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Abstract
Picture Fuzzy Sets (PFSs) originated by Cuong and Kreinovich are more capable to capture uncertain, inconsistent and

vague information in multi-criteria decision making. In this paper, we propose a new picture fuzzy divergence measure

based on Jensen-Tsallis function between PFSs. Further, the concept has been extended from fuzzy sets to novel picture

fuzzy divergence measure. Besides the validation of the proposed measure, some of its key properties with specific cases

are additionally talked about. The performance of the proposed measure is compared with other existing measures in the

literature. Some illustrative examples are provided in the context of novel rapacious COVID-19 and pattern recognition

which demonstrate the adequacy and practicality of the proposed approach in solving real-life problems.
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1 Introduction

Zadeh (1965) introduced the idea of the fuzzy set to

quantify the vague and uncertain information and applied

them in decision making problems from different angles

(Chen et al. 2012; Chen and Chen 2014; Kadian and

Kumar 2020a). Atanassov (1986) introduced a significant

generalization of the fuzzy set known as intuitionistic fuzzy

set (IFS). Fuzzy set theory is applied in various areas, but

in real life, few circumstances happen that cannot be dealt

with by a fuzzy set. The idea of the intuitionistic fuzzy set

for a component is a membership degree (s), non-mem-

bership degree (m) and the third component ‘hesitancy

degree’ (p) respectively, satisfying sþ mþ p ¼ 1,

improved the capability of FSs to handle the uncertain

information. The third factor namely ‘hesitancy degree’ (p)
was introduced by Atanassov (1999) in the existing

structure of FSs. Various researchers gave their contribu-

tion in this field such as Szmidt and Kacprzyk (2000)

developed a similarity measure between IFSs based on the

Hamming distance, Xu and Xia (2010) characterized the

geometric distance and similarity measures of IFSs for

group decision-making problems. Due to their flexibility

and successful applications, various researchers have been

started research work on Atanassov intuitionistic fuzzy

theory. More interesting applications have been developed

in various fields, for example, image processing, risk

analysis, medical diagnosis (Son and Phong 2016; Srivas-

tava and Maheshwari 2016), decision making (Chen and

Chang 2016; Chen et al. 2016; Zeng et al. 2019; Joshi

2020; Kadian and Kumar 2020b).

The transmission of COVID-19 and different mediations

additionally had an extraordinary contrary impact on the

normal existences of individuals and the solid working of

society. Numerous researchers contribute to prevent and

control the crisis circumstance of COVID-19. Toğaçar

et al. (2020) introduced the deducting technique of

COVID-19 using fuzzy color and stacking approaches,

Tuite et al. (2020) propose the COVID-19 transmission

and relief techniques based numerical model among

Canada’s population, Sohail and Nutini (2020) presented
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the novel numerical model of determining the time period

of COVID–19.

Tackling ambiguous and unsure information in real-life

circumstances have consistently been a trouble. A few

methodologies have been investigated to address the

unpredictability and uncertainty found in real-life mea-

sures, for example the theory of fuzzy set (FS). Despite the

fact that the IFSs find their applications in various fields,

yet at the same time there are numerous circumstances

where IFSs can not be applied. Again, this can be better

understood by an example on voting where we face such

sort of problem: yes, abstain, no and refusal. This limits the

area of applications of IFSs. To conquer this circumstance,

a new generalized fuzzy set namely picture fuzzy set (PFS)

has been proposed by Cuong and Kreinovich (2014). It is a

generalization of fuzzy set and intuitionistic fuzzy set with

the introduction of the positive ðsÞ, the negative ðmÞ, the
neutral ðpÞ and the refusal degrees (n ¼ 1� s� m� p)
demonstrating different possibilities of an element to a

given set. The main requirement is that the sum of the

degrees must not exceed 1. The picture fuzzy set theory is

utilized in many day to day life problems such as voting

problems, clustering, decision making, fuzzy inference.

Son and Thong (2017) presented a few novel fuzzy clus-

tering algorithm depicting the advantages of utilizing PFSs,

Wei (2018) proposed picture fuzzy cross-entropy model for

multiple attribute decision-making problems, Ashraf et al.

(2019) acquaints various methods to multi-criteria group

decision-making problems for picture fuzzy environment.

In this paper, we propose a new picture fuzzy diver-

gence measure based on the generalization of Jensen-

Tsallis function. Numerical examples illustrate that the

proposed measure is reasonably measuring the degree of

dissimilarity between PFSs.

The main objectives and motivation of this paper are:

• A new picture fuzzy divergence measure is proposed

based on joint representation of Jensen-Tsallis measure

and studied some of its properties.

• A new picture fuzzy divergence measure is introduced

to measure the fuzziness degree for PFSs.

• The reliability and flexibility of the proposed measure

are proved with the help of examples in the context of

COVID-19 and pattern recognition.

• The proposed divergence measure is applied to solve

the MCDM problems under the picture fuzzy condition.

The remainder of the paper is designed as follows: Sect. 1

contains the work done by the earlier researchers in the

field. In Sect. 2, we introduce a new generalization of

Jensen-Tsallis divergence measure and its properties. In

Sect. 3, a new picture fuzzy divergence measure based on

Jensen–Tsallis entropy is proposed with basic definitions

and few major properties. Along the way, Sect. 4 proposes

the numerical examples to demonstrate the applicability

and reliability of the proposed technique. Lastly, the con-

clusion and future scope are drawn in Sect. 5.

2 Jensen–Tsallis divergence measure

In the present section, we introduce the Jensen–Tsallis

divergence along with their properties for the probabilistic

view point.

Let Mk ¼ fE ¼ ðe1; e2; . . .; ekÞ; ep� 0;
Pk

p¼1 ep ¼ 1g;
k� 2 be the complete probability distribution set. For some

E 2 Mk, Shannon entropy is

HðEÞ ¼ �
Xk

p¼1
ep log ep: ð1Þ

For some E1;E2 2 Mk with respect to the coefficient

weights d1; d2� 0 s.t. d1 þ d2 ¼ 1, Lin (1991) define the

Jensen-Shannon divergence measure as

UðE1;E2Þ ¼ Hðd1E1 þ d2E2Þ � d1HðE1Þ � d2HðE2Þ:
ð2Þ

The quantity (2) is non negative and disappear if and only

if E1 ¼ E2 and also a convex function for E1 and E2. So, it

is called Jensen difference arising out of the convex

function due to negative of the Shannon entropy.

Further, Tsallis (1988) introduced a generalization of

Shannon entropy as

Ha
TðEÞ ¼

1

1� a

Xk

p¼1
eap

 !

� 1

" #

; ð3Þ

when a! 1, then Eq. (3) recovers a Shannon entropy and

is a concave function of E for a[ 0ð6¼ 1Þ.
Now, we introduce a new concept called Jensen–Tsallis

divergence based on Eq. (3) and also studied by Kumar and

Joshi (2019).

UðE1;E2Þ ¼
1

ð1� aÞ
Xk

p¼1
ðd1ep þ d2fpÞa � d1eap � d2f ap
� �

;

ð4Þ

where d1 and d2 are the weight coefficients with d1; d2� 0

and d1 þ d2 ¼ 1.

