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Abstract: Facing an ongoing organ shortage in transplant medicine, strategies to increase the use of
organs from marginal donors by objective organ assessment are being fostered. In this context, nor-
mothermic machine perfusion provides a platform for ex vivo organ evaluation during preservation.
Consequently, analytical tools are emerging to determine organ quality. In this study, hyperspectral
imaging (HSI) in the wavelength range of 550–995 nm was applied. Classification of 26 kidneys
based on HSI was established using KidneyResNet, a convolutional neural network (CNN) based
on the ResNet-18 architecture, to predict inulin clearance behavior. HSI preprocessing steps were
implemented, including automated region of interest (ROI) selection, before executing the KidneyRes-
Net algorithm. Training parameters and augmentation methods were investigated concerning their
influence on the prediction. When classifying individual ROIs, the optimized KidneyResNet model
achieved 84% and 62% accuracy in the validation and test set, respectively. With a majority decision
on all ROIs of a kidney, the accuracy increased to 96% (validation set) and 100% (test set). These results
demonstrate the feasibility of HSI in combination with KidneyResNet for non-invasive prediction
of ex vivo kidney function. This knowledge of preoperative renal quality may support the organ
acceptance decision.

Keywords: normothermic machine perfusion; organ preservation; kidney; biomedical optical imaging;
hyperspectral imaging; machine learning; convolutional neural network; residual neural network;
classification; function assessment

1. Introduction

Terminal renal insufficiency is characterized by irreversible deterioration of kidney
function. The only therapeutic option at this stage of the disease is renal replacement. Tem-
porarily, this is possible with the help of dialysis procedures, but only a kidney transplant
offers long-term improvement in quality of life and life expectancy [1].

However, the persistent organ shortage has limited this curative treatment procedure
since the beginning of transplantation medicine. Currently, the average waiting time for
a kidney transplant in the Eurotransplant region is four years [2]. Several approaches
have been proposed in the past to minimize the discrepancy between organ availability
and demand. These include measures to improve the use of suboptimal donor organs by
establishing appropriate criteria for accepting organs for transplantation [3–5]. However,
the evaluation criteria proposed to date, based e.g., on histological markers or readily
available donor characteristics, have limited predictive power for postoperative graft
function [6,7].
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Preservation of organs by machine perfusion instead of clinically established static
cold storage offers new possibilities for organ evaluation in transplantation medicine. Nor-
mothermic machine perfusion (NMP), which simulates near-physiological conditions by
delivering essential nutrients and oxygen to the organ at endogenous temperatures, is par-
ticularly promising for this purpose [8]. With this preservation technique, the metabolism
and function of the organ can be maintained ex vivo [8]. Therefore, NMP provides the
ability to derive graft function or damage during preservation by examining perfusate,
urine, or tissue markers, as well as hemodynamic characteristics [9–11].

However, after nearly two decades of intensive research in NMP, little attention has
been paid to developing strategies to evaluate renal function. Preliminary promising results
show that markers such as lactate clearance, acid-base homeostasis, oxygen consumption,
neutrophil gelatin-associated lipocalin, endothelin-1, nanoparticles, flavin mononucleotide,
and intrarenal resistance may be suitable to predict post-operative organ function [12–15].
Furthermore, a quality assessment score (QAS) based on renal blood flow, total urine output,
and the subjectively assessable parameter of macroscopic appearance has been proposed to
evaluate the quality of human kidneys that were rejected for transplantation [15–17]. In the
above studies, markers are measured during NMP and their predictive value is assessed
after transplantation. In contrast, our recently published study on renal preservation
suggests new possibilities for organ evaluation with respect to inulin clearance, which is
the gold standard for determining glomerular filtration rate (GFR) in vivo and thus renal
function [18]. Knowledge about the ability of the kidneys to filter inulin during NMP
allows assessment of functional renal status ex vivo and, if postoperative renal function is
also confirmed, may be a promising approach for the development of new preoperative
strategies to evaluate renal function [18]. For the first time, perfusion characteristics during
NMP (renal blood flow, mean arterial pressure, intrarenal resistance, total urine output)
could be correlated with renal function before transplantation [18]. The consequent next
step is to expand the assessment strategy and investigate other markers or analytical
methods that would provide a more comprehensive measure of organ quality and thus
ensure an objective, systematic classification of kidneys according to their function.

A new approach for detecting physiological and pathological properties in tissues
and organs is the application of hyperspectral imaging (HSI) [19]. By combining imaging
and spectroscopy, local information on morphological features and spectral information
on the chemical composition of the tissue can be obtained non-invasively [19]. HSI has
demonstrated its potential in numerous medical applications, such as tumor detection
[20–22], skin analysis [23], and hemorrhagic shock analysis [24]. In addition, various tissue
parameters have been calculated from HSI data, such as tissue oxygen saturation [25,26]
and tissue water content [27,28]. Knowledge about tissue-specific properties may provide
additional information regarding organ quality in transplantation medicine. HSI systems can
accurately measure the visible and near-infrared (VIS/NIR)-spectroscopic chemical properties
of biological objects such as organ transplants or blood [29]. Consequently, HSI is used for
image-guided surgery in organ transplantation and organ preservation [25,27,29–33]. In
renal transplantation, there is preliminary evidence of a possible relationship between
renal tissue parameters measured with HSI and postoperative GFR [30]. HSI in organ
preservation was first applied during NMP of kidneys [31,32]. Further research in this
field has identified changes in tissue oxygen saturation, tissue water content, and ischemia-
reperfusion injury (IRI) in ex vivo kidneys [25,27,31–33]. Recently, HSI has also been used
to monitor normothermically perfused livers [34].

