Furthermore, we
removed small connected components with less than ten pixels in the
ground truth and segmentation results. This modification prevented
the impact of isolated noises that were mislabeled or misclassified as
vessels on the model. Still, in the process, it removed small amounts of
discontinuous signal belonging to the capillary.

3. Experimental results

All our programs run on a PC with two Intel Xeon Gold processors
and are equipped with two NVIDIA Tesla P100 Cards (16 GB memory).

DL model was implemented in Python-installed Tensorflow 2.2. In
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Fig. 4. The overall process of constructing datasets obtained by OR-PAM. (a) Illustration of processing 3D vascular data; (b) The flowchart of a semi-automatic method of generating
ground truth for microvascular images; (c) Division result for normal vessel data; (d) Division result for tumor vessel data; (e) The MAP images of normal- and tumor-vessel imaging.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the training process of WSA-MP-Net, the binary cross entropy was
employed as a loss function, Adam was selected as an optimizer, the
epoch was set to 100, and the initial learning rate was set at 1e−3.
We set the learning rate to decrease by 10x when the validation loss
was higher than the minimum validation loss in three consecutive
iterations. The gamma factors in the pre-processing stage were set to
0.7 and 0.5 for the normal vasculature and tumor vascular datasets,
respectively, and they both were set to 0.7 in the WSA module.

3.1. In vivo experiments

To demonstrate the performance of the proposed WSA-MP-Net for
microvascular segmentation in OR-PAM images, we conducted exper-
iments on two datasets comprising normal and tumor vessel images.
In addition, we also conducted experiments to compare our results
against traditional region growing with the Hessian-matrix enhance-
ment method (GR+HM) [13] and two advanced DL models of Hy-
Net [22] and HM-2DCE-Net [23]. In reproducing previous DL models,
the respective data augmentation operations as discussed in Ref. [22]
and Ref. [23] were used. The pre-and post-processing methods pro-
posed in this work were only employed for our network. All results are
shown in Fig. 5. The first two columns show results for normal vessel
images, and the last two are for tumor vessel images. The first two rows
show raw images with their ground truth, and from the third to sixth
6

row, the segmented binary vessel images using the GR+HM method,
Hy-Net, HM-2DCE-Net, and our proposed WSA-MP-Net, respectively,
are shown.

The GR+HM method extracts most vascular signals without data
labeling, and vessel continuity is also good. However, since choosing
an appropriate scale parameter adaptive to different blood vessel sizes
is difficult, it results in vascular morphology deformation, e.g., the
diameter of the thick vessel gets larger, and it does not exhibit an
advantage for small vessel extraction. Different from GR+HM, Hy-Net
and HM-2DCE-Net methods can segment all thick vessels with high
accuracy but have shortcomings in extracting small vessels, i.e., only
part of the small vessels was recognized, as shown in the fourth and
fifth rows of Fig. 5. Compared to these existing methods, the results
from our proposed WSA-MP-Net improved significantly. The accuracy
of thick vessel extraction improved, and more continuous small vessels
were recognized. According to our analysis, the WSA module extracts
more capillaries, and the Hessian matrix enhancement improves their
continuity. In addition, the MP module can extract different features
from signals of various sizes. To clearly illustrate the segmentation
effects of different methods, we selected a region of interest (ROI) in
each segmented image patch and generated a fusion image with the
ground truth. In this fusion image, red represents false negative pixels,
and green represents false positive signals. The morphology distortion
of thick vessels using GR+HM can be seen in the enlarged sub-images of
ROIs. Using our method, no distortions of thick vessels are seen in the
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Fig. 5. In vivo experiments on normal and tumor vessel datasets from OR-PAM. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Table 1
Quantitative comparisons among different methods on normal and tumor vessel datasets.