Particular Cases:

Case 1. If a! 1 , then Eq. (4) becomes

UðE1;E2Þ ¼
Xk

p¼1

�

d1ðepÞ logðepÞ þ d2ðfpÞ logðfpÞ � ðd1ep þ d2fpÞ logðd1ep þ d2fpÞ
�

ð5Þ
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which becomes generalization of Jensen-Shannon J-diver-

gence measure with coefficient weights d1; d2 , which is

slightly different from Lin (1991).

Case 2. If d1 ¼ d2 ¼ 1
2
in Eq. (5), then

UðE1;E2Þ ¼
Xk

p¼1

1

2
ððepÞ logðepÞ þ ðfpÞ logðfpÞÞ

�

� 1

2
ðep þ fpÞ log

ep þ fp
2

� �� ð6Þ

which becomes generalization of Jensen-Shannon J-diver-

gence measure.

Case 3. If d1 ¼ d2 ¼ 1
2
in Eq. (4), then

UðE1;E2Þ ¼
1

ð1� aÞ
Xk

p¼1

ep þ fp
2

� �a

� 1

2
ðeap þ f ap Þ

� �

ð7Þ

which is called Jensen–Tsallis J-divergence measure,

which is studied by Burbea and Rao (1982).

Definition 2.1 The Hessian matrix of a function Cðep; fpÞ
of two variables is defined as

HessianðCÞ ¼

o2C
oe2p

o2C
oepfp

o2C
oepfp

o2C
of 2p

2

6
6
6
6
4

3

7
7
7
7
5

The function C is said to convex at that point in its domain

if HessianðCÞ is semi positive definite and concave if

HessianðCÞ is semi negative definite at that point. To

obtain the maximality of a function C, calculate the first

order derivative partially and equate to zero to obtain

critical points.

Properties of Jensen–Tsallis divergence: The defined

distance measure Eq. (4) between E1 and E2 in Mk satisfies

the following properties and these properties are proposed

by Kullback and Leibler (1951):

1. UðE1;E2Þ� 0 with the equality E1 ¼ E2;

2. UðE1;E2Þ is a convex function of E1 and E2.

Proof 1. First prove that UðE1;E2Þ� 0. Since, the function

defined by (3) is a concave function, therefore, for any E1

and E2 in Mk, Jensen inequality implies

Ha
Tðd1E1 þ d2E2Þ� d1H

a
TðE1Þ þ d2H

a
TðE2Þ: ð8Þ

1

1� a

Xk

p¼1
ðd1ep þ d2fpÞa � 1

" #

� d1
1

1� a

Xk

p¼1
ðepÞa � 1

" #

þ d2
1

1� a

Xk

p¼1
ðfpÞa � 1

" #

ð9Þ

)
Xk

p¼1
ðd1ep þ d2fpÞa � 1

" #

�
Xk

p¼1
d1ðepÞa � d1

" #

þ
Xk

p¼1
d2ðfpÞa � d2

" #

ð10Þ

)
Xk

p¼1
ðd1ep þ d2fpÞa � 1

" #

�
Xk

p¼1
d1ðepÞa þ

Xk

p¼1
d2ðfpÞa � d1 � d2

" #

ð11Þ

)
Xk

p¼1
ðd1ep þ d2fpÞa � 1

" #

� d1
Xk

p¼1
ðepÞa þ d2

Xk

p¼1
ðfpÞa � ðd1 þ d2Þ

" #

ð12Þ

Using d1 þ d2 ¼ 1 in Eq. (12), then

)
Xk

p¼1
ðd1ep þ d2fpÞa � 1

" #

� d1
Xk

p¼1
ðepÞa þ d2

Xk

p¼1
ðfpÞa � 1

" #

ð13Þ

This implies

Xk

p¼1
ðd1ep þ d2fpÞa� d1

Xk

p¼1
ðepÞa þ d2

Xk

p¼1
ðfpÞa; ð14Þ

) UðE1;E2Þ� 0:

3. Now, we have to show the convexity of function C,
where

Cðe; pÞ ¼ ðd1eþ d2f Þa � d1e
a � d2f

a

Taking derivative partially w.r.t. e and f, we get

oC
oe
¼aðd1eþ d2f Þa�1d1 � ad1e

a�1

oC
of
¼aðd1eþ d2f Þa�1d2 � ad2f

a�1

Put oC
oe ¼ oC

of ¼ 0 to obtain the critical point. Now, calcu-

lating the Hessian(C) from definition (2.1) at e ¼ f and

utilizing d1 þ d2 ¼ 1, we get

HessianðCÞ ¼ 2ad1d2
1 � 1

�1 1

� �

;

which becomes a positive semi definite. This ensures that

the function (4) is convex. h

3 Generalized Jensen–Tsallis picture fuzzy
divergence measure

This section provides the definitions and concepts related

to PFSs.

Definition 3.1 (Zadeh 1965) A fuzzy set in X (fixed set) is

defined by

L ¼ fðt; sLðtÞÞjt 2 Xg;
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in which sL : X ! ½0; 1� is indicated a membership function

in X and sLðtÞ 2 ½0; 1�.

Definition 3.2 (Atanassov 1986) An intuitionistic fuzzy

set M in X (fixed set) is given by

M ¼ fðt; sMðtÞ; mMðtÞÞjt 2 Xg;

where sM : X ! ½0; 1� and mM : X ! ½0; 1� are indicated the

membership and non membership functions in X, respec-

tively, and for every t 2 X satisfy the condition

0� sMðtÞ þ mMðtÞ� 1. The hesitancy degree for IFS M and

t 2 X is given by pMðtÞ ¼ 1� sMðtÞ � mMðtÞ. Taking

pMðtÞ ¼ 0 implies mMðtÞ ¼ 1� sMðtÞ for all t 2 X, i.e., IFS

M become a fuzzy set.

Definition 3.3 (Atanassov 1986) For each intuitionistic

fuzzy set in X (fixed set), if

pMðtÞ ¼ 1� sMðtÞ � mMðtÞ; 8t 2 X:

Then pMðtÞ is called the hesitancy degree of t to M.

Definition 3.4 (Cuong and Kreinovich 2014) A picture

fuzzy set in X (fixed set) is given as

M ¼ fðt; sMðtÞ; mMðtÞ; pMðtÞÞjt 2 Xg;

where sM : X ! ½0; 1�, mM : X ! ½0; 1� and pM : X ! ½0; 1�
are indicated the positive, negative and neutral grads in X

respectively and for every t 2 X satisfy the condition

0� sMðtÞ þ mMðtÞ þ pMðtÞ� 1, and the refusal degree for

PFS M and t 2 X is given by

nMðtÞ ¼ 1� sMðtÞ � mMðtÞ � pMðtÞ. Taking nMðtÞ ¼ 0

implies pMðtÞ ¼ 1� sMðtÞ � mMðtÞ, i.e., PFS M becomes

an intuitionistic fuzzy set. And, again taking pMðtÞ ¼ 0

implies mMðtÞ ¼ 1� sMðtÞ for all t 2 X, i.e., IFS M be-

comes a fuzzy set.

Definition 3.5 (Cuong and Kreinovich 2014) Let L ¼
fðt; sLðtÞ; mLðtÞ; pLðtÞÞg and M ¼ fðt; sMðtÞ; mMðtÞ; pMðtÞÞg
be two PFSs, then

1. L � M if and only if 8t 2 X, sLðtÞ� sMðtÞ,
mLðtÞ� mMðtÞ and pLðtÞ� pMðtÞ;

2. L ¼ M if and only if 8t 2 X, sLðtÞ ¼ sMðtÞ and

sMðtÞ ¼ sLðtÞ;
3. �L ¼ fðpLðtÞ; mLðtÞ; sLðtÞÞjt 2 Xg;
4. L [M ¼ fðt;maxðsLðtÞ; sMðtÞÞ;minðmLðtÞ; mMðtÞÞ;

minðpLðtÞ; pMðtÞÞÞjt 2 Xg;
5. L \M ¼ fðt;minðsLðtÞ; sMðtÞÞ;maxðmLðtÞ; mMðtÞÞ;

maxðpLðtÞ; pMðtÞÞÞjt 2 Xg.
Next, we introduce a new generalized Jensen-Tsallis pic-

ture fuzzy divergence measure. First we take X ¼ ftg
(single element). Then, for some L;M 2 PFSsðXÞ, for

simplicity, we take L ¼ ðsL; mL; pL; nLÞ and

M ¼ ðsM; mM ; pM; nMÞ. Since sL þ mL þ pL þ nL ¼ 1,

0� sL; mL; pL; nL; sM; mM ; pM; nM � 1, ðsL; mL; pL; nLÞ and

ðsM; mM ; pM; nMÞ might be regarded as two probability

distributions. We define a dissimilarity measure on

PFSs(X) corresponding to (2) as

U�aðL;MÞ ¼ Ha
Tðd1Lþ d2MÞ � d1H

a
TðLÞ � d2H

a
TðMÞ;

ð15Þ

where Ha
Tð�Þ is Tsallis entropy for PFS ð�Þ, a[ 0ð6¼ 1Þ,

d1; d2� 0, d1 þ d2 ¼ 1 and

d1Lþ d2M

¼ ðd1sL þ d2sM; d1mL þ d2mM; d1pL þ d2pM ; d1nL þ d2nMÞ:
ð16Þ

So, the Eq. (15) can be written as

U�aðL;MÞ ¼ 1

ð1� aÞ
ðd1sL þ d2sMÞa þ ðd1mL þ d2mMÞa

þðd1pL þ d2pMÞa þ ðd1nL þ d2nMÞa

�ðd1saL þ d2saMÞ � ðd1maL þ d2maMÞd1paL þ d2paMÞ � ðd1n
a
L þ d2n

a
MÞ

0

B
@

1

C
A:

ð17Þ

Now, we discuss a few properties of proposed measure

introducing in Eq. (17).

Particular Cases:

Case 1. If a ¼ 1 in Eq. (17), then

U�1ðL;MÞ

¼ �

ðd1sL þ d2sMÞ logðd1sL þ d2sMÞ þ ðd1mL þ d2mMÞ logðd1mL þ d2mMÞ
þðd1pL þ d2pMÞ logðd1pL þ d2pMÞ þ ðd1nL þ d2nMÞ logðd1nL þ d2nMÞ

�ðd1sL log sL þ d2sM log sMÞ � ðd1mL log mL þ d2mM log mMÞ
�ðd1pL log pL þ d2pM log pMÞ � ðd1nL log nL þ d2nM log nMÞ

0

B
B
B
@

1

C
C
C
A
:

ð18Þ

It becomes a picture fuzzy dissimilarity measure studied by

Lin (1991).

Case 2. If a ¼ 1, d1 ¼ d2 ¼ 1
2
in Eq. (17), then

U�1ðL;MÞ ¼
1

2
ðsL þ sMÞ log

sL þ sM
2

� 	
þ 1

2
ðmL þ mMÞ log

mL þ mM
2

� 	

þ 1

2
ðpL þ pMÞ log

pL þ pM
2

� 	
þ 1

2
ðnL þ nMÞ log

nL þ nM
2

� �

� 1

2
ðsL log sL þ sM log sMÞ �

1

2
ðmL log mL þ mM log mMÞ

� 1

2
ðpL log pL þ pM log pMÞ �

1

2
ðnL log nL þ nM log nMÞ

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

:

ð19Þ

It becomes a picture fuzzy dissimilarity measure for

assigning the equal weights for each probability

distribution.

Case 3. If d1 ¼ d2 ¼ 1
2
in Eq. (17), then
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U�aðL;MÞ ¼ 1

ð1� aÞ

ðsL þ sMÞ
2

� �a

þ ðmL þ mMÞ
2

� �a

þ ðpL þ pMÞ
2

� �a

þ ðnL þ nMÞ
2

� �a

� 1

2
ðsaL þ saMÞ �

1

2
ðmaL þ maMÞ

1

2
ðpaL þ paMÞ �

1

2
ðnaL þ naMÞ

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

:

ð20Þ

It becomes a picture fuzzy dissimilarity measure corre-

sponding to intuitionistic fuzzy dissimilarity measure

studied by Hung and Yang (2006).

Case 4. If a ¼ 2 in Eq. (17), then

U�2ðL;MÞ

¼ �
ðd1sL þ d2sMÞ2 þ ðd1mL þ d2mMÞ2

þðd1pL þ d2pMÞ2 þ ðd1nL þ d2nMÞ2

�ðd1s2L þ d2s2MÞ � ðd1m2L þ d2m2MÞd1p2L þ d2p2MÞ � ðd1n2L þ d2n
2
MÞ

0

B
@

1

C
A

ð21Þ

which is based on Ginni index of diversity for the case of

picture fuzzy sets.

Case 5. If a ¼ 2 and d1 ¼ d2 ¼ 1
2
in Eq. (17), then

U�2ðL;MÞ

¼ ðsL � sMÞ2 þ ðmL � mMÞ2 þ ðpL � pMÞ2 þ ðnL � nMÞ2

4

¼ ðg
l
PFSðL;MÞÞ

2

2
;

ð22Þ

where glPFSðL;MÞ was characterize as a distance between

PFSs. Hence, we can write as

glPFSðL;MÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2	 U�2ðL;MÞ
q

:

Case 6. If a ¼ 1; nL ¼ nM ¼ 0 in Eq. (19), then

U�1ðL;MÞ

¼

1

2
ðsL þ sMÞ log

sL þ sM
2

� 	
þ 1

2
ðmL þ mMÞ log

mL þ mM
2

� 	

þ 1

2
ðpL þ pMÞ log

pL þ pM
2

� 	
� 1

2
ðsL log sL þ sM log sMÞ

frac12ðmL log mL þ mM log mMÞ �
1

2
ðpL log pL þ pM log pMÞ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð23Þ

which becomes an intuitionistic fuzzy dissimilarity

measure.

Case 7. If nL ¼ nM ¼ 0 in Eq. (20), then

U�aðL;MÞ ¼ 1

ð1� aÞ
ðsL þ sMÞ

2

� �a

þ ðmL þ mMÞ
2

� �a

þ ðpL þ pMÞ
2

� �a

� 1

2
ðsaL þ saMÞ �

1

2
ðmaL þ maMÞ �

1

2
ðpaL þ paMÞ

0

B
B
@

1

C
C
A:

ð24Þ

It becomes an intuitionistic fuzzy dissimilarity measure,

which is studied by Hung and Yang (2006).

Case 8. If nL ¼ nM ¼ 0 in Eq. (21), then

U�2ðL;MÞ

¼ � ðd1sL þ d2sMÞ2 þ ðd1mL þ d2mMÞ2 þ ðd1pL þ d2pMÞ2

�ðd1s2L þ d2s2MÞ � ðd1m2L þ d2m2MÞ � ðd1p2L þ d2p2MÞ

 !