Dataset Methods Acc Sen Dice IoU AUC

NV-ORPAM

GR+HM 0.9138 ± 0.0204 0.6892 ± 0.1036 0.7637 ± 0.0506 0.6198 ± 0.0661 0.8292 ± 0.0425
Hy-Net 0.9401 ± 0.0232 0.7788 ± 0.0654 0.8445 ± 0.0401 0.7325 ± 0.0613 0.8808 ± 0.0330
HM-2DCE-Net 0.9300 ± 0.0168 0.7593 ± 0.0568 0.8208 ± 0.0235 0.6812 ± 0.0326 0.8676 ± 0.0112
Proposed 0.9525 ± 0.0182 0.8680 ± 0.0283 0.8851 ± 0.0232 0.7945 ± 0.0379 0.9213 ± 0.0174

TV-ORPAM

GR+HM 0.8440 ± 0.0168 0.8107 ± 0.0568 0.7952 ± 0.0235 0.6605 ± 0.0326 0.8446 ± 0.0112
Hy-Net 0.9176 ± 0.0056 0.8063 ± 0.0380 0.8738 ± 0.0187 0.7761 ± 0.0291 0.8922 ± 0.0149
HM-2DCE-Net 0.8840 ± 0.0128 0.7737 ± 0.0608 0.8240 ± 0.0393 0.7021 ± 0.0553 0.8583 ± 0.0268
Proposed 0.9348 ± 0.0068 0.8812 ± 0.0064 0.9059 ± 0.0077 0.8282 ± 0.0128 0.9229 ± 0.0054
enlarged ROI, and more small vessels are extracted. To illustrate the
convergence of our DL model during training, the curves of training
loss and validation loss for normal and tumor blood vessel datasets are
shown in Supplementary Fig. 1. At the end of training, both the training
loss and the validation loss curves show stability, and the loss values are
relatively small, indicating good convergence in model optimization.
In summary, experiments verified that our proposed DL model has
superior performance compared to previous works. More analysis of
WSA-MP-Net results is presented in the following subsections.

To quantitatively evaluate the performance of our proposed DL
model, five statistical parameters were introduced: accuracy (Acc),
sensitivity (Sen), Dice, intersection over union (IoU) and area under the
ROC curve (AUC). These statistical parameters were computed for all
methods and two datasets, as shown in Table 1 and Fig. 6. Compared
to previous works, our proposed WSA-MP-Net significantly improved in
all statistical evaluations. Our method achieves about 1.3% to 25.9%
improvement in overall statistical parameters, further verifying the
advantages of our proposed method for microvascular extraction.
7

To comprehensively evaluate the execution efficiency of each com-
ponent of our method, we generated 15 image patches of three different
sizes from two datasets, containing 5 data samples of each type. Sup-
plementary Table 1 lists the time for all the modules of our network:
the semi-automatic ground truth generation method, the pre-processing
module, the network prediction process, and the post-processing mod-
ule at three data scales. All the performances were obtained on the same
platform where the program ran.

3.2. Ablation study

To demonstrate the effectiveness of the proposed WSA and MP
modules, we performed ablation experiments on baseline (U-Net), base-
line+WSA, baseline+MP, and our proposed model. All experiments
were performed with pre-processing and post-processing modules for
a fair comparison. The segmented results of four 3D patches from two
datasets are shown in Fig. 7. The baseline method segments bright
signals reliably but fails to extract weak signals. With WSA, more
microvessels are recognized (see the images in the fourth column)
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Fig. 6. Quantitative comparisons among different segmentation methods.
because the network can focus on strong and weak signals while sup-
pressing irrelevant background regions. The baseline+MP uses atrous
convolutions with different expansion rates to extract multi-scale signal
features and thus can extract more capillaries and accurate structure
of big vessels. By observation, our proposed model achieves the best
results in terms of accuracy of vessel extraction, completeness, and
continuity of small vessels. More detailed information can be found
in the regions indicated by rectangular boxes in Fig. 7. The network
convergence of different DL models was also considered. Their loss
curves in the training process are shown in Fig. 8. These curves show
the advantages of our method for model optimization, i.e., achieving
minimum loss values under the same objective function.

The quantitative results of five statistical parameters are shown in
Fig. 9. As seen in this Figure, accuracy, sensitivity, Dice, IoU, and AUC
are all better for our dedicated DL model than other models. These
results confirm the effectiveness of adding WSA and MP modules to
the baseline.