ð25Þ

which is based on Ginni index of diversity for the case of

intuitionistic fuzzy sets.

Case 9. If nL ¼ nM ¼ 0 in Eq. (22), then

U�2ðL;MÞ ¼ ðsL � sMÞ2 þ ðmL � mMÞ2 þ ðpL � pMÞ2

4

¼ ðg
l
IFSðL;MÞÞ

2

2
;

ð26Þ

where glIFSðL;MÞ was characterize as a distance between

IFSs by Szmidt and Kacprzyk (2000). Hence, we can write

as

glIFSðL;MÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2	 U�2ðL;MÞ
q

:

Case 10. If hesitancy degree, i.e., pL ¼ pM ¼ 0 in Eq. (23),

then

U�1ðL;MÞ

¼

1

2
ðsLþsMÞlog

sLþsM
2

� 	
þ1
2
ð2�sL�sMÞlog

2�sL�sM
2

� �

�1
2
ðsL logsLþsM logsMÞ�

1

2
ðð1�sLÞlogð1�sLÞþð1�sMÞlogð1�sMÞÞ

0

B
B
@

1

C
C
A

ð27Þ

which becomes Jensen–Shannon fuzzy divergence measure

corresponding to Eq. (7).

Case 11. If hesitancy degree, i.e., pL ¼ pM ¼ 0 in

Eq. (24), then

U�aðL;MÞ ¼ 1

ð1� aÞ
sL þ sM

2

� 	a
þ ð2� sL � sMÞ

2

� �a

� 1

2
ðsaL þ saMÞ �

1

2
ðð1� sLÞa þ ð1� sMÞaÞ

0

B
B
@

1

C
C
A

ð28Þ

which becomes a fuzzy divergence measure corresponding

to Eq. (8).
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Case 12. If hesitancy degree, i.e., pL ¼ pM ¼ 0 in

Eq. (25), then

U�2ðL;MÞ

¼ � ðd1sL þ d2sMÞ2 þ ðd1ð1� sLÞ þ d2ð1� sMÞÞ2

�ðd1s2L þ d2s2MÞ � ðd1ð1� sLÞ2 þ d2ð1� sMÞ2Þ

 !

ð29Þ

which becomes a Jensen–Shannon J-divergence measure

for fuzzy sets corresponding to Eq. (6).

Case 13. If hesitancy degree, i.e., pL ¼ 0 and pM ¼ 0 in

Eq. (26), then

U�2ðL;MÞ ¼ ðsL � sMÞ2

4
¼ ðgFSðL;MÞÞ

2

4
: ð30Þ

Hence, we can write as

gFSðL;MÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4	 U�2ðL;MÞ
q

which is characterize as an Euclidean distance between two

fuzzy sets (FSs).

Presently, the justification of Eq. (17) is establishing

through a theorem.

Theorem 3.1 Let L;M 2 PFSsðXÞ, then U�aðL;MÞ satis-
fies the properties as follows :

1. U�aðL;MÞ� 0 and as U�aðL;MÞ ¼ 0 if and only if

L ¼ M.

2. Let L;M;N 2 PFSsðXÞ and L � M � N. Then

U�aðL;MÞ�U�aðL;NÞ and U�aðM;NÞ�U�aðL;NÞ.

Proof

1. Property 1 is directly from Jensen inequality.

2. Since U�aðL;MÞ is a convex function for a[ 0ð6¼ 1Þ,
therefore, U�aðL;MÞ increases with increase in jjL�
Mjj1 for all a[ 0ð6¼ 1Þ where
jjL�Mjj1¼jsL�sM jþjmL�mMjþjpLþpMjþjnLþnMj :

Let L, M, N be PFSs in X and L � M � N, then there

are sL� sM � sN , mL� mM � mN , pL� pM � pN .
Then, we have

jjL�Mjj1� jjL� Njj1
and

jjM � Njj1� jjL� Njj1 :

Thus, U�aðL;MÞ�U�aðL;NÞ and U�aðM;NÞ
�U�aðL;NÞ.

Definition 3.6 ðRa
newðL;MÞ for Finite Universal Set ):

Now, we extend the concept of Jensen-Tsallis divergence

measure from single element universe to finite universal

set. For this, for coefficient weights d1; d2, let X ¼
ft1; t2; . . .; tkg be a fixed set and for any L;M 2 PFSsðXÞ,
corresponding to (17), we present a generalized Jensen–

Tsallis picture fuzzy divergence Ra
newðL;MÞ as

Ra
newðL;MÞ ¼

1

k

Xk

p¼1
U�aðL;MÞ

¼ 1

ð1� aÞk
ðd1sL þ d2sMÞa þ ðd1mL þ d2mMÞa

þðd1pL þ d2pMÞa þ ðd1nL þ d2nMÞa

�ðd1saL þ d2saMÞ � ðd1maL þ d2maMÞd1paL þ d2paMÞ � ðd1naL þ d2n
a
MÞ

0

B
@

1

C
A:

ð31Þ

Now, we give some properties of measure (31) through a

theorem.

Theorem 3.2 For L;M; I 2 PFSsðXÞ,

1. Ra
newðL;MÞ ¼ 0 iff L ¼ M;

2. Ra
newðL; LcÞ ¼ 0 iff scLðtÞ ¼ 1� sLðtÞ for all t 2 X;

3. Ra
newðL; L [MÞ ¼ Ra

newðL \M;MÞ�Ra
newðL;MÞ;

4. Ra
newðL [M; L \MÞ ¼ Ra

newðL \M; L [MÞ
¼ Ra

newðL;MÞ;
5. Ra

newðL \M; L [MÞ ¼ Ra
newðM; LÞ;

6. Ra
newðL; L [MÞ þ Ra

newðL; L \MÞ ¼ Ra
newðL;MÞ;

7. Ra
newðM; L [MÞ þ Ra

newðM; L \MÞ ¼ Ra
newðM; LÞ;

8. Ra
newðL [M; IÞ�Ra

newðL; IÞ þ Ra
newðM; IÞ;

9. Ra
newðL \M; IÞ�Ra

newðL; IÞ þ Ra
newðM; IÞ;

10. Ra
newðL [M; IÞ þ Ra

newðL \M; IÞ
¼ Ra

newðL; IÞ þ Ra
newðM; IÞ;

11. Ra
newðL;MÞ=Ra

newðLc;McÞ;
12. Ra

newðL;McÞ=Ra
newðLc;MÞ;

13. Ra
newðL;MÞ þ Ra

newðLc;MÞ
¼ Ra

newðLc;McÞ þ Ra
newðL;McÞ; where Lc and Mc are

the complements of PFSs L and M, respectively.

Proof Suppose X bifurcate into two parts X1 and X2 such

that:

X1 ¼ ft 2 XjLðtÞ � MðtÞg;
and X2 ¼ ft 2 XjLðtÞ 
 MðtÞg:

ð32Þ

From (32), it is clear that for all t 2 X1,

sLðtÞ� sMðtÞ and mLðtÞ� mMðtÞ and pLðtÞ� pMðtÞ
ð33Þ

and for all t 2 X2,

sLðtÞ� sMðtÞ and mLðtÞ� sMðtÞ and pLðtÞ� pMðtÞ:
ð34Þ

1. Proof of properties (1-2) is directly from the definition

(31). h
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3. Since

Ra
newðL; L [MÞ ¼ 1

ð1� aÞk
Xk

p¼1

ðd1sL þ d2sL[MÞa þ ðd1mL þ d2mL[MÞa

þðd1pL þ d2pL[MÞa þ ðd1nL þ d2nL[MÞa

�ðd1saL þ d2saL[MÞ � ðd1maL þ d2maL[MÞ
�ðd1paL þ d2paL[MÞ � ðd1naL þ d2n

a
L[MÞ

0

B
B
B
@

1

C
C
C
A

This implies

Ra
newðL; L [MÞ ¼
X

X1

ðd1sL þ d2sMÞa þ ðd1mL þ d2mMÞa þ ðd1pL þ d2pMÞa þ ðd1nL þ d2nMÞa

�ðd1saL þ d2saMÞ � ðd1maLd2maMÞ � ðd1paL þ d2paMÞ � ðd1naL þ d2n
a
MÞ

� �

þ
X

X2

ðd1sL þ d2sLÞa þ ðd1mL þ d2mLÞa þ ðd1pL þ d2pLÞa þ ðd1nL þ d2nLÞa

�ðd1saL þ d2saLÞ � ðd1maL þ d2maLÞ � ðd1paL þ d2paLÞ � ðd1naL þ d2n
a
LÞ

� �

�
Xk

p¼1

ðd1sL þ d2sL[MÞa þ ðd1mL þ d2mL[MÞa

þðd1pL þ d2pL[MÞa þ ðd1nL þ d2nL[MÞa

�ðd1saL þ d2saL[MÞ � ðd1maL þ d2maL[MÞ
�ðd1paL þ d2paL[MÞ � ðd1naL þ d2n

a
L[MÞ

0

B
B
B
@

1

C
C
C
A
¼ Ra

newðL;MÞ

Similarly, we can prove that Ra
newðL \M;MÞ�Ra

newðL;MÞ:
4. From property 4, we have

Ra
newðL [M; L \MÞ ¼

X

X1

Ra
newðM; LÞ þ

X

X2

Ra
newðL;MÞ

¼Ra
newðL;MÞ;

similarly, we can prove that

Ra
newðL \M; L [MÞ ¼

X

X1

Ra
newðM; LÞ þ

X

X2

Ra
newðL;MÞ

¼Ra
newðL;MÞ:

5. Property 5 is proved as same as of the property 4.

6. Consider

Ra
newðL; L [MÞ þ Ra

newðL; L \MÞ
¼
X

X1

Ra
newðL;MÞ þ

X

X2

Ra
newðL; LÞ

þ
X

X1

Ra
newðL; LÞ þ

X

X2

Ra
newðL;MÞ

¼ Ra
newðL;MÞ:

ð35Þ

7. Property 7 is proved as same as the property 6.

8. Consider

Ra
newðL; IÞ þ Ra

newðM; IÞ � Ra
newðL [M; IÞ

¼ 1

ð1� aÞk
Xk

p¼1

ðd1sL þ d2sIÞa þ ðd1mL þ d2mIÞa

þðd1pL þ d2pIÞa þ ðd1nL þ d2nIÞa

�ðd1saL þ d2saI Þ � ðd1maL þ d2maI Þ
�d1paL þ d2paI Þ � ðd1naL þ d2n

a
I Þ

0

B
B
B
@

1

C
C
C
A

þ 1

ð1� aÞk
Xk

p¼1

ðd1sM þ d2sIÞa þ ðd1mM þ d2mIÞa

þðd1pM þ d2pIÞa þ ðd1nM þ d2nIÞa

�ðd1saM þ d2saI Þ � ðd1maM þ d2maI Þ
�d1paM þ d2paI Þ � ðd1naM þ d2n

a
I Þ

0

B
B
B
@

1

C
C
C
A

� 1

ð1� aÞk
Xk

p¼1

ðd1sL[M þ d2sIÞa þ ðd1mL[M þ d2mIÞa

þðd1pL[M þ d2pIÞa þ ðd1nL[M þ d2nIÞa

�ðd1saL[M þ d2saI Þ � ðd1maL[M þ d2maI Þ
�d1paL[M þ d2paI Þ � ðd1naL[M þ d2n

a
I Þ

0

B
B
B
@

1

C
C
C
A

This implies Ra
newðL; IÞ þ Ra

newðM; IÞ � Ra
newðL [M; IÞ

¼ 1

ð1� aÞk
Xk

p¼1

ðd1sL þ d2sIÞa þ ðd1mL þ d2mIÞa

þðd1pL þ d2pIÞa þ ðd1nL þ d2nIÞa

�ðd1saL þ d2saI Þ � ðd1maL þ d2maI Þ
�d1paL þ d2paI Þ � ðd1naL þ d2n

a
I Þ

0

B
B
B
@

1

C
C
C
A

þ 1

ð1� aÞk
Xk

p¼1

ðd1sM þ d2sIÞa þ ðd1mM þ d2mIÞa

þðd1pM þ d2pIÞa þ ðd1nM þ d2nIÞa

�ðd1saM þ d2saI Þ � ðd1maM þ d2maI Þ
�d1paM þ d2paI Þ � ðd1naM þ d2n

a
I Þ

0

B
B
B
@

1

C
C
C
A

� 1

ð1� aÞk
X

X1

ðd1sM þ d2sIÞa þ ðd1mM þ d2mIÞa

þðd1pM þ d2pIÞa þ ðd1nM þ d2nIÞa

�ðd1saM þ d2saI Þ � ðd1maM þ d2maI Þ
�d1paM þ d2paI Þ � ðd1naM þ d2n

a
I Þ

0

B
B
B
@

1

C
C
C
A

� 1

ð1� aÞk
X

X2

ðd1sL þ d2sIÞa þ ðd1mL þ d2mIÞa

þðd1pL þ d2pIÞa þ ðd1nL þ d2nIÞa

�ðd1saL þ d2saI Þ � ðd1maL þ d2maI Þ
�d1paL þ d2paI Þ � ðd1naL þ d2n

a
I Þ

0

B
B
B
@

1

C
C
C
A
� 0:

Therefore, Ra
newðL [M; IÞ�Ra

newðL; IÞ þ Ra
newðM; IÞ:

9. Proof of property 9 simply follows from property 8.

10. Consider Ra
newðL [M; IÞ þ Ra

newðL \M; IÞ

¼ 1

ð1� aÞk
Xk

p¼1

ðd1sL[M þ d2sIÞa þ ðd1mL[M þ d2mIÞa

þðd1pL[M þ d2pIÞa þ ðd1nL[M þ d2nIÞa

�ðd1saL[M þ d2saI Þ � ðd1maL[M þ d2maI Þd1paL[M þ d2paI Þ � ðd1naL[M þ d2n
a
I Þ

0

B
@

1

C
A

þ 1

ð1� aÞk
Xk

p¼1

ðd1sL\M þ d2sIÞa þ ðd1mL\M þ d2mIÞa

þðd1pL\M þ d2pIÞa þ ðd1nL\M þ d2nIÞa

�ðd1saL\M þ d2saI Þ � ðd1maL\M þ d2maI Þd1paL\M þ d2paI Þ � ðd1naL\M þ d2n
a
I Þ

0

B
@

1

C
A

Using (35), we obtain
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¼
X

X1

Ra
newðM; IÞ þ

X

X2

Ra
newðL; IÞ

þ
X

X1

Ra
newðL; IÞ þ

X

X2

Ra
newðM; IÞ

¼ Ra
newðL; IÞ þ Ra

newðM; IÞ:

11. Property 11 is proved directly from definition (31).

12. Property 12 is proved directly from definition (31).

13. Property 13 is proved directly from definition (31).

4 Applications of proposed picture fuzzy
divergence measure

Under this section, we present the applications for an

outbreak of COVID-19 and pattern recognition.