3.3. Discussion on attention modules

In this section, we present comparative experimental results be-
tween WSA and SAM, and they were all performed based on base-
line+MP with pre-processing and post-processing modules. The
straightforward implementation of the SAM module results in the loss
of weak signals, as shown in Fig. 10, thus resulting in them being
misclassified as background (Fig. 10(C) and (G)). In the fourth-column
images, which correspond to the WSA module, more capillaries are
extracted (Fig. 10(D) and (H)). Theoretically, in our WSA model, the
weak signal feature maps are separated from the strong signals, and
these separated weak signals are normalized to strong signals, which
results in enhanced weak signal maps. The network then focuses on
8

both weak and strong signals for segmentation. The advantages of
WSA for recognizing small vessels can be visualized in the regions
indicated by the rectangular boxes. Five statistical indicators were
computed to quantitatively compare the segmented results using SAM
and WSA modules, as shown in Table 2. Compared to SAM, statistical
indicators for WSA, i.e., Acc, Sen, Dice, IoU and AUC, were increased by
1.4%, 10.2%, 4.6%, 8.0%, and 4.2%, respectively, for the normal vessel
dataset. Correspondingly, the tumor blood vessel dataset increased by
0.2%, 2.2%, 0.5%, 1.0%, and 0.6% respectively. These results prove
that better performance can be achieved using our proposed DL model
with WSA.

3.4. Analysis on pre-processing and post-processing

Here, we compared the performance of WSA-MP-Net with and
without pre-processing and post-processing modules to illustrate the
influence of these modules on the final segmented results. The compar-
ison results are shown in Fig. 11. From this figure, it can be seen that
the network applying pre-processing or post-processing, independently,
improves the microvascular segmentation. Thus, when the network
uses both pre-processing and post-processing and applies to the data,
the network achieves the best segmentation results. The complete-
ness and continuity of small vessels is also improved by adding these
modules, as can be seen clearly in the selected sub-regions. However,
the appropriate scale parameters must be selected for Hessian-matrix
enhancement to avoid merging of two adjacent blood vessels into one.
The quantitative parameters of the four experiments are shown in
Fig. 12, and it can be seen from this figure that the network using pre-
processing and post-processing outperforms the network that does not
use them for both normal and tumor data.
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Fig. 7. In vivo experiments on normal and tumor vessel datasets from OR-PAM.
Fig. 8. Loss curves of ablation experiments on two datasets.
3.5. Application research on monitoring tumor angiogenesis

To demonstrate the generality of the WSA-MP-Net for other appli-
cations, we conducted brain glioma imaging experiments on mice to
monitor the growing process of tumor vessels. The DL model optimized
using the TV-ORPAM dataset is directly used to predict the vascular
network in the brain glioma tumor region. To observe the tumor
growth in rats, three original photoacoustic images of the same rat
were acquired and segmented using the trained model at the 0th,
4th, and 10th days after tumor implantation, as shown in the first
column of Fig. 13. The second column shows the enlarged tumor region
represented by the rectangular boxes in the first column. The columns
from third to sixth show the results from GR+HM, Hy-Net, HM-2DCE-
Net, and our proposed WSA-MP-Net, respectively. Observation in the
tumor region in original images shows that many new blood vessels
appear during the growing process of glioma, and microvascular den-
sity and curvature increase accordingly. All extracted vessel networks
by GR+HM and DL methods in this figure reflect the changes in the
vessel morphology. Although the GR+HM method could extract most of
the new capillaries, it failed to balance between the extraction of small
9

vessels and large vessels, i.e., either the recognition of small vessels was
not good enough (discontinuous or lost) or the shape of large vessels
was deformed (see the third column). The Hy-Net and HM-2DCE-Net
could segment all thick vessels, but their ability to extract small vessels
is low, and many new small vessels were lost in the segmented results
(see the fourth and fifth columns). Compared to the previous methods,
our proposed WSA-MP-Net could extract most of the continuous new
capillaries while keeping the morphology of large vessels intact. In
summary, this experiment on brain glioma fully proves the generality
of the WSA-MP-Net for other applications. To better demonstrate the
generality of the proposed WSA-MP-Net on different imaging datasets,
we conducted vessel segmentation experiments on DRIVE, a public
dataset of retinal fundus images. Experimental results are provided in
Supplementary Fig. 2 and Supplementary Table 2.