4.1 Novel coronavirus disease (NCOVID-19)

To exhibit the relevance and legitimacy of the proposed

method, we apply it on an outbreak of novel coronavirus

ailment (NCOVID–19).

Example 1 Now, in the circumstance of COVID-19, it is

fundamental to give a productive route in crisis reaction for

evading extra misfortunes and to save the lives of the

people. Because of such a crisis choice, the wellbeing

specialists need to make a quick reaction, desperately sal-

vage to control the circumstance proficiently and prevent it

from more deaths. There are eight fundamental public

health emergency factors to diminish the overall danger of

this ailment. The best preventive measures are: let us

consider the situations Z={A1-Medical facilities, A2-re-

search needs, A3-lock down the borders, A4-banned intra-

city transportation, A5-public awareness} and five emer-

gency factor to reduce this risk D= {g1-clinical manage-

ment (CM), g2-monitoring (MN), g3-country-level
coordination (CLC), g4-consult experts (CE), g5-increase
personal protective equipment (IPP)} with symptoms

V={q1-shortness of breath, q2-chest pain, q3-loss of taste,
q4-loss of speech, q5-conjunctivitis}. Every element in sit-

uations, symptoms and emergency factor is given as a

picture fuzzy number. One need to find a proper preventive

measure for every emergency situation in context of

symptoms. The procedure is repeated for all components.

At last, we recommend the measure for emergency situa-

tion whose symptoms have minimum degree of divergence

measure. Let situations A1;A2;A3;A4;A5, w.r.t. all symp-

toms in the form of following PFSs:

A1 ¼ fðt1; 0:1; 0:4; 0:3; 0:2Þ; ðt2; 0:4; 0:1; 0:3; 0:2Þ; ðt3; 0:3; 0:2; 0:4; 0:1Þ;

ðt4; 0:2; 0:3; 0:5; 0:0Þ; ðt5; 0:5; 0:1; 0:3; 0:1Þg;
A2 ¼ fðt1; 0:3; 0:3; 0:3; 0:1Þ; ðt2; 0:0; 0:2; 0:7; 0:1Þ; ðt3; 0:6; 0:1; 0:1; 0:2Þ;

ðt4; 0:4; 0:4; 0:2; 0:0Þ; ðt5; 0:1; 0:5; 0:3; 0:1Þg;
A3 ¼ fðt1; 0:5; 0:1; 0:3; 0:1Þ; ðt2; 0:3; 0:4; 0:3; 0:0Þ; ðt3; 0:6; 0:1; 0:3; 0:0Þ;

ðt4; 0:4; 0:4; 0:1; 0:1Þ; ðt5; 0:1; 0:5; 0:2; 0:2Þg;
A4 ¼ fðt1; 0:6; 0:2; 0:1; 0:1Þ; ðt2; 0:3; 0:2; 0:4; 0:1Þ; ðt3; 0:4; 0:2; 0:3; 0:1Þ;

ðt4; 0:6; 0:1; 0:1; 0:2Þ; ðt5; 0:4; 0:2; 0:2; 0:2Þg;
A5 ¼ fðt1; 0:1; 0:4; 0:3; 0:2Þ; ðt2; 0:4; 0:1; 0:3; 0:2Þ; ðt3; 0:3; 0:2; 0:4; 0:1Þ;

ðt4; 0:2; 0:3; 0:4; 0:1Þ; ðt5; 0:5; 0:1; 0:3; 0:1Þg:

Each factor gpðp ¼ 1; 2; 3; 4; 5Þ w.r.t. all the symptoms can

be seen in the form of PFSs as:

g1 ¼ fðt1; 0:6; 0:1; 0:2; 0:1Þ; ðt2; 0:3; 0:2; 0:4; 0:1Þ; ðt3; 0:4; 0:2; 0:3; 0:1Þ;

ðt4; 0:5; 0:2; 0:1; 0:2Þ; ðt5; 0:4; 0:2; 0:2; 0:2Þg;
g2 ¼ fðt1; 0:5; 0:3; 0:1; 0:1Þ; ðt2; 0:3; 0:4; 0:3; 0:0Þ; ðt3; 0:7; 0:2; 0:1; 0:0Þ;

ðt4; 0:3; 0:1; 0:5; 0:1Þ; ðt5; 0:3; 0:4; 0:2; 0:1Þg;
g3 ¼ fðt1; 0:1; 0:1; 0:6; 0:2Þ; ðt2; 0:3; 0:1; 0:5; 0:1Þ; ðt3; 0:2; 0:2; 0:4; 0:2Þ;

ðt4; 0:4; 0:4; 0:1; 0:1Þ; ðt5; 0:3; 0:2; 0:4; 0:1Þg;
g4 ¼ fðt1; 0:4; 0:1; 0:3; 0:2Þ; ðt2; 0:5; 0:2; 0:3; 0:0Þ; ðt3; 0:4; 0:0; 0:3; 0:3Þ;

ðt4; 0:7; 0:2; 0:0; 0:1Þ; ðt5; 0:6; 0:1; 0:1; 0:2Þg;
g5 ¼ fðt1; 0:7; 0:1; 0:1; 0:1Þ; ðt2; 0:2; 0:4; 0:3; 0:1Þ; ðt3; 0:2; 0:5; 0:1; 0:2Þ;

ðt4; 0:1; 0:2; 0:5; 0:2Þ; ðt5; 0:3; 0:3; 0:3; 0:1Þg;

Now, we calculate the values of situations with respect to

symptoms for different values of d1; d2. Calculated values

are given in Table 1, 2, 3, 2, 6.

Notations: g1-clinical management, g2-monitoring, g3-
country level coordination, g4-consult experts, g5-increase
personal protective equipment.

Abbreviations: In Table 7, some abbreviations are used

like: CM-clinical management, MN-monitoring, CLC-

country level coordination, CE-consult experts, IPP-in-

crease personal protective equipment.

We conclude the Tables 1, 2, 3, 4, 5, 6 in Table 7. In

Table 7, proposed picture fuzzy divergence measure (31)

suggests that the factors CLC, IPP, CM, CLC, MN are the

Table 1 Values for each considered situation for d1 ¼ :1; d2 ¼ :9

g1 g2 g3 g4 g5

A1 0.081 0.014 0.002 1.775 0.019

A2 0.019 1.098 0.554 0.521 0.018

A3 0.050 0.511 0.578 0.586 0.630

A4 0.071 0.011 0.010 1.221 0.025

A5 0.030 0.002 0.003 1.156 0.071

Results: A1ðg3Þ A2ðg5Þ A3ðg1Þ A4ðg3Þ A5ðg2Þ

Bold indicates minimum value of each situation with respect to

symptoms
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essential measures for the situations A1;A2;A3;A4;A5

respectively for various values of parameters d1; d2,
according to the principle of the minimum degree of

divergence measure between PFSs. Thus, we have come to

the conclusion that according to our proposed measure,

above mentioned factors are the main preventive measures

that decrease the overall risk of this infection. The results

of proposed measure which are obtained on the different

value of d1; d2 are depicted by Fig. 1.

In Fig. 1, different colors show the different factors as

first light blue color presents country-level coordination

(CLC), orange color presents increase personal protective

equipment (IPP), gray color presents clinical management

(CM), yellow color presents country level coordination

(CLC) and blue color presents monitoring. From Fig. 1, we

can seen that the factors CLC, IPP, CM, CLC, MN are

consistently occurring in a manner for various values of

parameters d1; d2. This shows the consistency of the pro-

posed measure.

4.2 Comparison with other existing measures

Under this subsection, we present the comparative study

for demonstrating the usefulness of the proposed measure.

Comparisons are taken among the picture fuzzy divergence

measures suggested by: Hung and Yang (2006), Son et al.

(2017), Ashraf et al. (2019), Wang et al. (2017), Son

(2017), Singh (2014) and Nei et al. (2017). Comparative

results are appeared in Table 8.

Comparative Analysis: From Table 8, we can easily

clear that the proposed picture fuzzy divergence measure

gives predictable outcome according to the principal of

minimum degree of divergence measure between PFSs,

while other divergence measures gave no consistency

regardless. They do not ready to perceive the two factors

because of the uniformity of divergence measure values.

Table 8 gives the results produced by different methods.

Two methods are not able to show the clarity about the

factor to overcome the situation A1 and A5. For example-

Nei et al. (2017) is not able to suggest for control the

situation A4, i.e., not able to suggest which factor either

clinical management (CM) or monitoring (MN) is suit-

able to control the situation A4. In the same way, Son

(2017) is disabled to suggest for handling the situation A1,

i.e., not able to suggest which preventive factor either

clinical management (CM) or country-level coordination

(CLC) is suitable to control the situation A1.

Further, the proposed measure generates the same

results with Wang et al. (2017), which demonstrate that the

proposed measure is practical in coronavirus diagnosis.

Therefore, our proposed method has strong discrimination

and can provide more useful results as contrasted with

other divergence measures.

Table 2 Values for each considered situation for d1 ¼ :2; d2 ¼ :8

g1 g2 g3 g4 g5

A1 0.135 0.025 0.004 1.996 0.032

A2 0.034 1.238 0.619 0.605 0.032

A3 0.084 0.588 0.660 0.678 0.722

A4 0.118 0.020 0.018 1.138 0.043

A5 0.052 0.004 0.005 1.298 0.120

Results: A1ðg3Þ A2ðg5Þ A3ðg1Þ A4ðg3Þ A5ðg2Þ

Bold indicates minimum value of each situation with respect to

symptoms

Table 5 Values for each considered situation for d1 ¼ :5; d2 ¼ :5

g1 g2 g3 g4 g5

A1 0.196 0.038 0.006 2.188 0.050

A2 0.051 1.360 0.675 0.685 0.049

A3 0.124 0.660 0.737 0.789 0.809

A4 0.172 0.319 0.029 1.524 0.066

A5 0.079 0.006 0.008 1.420 1.171

Results: A1ðg3Þ A2ðg5Þ A3ðg1Þ A4ðg3Þ A5ðg2Þ

Bold indicates minimum value of each situation with respect to

symptoms

Table 3 Values for each considered situation for d1 ¼ :3; d2 ¼ :7

g1 g2 g3 g4 g5

A1 0.170 0.032 0.005 2.114 0.042

A2 0.043 1.311 0.652 0.652 0.041

A3 0.106 0.630 0.706 0.785 0.773

A4 0.149 0.027 0.024 1.466 0.056

A5 0.067 0.005 0.007 1.371 0.152

Results: A1ðg3Þ A2ðg5Þ A3ðg1Þ A4ðg3Þ A5ðg2Þ

Bold indicates minimum value of each situation with respect to

symptoms

Table 4 Values for each considered situation for d1 ¼ :4; d2 ¼ :6

g1 g2 g3 g4 g5

A1 0.190 0.037 0.006 2.170 0.048

A2 0.049 1.349 0.670 0.677 0.047

A3 0.119 0.653 0.730 0.800 0.807

A4 0 .166 0.030 0.027 1.510 0.064

A5 0.076 0.006 0.008 1.409 0.171

Results: A1ðg3Þ A2ðg5Þ A3ðg1Þ A4ðg3Þ A5ðg2Þ

Bold indicates minimum value of each situation with respect to

symptoms
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4.3 Application to pattern recognition

For the problems of pattern recognition, it is required for us

to identify the pattern which mostly look like the specified

pattern by comparing their attributes. The procedure is as

follows:

Suppose there are p-known patterns D1; D2; . . . Dp.

Let the sample be signified by the following PFSs

Dp ¼ fðt; sDp
ðtÞ; mDp

ðtÞ; pDp
ðtÞ; nDp

ðtÞÞ=t 2 Xg;

where p ¼ 1; 2; . . .;m and j ¼ 1; 2; . . .; k.
An unknown pattern B is

B ¼ fðt; sBðtÞ; mBðtÞ; pBðtÞ; nBðtÞÞ=t 2 Xg:

Our point is to characterize B is similar to one of the

samples D1, D2,..., Dp. As indicated by the principle of

minimum degree of divergence measure between picture

fuzzy sets, the way of assigning B to D�l is described by

l� ¼ argminfðDp;BÞg: ð36Þ

Example 2 Suppose there be three known patterns D1, D2,

D3 with classifications C1, C2, C3 respectively and an

unknown pattern B is also given. The patterns are charac-

terized by picture fuzzy sets in X ¼ fz1; z2; z3; z4; z5g: Their
values are displayed in Table 9. Our objective is to rec-

ognize the known pattern which look likes the most with

unknown pattern B.

Our target is to determine the sample B to one of the

patterns D1;D2;D3, respectively.

Using the proposed algorithm, one can identify the

pattern which closely resembles with the given pattern.

Step 1: The normalized distances for B from the

patterns D1;D2;D3 are measured by Eq. 31,

which are presented in Table 10.

Step 2: The minimum degree of distances between B

and Dp; p ¼ 1; 2; 3 are obtained by Eq. 36.

The minimum distances are darked in

Table 10.

Step 3: Using the principle of minimum degree of

divergence between PFSs, the known sample

which gives the minimum distance with B is

determined.

We have calculated the values of Ra
newðD1;BÞ,

Ra
newðD2;BÞ and Ra

newðD3;BÞ at different values of a; d1; d2.
It is preassigned or adjustable number related to individual

systems. Let us take an example related to the problem of

the environment. Different environmental features such as

temperature, pressure and humidity may be denoted as

distinct parametric values. Thus, with the existence of

parameters, information measure becomes more preferable

from application point of view. We may select any value of

a within 0 and 1 to achieve the consistent and efficient

proposed measure by employing the concept of minimum

divergence measure. From Table 10, it is clear that for any

parametric value a, Ra
newðD2;BÞ is the minimum value

among Ra
newðD1;BÞ, Ra

newðD2;BÞ, Ra
newðD3;BÞ. Hence, the

sample B look likes the same with D2, i.e., B D2.

Now, we prove the proficiency of the proposed picture

fuzzy divergence measure in example 2 by comparing with

other existing measures: Hung and Yang (2006), Son and

Thong (2017), Ashraf et al. (2019), Wang et al. (2017),

Son (2017), Singh (2014) and Nei et al. (2014).