4. Discussion and conclusion

The proposed novel WSA-MP-Net promises to improve microvascu-
lar segmentation in photoacoustic images while guaranteeing the accu-
racy of thick-vessel extraction. Moreover, the pre-and post-processing
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modules further improve this DL model’s performance in extracting
more continuous small vessels. The developed semi-automatic algo-
rithm for rapidly generating accurate and reliable ground truth was also
very useful in generating GT quickly. Specifically, the semi-automatic
10
approach helps to solve the difficulty of annotating microvascular with
complex structures, such as tumor vessels. Experimental results showed
the superiority of WSA-MP-Net over existing deep learning methods.
We verified that monitoring tumor angiogenesis is practical using our
Fig. 9. Quantitative comparisons for different DL models in ablation study.
Fig. 10. Comparative results between SAM and WSA module with baseline+MP as the fundamental network. (A, E) Raw images of normal vessel and tumor vessel; (B, F) Ground
truth of raw images; (C, G) Segmentation results of baseline+MP+SAM; (D, H) Segmentation results of baseline+MP+WSA.
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Table 2
Quantitative comparisons between SAM and WSA modules.

Dataset Methods Acc Sen Dice IoU AUC

NV-ORPAM SAM 0.9398 ± 0.0259 0.7875 ± 0.0764 0.8464 ± 0.0428 0.7355 ± 0.0658 0.8843 ± 0.0385
WSA module 0.9525 ± 0.0182 0.8680 ± 0.0283 0.8851 ± 0.0232 0.7945 ± 0.0379 0.9213 ± 0.0174

TV-ORPAM SAM 0.9326 ± 0.0054 0.8622 ± 0.0237 0.9010 ± 0.0105 0.8200 ± 0.0174 0.9165 ± 0.0082
WSA module 0.9348 ± 0.0068 0.8812 ± 0.0064 0.9059 ± 0.0077 0.8282 ± 0.0128 0.9229 ± 0.0054
11
Fig. 11. Experimental results with and without the pre- and post-processing.
Fig. 12. Quantitative comparisons with and without pre- and post-processing.
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Fig. 13. Application experiments of different methods on the glioma dataset.
method and proves the model’s generalization ability, i.e., it can be
expanded to other applications. In conclusion, the method proposed in
this paper can effectively segment microvessels in photoacoustic images
from OR-PAM, assist in studying the occurrence and development
mechanism of vascular-related diseases, and contribute to the early
diagnosis of cancers.

Our study has limitations: (1) The semi-automatic annotation algo-
rithm generates ground truth and is not an ideal annotation. Some parts
of the capillary network in ground truth are still discontinuous, and
some very small signals are not labeled or are mislabeled. Our DL net-
work achieved good performance even under such a scenario due to the
good generality and robustness of the model. (2) Although our method
can extract more weak/small signals from photoacoustic images, some
capillaries are still not recognized, and segmenting continuous small
vessels still needs further improvement.

To extend our work further, several issues still need to be addressed,
and they are discussed below.

(1) Our network model has good blood vessel segmentation capa-
bilities but at the cost of increased training time and prediction time
of the WSA module due to the increase in the number of computations
needed for each feature map. Supplementary Table 3 lists the network
parameters and time efficiency of different DL models considering the
128 × 128 patch size as an example. Compared to the other deep
learning models, the network proposed in this article requires fewer
training parameters and occupies less memory space. Although the
prediction time is longer, it can meet the clinical application needs
for a relatively small field of view in low-end systems. Improving the
configuration of the computing platform could reduce execution time
significantly. In the future, we will explore optimizing the algorithms
for high performance and transforming modules into a lightweight
network to increase computational speed without degrading the model
segmentation performance.

(2) Although our network is trained on the MAP data pairs, it can be
used to predict the photoacoustic vessel images on a single depth slice.
Multiple vessel-detected consecutive slices can be used to construct the
3D vascular network. Two examples of reconstructed 3D images from
two sub-volumes belonging to normal-vessel and tumor-vessel datasets
are shown in Supplementary Video-4 and Video-5, respectively. The
12
videos show that our network demonstrates good 3D vascular recon-
struction capabilities, and vascular branches are continuous or easy to
trace along the blood vessel direction.

(3) U-Net and its some variations have been widely used in med-
ical imaging and are mainly used for organ segmentation and lesion
segmentation. Currently, the multi-branch DL framework based on U-
Net is the state-of-the-art method for extracting the vessels in the
fundus imaging [27–29]. Our proposed WSA-MP-Net can be applied
for the same application and could potentially achieve higher-precision
extraction of all vessels in the OR-PAM fundus imaging, which is our
future work.
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