Comparative Analysis: From Table 11, obviously all

divergence measures support the sample D2 look likes the

same with B. The results coincide with the proposed

measure (3.17). In Fig. 2, blue color presents the distance

Table 7 Outcomes of proposed

divergence measure for a ¼ :2
Situations d1 ¼ :1, d1 ¼ :2, d1 ¼ :3, d1 ¼ :4, d1 ¼ :5, d1 ¼ :9,

d2 ¼ :9 d2 ¼ :8 d2 ¼ :7 d2 ¼ :6 d2 ¼ :5 d2 ¼ :1

A1 CLC CLC CLC CLC CLC CLC

A2 IPP IPP IPP IPP IPP IPP

A3 CM CM CM CM CM CM

A4 CLC CLC CLC CLC CLC CLC

A5 MN MN MN MN MN MN

Table 6 Values for each considered situation for d1 ¼ :9; d2 ¼ :1

g1 g2 g3 g4 g5

A1 0.081 0.014 0.002 1.775 0.019

A2 0.019 1.098 .554 0.521 0.018

A3 0.050 0.511 0.578 0.586 0.630

A4 0.071 0.011 0.010 1.221 0.025

A5 0.030 0.002 0.003 1.156 0.071

Results: A1ðg3Þ, A2ðg5Þ A3ðg1Þ A4ðg3Þ A5ðg2Þ

Bold indicates minimum value of each situation with respect to

symptoms

122 Granular Computing (2022) 7:113–126

123



between D1 and B, red color presents the distance between

D2 and B and green color presents the distance between D3

and B. Also, Fig. 2 reveals that all existed picture fuzzy

divergence measures support the sample D2 according to a

minimum degree of divergence between two picture fuzzy

sets. Therefore, with the presence of parameter proposed

measure becomes more compatible and broaden its extent

of implementation as compare with other methods. This

reveals that execution of proposed measure is considerably

superior.

4.4 Advantages of the proposed measure

The following advantages have been taken into account

from the proposed pictur fuzzy divergence measure:

• As mentioned above, the PFS is one of the generaliza-

tion of the classic set, fuzzy set, intuitionistic fuzzy set.

Numerous circumstances occur which are not properly

controlled in IFS. To overcome this situation, Pic-

ture fuzzy set theory is one of the more broad and can

handle indeterminate information, which exists com-

monly in real-life situations. Hence, Picture fuzzy

divergence measure is more suitable in real scientific

applications.

• Various interpretations to a; d1; d2 is given for consis-

tency and efficiency of the proposed measure. The

presence of the parameters in the proposed measure

makes it progressively reliable and widens its extent of

applications as contrasted with other measures. This

shows that the performance of the proposed picture

fuzzy divergence measure is significantly flexible.

• The proposed picture fuzzy divergence measure is more

generalized and appropriate to solve financial, medical

and other multicriteria decision-making problems.

5 Conclusions

In this article, we have developed a new picture fuzzy

divergence measure based on Jensen-Tsallis information

measure. The idea has been extended of Tsallis entropy and

Jensen inequality to present a new picture fuzzy divergence

Table 8 Comparison of

proposed and existed picture

fuzzy divergence measures

Divergence measures A1 A2 A3 A4 A5

Proposed measure CLC IPP CM CLC MN

Hung and Yang (2006) CM CE CLC CM CM

Son and Thong (2017) CM CE CLC CM CM

Ashraf et al. (2019) MN CE CLC CM CM

Wang et al. (2017) CLC IPP CM CLC MN

Son (2017) eithor MN or CLC CE MN CM MN

Singh (2014) MN CE CLC CM CM

Nei et al. (2017) MN CE CLC eithor CM or MN MN

Table 9 Known and unknown

pattern values
Samples z1 z2 z3 z4 z5

ðsz1 ; mz1 ;pz1 ; nz1 Þ ðsz2 ; mz2 ; pz2 ; nz2 Þ ðsz3 ; mz3 ;pz3 ; nz3 Þ ðsz4 ; mz4 ;pz4 ; nz4 Þ ðsz5 ; mz5 ;pz5 ; nz5 Þ

B (0.2,0.6,0.1,0.1) (0.3,0.1,0.4,0.2) (0.2,0.2,0.5,0.1) (0.2,0.7,0.0,0.1) (0.2,0.5,0.1,0.2)

D1 (0.3,0.2,0.1,0.4) (0.2,0.5,0.3,0.0) (0.1,0.3,0.3,0.3) (0.1,0.2,0.7,0.0) (0.1,0.6,0.2,0.1)

D2 (0.2,0.1,0.6,0.1) (0.1,0.4,0.4,0.1) (0.3,0.5,0.1,0.1) (0.0,0.3,0.5,0.2) (0.3,0.3,0.2,0.2)

D3 (0.4,0.1,0.3,0.2) (0.2,0.3,0.4,0.1) (0.2,0.5,0.1,0.2) (0.1,0.5,0.2,0.2) (0.4,0.5,0.1,0.0)

Table 10 Outcomes of proposed picture fuzzy divergence measure

Ra
newðDp;BÞ; p ¼ 1; 2; 3 Ra

newðD1;BÞ Ra
newðD2;BÞ Ra

newðD3;BÞ

d1 ¼ :1; d2 ¼ :9 0.593 0.024 0.075

d1 ¼ :2; d2 ¼ :8 0.684 0.041 0.126

d1 ¼ :3; d2 ¼ :7 0.734 0.053 0.154

d1 ¼ :4; d2 ¼ :6 1.021 0.060 0.178

d1 ¼ :5; d2 ¼ :5 0.769 0.062 0.184

d1 ¼ :6; d2 ¼ :4 1.021 0.060 0.178

d1 ¼ :7; d2 ¼ :3 0.734 0.053 0.154

d1 ¼ :8; d2 ¼ :2 0.684 0.041 0.126

d1 ¼ :9; d2 ¼ :1 0.593 0.024 0.075

Bold indicates minimum value of each situation with respect to

symptoms
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measure. Furthermore, a few key properties and particular

cases are also studied. The outcome of the proposed

measure is compared to other existing methods in litera-

ture. To build up the sufficiency, flexibility of proposed

measure, some counter examples are solved in the context

of COVID-19 and pattern recognition. It is summarized

that the developed method can provide extraordinary

evaluation results because of the presence of the parameter.

The main advantages of the proposed method are the

computation simplicity for picture fuzzy sets.

To discuss the future prospects of the proposed research,

it can be further extended to more general sets such as

interval-valued PFSs, and complex-valued fuzzy sets.

Apart from this, we can also apply the applications of

Fig. 1 Outcomes of proposed picture fuzzy divergence measure

Table 11 Calculated values of

proposed and existed picture

fuzzy divergence measures

Divergence measures ðD1;BÞ ðD2;BÞ ðD3;BÞ Classification Results

Proposed measure 0.593 0.024 0.075 D2

Hung and Yang (2006) 0.452 0.401 0.416 D2

Son and Thong (2017) 0.784 0.730 0.882 D2

Ashraf et al. (2019) 0.224 0.057 0.147 D2

Wang et al. (2017) 0.352 0.101 0.116 D2

Son (2017) 0.586 0.023 0.223 D2

Singh (2014) 0.083 0.043 0.080 D2

Nei et al. (2017) 0.650 0.600 0.650 D2

Bold indicates minimum value of each situation with respect to symptoms
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proposed measure in other MCDM problems such as

remote sensing, speech recognition, risk analysis, weather

forecasting and so on.
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