To extract tissue-specific features from HSI data, machine learning (ML) techniques
are widely used [35]. ML algorithms such as convolutional neural networks (CNNs) and
support vector machines (SVMs) have proven to be reliable tools in distinguishing healthy
from damaged tissue [35]. CNNs, which have become state of the art for image classification,
are increasingly used to analyze HSI data [36]. Previously, studies have primarily focused
on the classification of histological tissue types (including breast [37], gastric [38], head and
neck [39] cancers) and in vivo real-time tumor segmentation in neurosurgery [40]. To the
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best of our knowledge, no research has been published regarding the assessment of ex vivo
kidneys using HSI and CNNs.

The aim of this work is the functional classification of normothermic perfused kidneys
based on HSI data using CNNs, specifically by means of residual neural network (ResNet)
architecture. For this purpose, the acquisition of HSI data in a physiological ex vivo
environment, its preprocessing, and subsequent classification with CNNs were performed.
Using different training parameters and data augmentation methods, various CNN models
were trained based on absorbance and reflectance data. Inulin clearance served as a
reference for the functional status of the kidneys.

Judging by our promising results, the combination of HSI and ML could become an
essential tool for transplanters to assess the condition of an organ, thereby facilitating the
decision to accept an organ for transplantation.

2. Materials and Methods
2.1. Study Design

This exploratory analysis aimed to perform a functional classification of ex vivo
kidneys by CNN models based on tissue-related properties obtained by HSI. For this
purpose, HSI data recorded during a previously published study [18] were analyzed.
Kidneys from healthy laboratory pigs were removed and perfused ex vivo with NMP for
four hours. The renal function was assessed by inulin clearance. Hyperspectral images
were acquired at specific time points during NMP. To enable an automated function-related
evaluation of organs, the HSI data were analyzed using CNNs.

2.2. Normothermic Machine Perfusion

The NMP method including the description of blood and organ retrieval, the ex vivo
normothermic machine perfusion device, the experimental protocol, and the inulin clear-
ance analysis has been described in detail previously [18]. In brief, kidneys (n = 28) were
collected from laboratory pigs of different races, sexes, and body weights after nonabdomi-
nal surgical training. After exposition to different periods of warm ischemia time (WIT),
the kidneys were stored on ice. Afterwards, the organs were preserved with autologous
whole blood for four hours under nearly physiological conditions. Perfusate samples
were collected for the determination of inulin clearance. Additionally, hyperspectral im-
ages of the kidneys were acquired before NMP and at regular 20-min intervals during
renal preservation.

2.3. Hyperspectral Imaging System

A detailed description of the HSI system used in this study has already been pub-
lished [27,29]. The HSI acquisition system comprised two main components: the HSI
camera and the illumination unit. The HSI camera operated with the pushbroom scanning
method (TIVITA Tissue Camera, Diaspective Vision GmbH, Am Salzhaff, Germany). It
provides a 1280 px x 960 px spatial resolution and a spectral resolution of 5 nm covering
the wavelength range of 500 nm–995 nm. The distance between the objective and kidney
surface was adjusted to 46 cm. For homogeneous illumination of the field of view, the
illumination unit consisted of six 20 W quartz-tungsten-halogen spots (OSRAM 41861 De-
costar 51 ALU, Osram GmbH, Munich, Germany) with aluminum reflectors. The software
TIVITA Suite 0.6.1.4 provided by the manufacturer of the HSI camera was used exclusively
for recording the HSI data.

MATLAB (MATLAB R2018b, The MathWorks, Inc., Natick, MA, USA) scripts were
implemented to preprocess the HSI data. The following classification of the HSI data
using CNNs was implemented in Python (Python 3.8.8, Python Software Foundation,
Wilmington, DE, USA).
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2.4. HSI Data Acquisition and Data Correction

Due to slight variations in illumination conditions during data acquisition, a correction
of the raw intensity image is required first. Therefore, for each raw intensity image of a
kidney IRAWx,y,λ, a dark current image IDARKx,y,λ and a white reference image IWHITEx,y,λ
were acquired.

IWHITEx,y,λ was obtained using a white surface board with a uniform and high re-
flectance (Zenith Polymer Target SG3210, SphereOptics GmbH, Herrsching, Germany).
IDARKx,y,λ was acquired while the camera lens was completely covered with its opaque
cap. From the raw intensity image IRAWx,y,λ, both the reflectance image IREFLx,y,λ and the
absorbance image IABSx,y,λ were calculated (see Equations (1) and (2), [19]):

IREFL x,y,λ =
IRAW x,y,λ − IDARK x,y,λ

IWHITE x,y,λ − IDARK x,y,λ
, (1)

IABS x,y,λ = −lgIREFL x,y,λ. (2)

2.5. HSI Data Preprocessing

Before the HSI images could be used as input data for the CNN, several image prepro-
cessing steps were required to remove irrelevant information and noise from the data as
well as to extract kidney regions to be fed into the CNN. Preprocessing was performed for
each acquisition time point of a HSI data cube and included the following steps:

(1) Manual background segmentation,
(2) Wavelength range selection (550 nm–995 nm),
(3) Automated region of interest (ROI) selection,
(4) Vector normalization,
(5) Savitzky-Golay smoothing.

Automated ROI selection (3) was implemented specifically for this analysis, while the
corresponding description of the methods (1), (2), (4), and (5) can be found in [27]. After
manual background segmentation (see Figure 1a,b) and wavelength range selection, the
HSI images of the kidneys were divided equally into three physiological regions—upper
pole, middle, and lower pole. The ROI selection algorithm aims to detect four ROIs with
a size of 50 px × 50 px in each physiological region. The criteria for the selection of the
ROIs were, that the ROIs have as homogeneous intensity values as possible at the isosbestic
point of λ = 805 nm, and that the ROI areas should not overlap by more than 50% to ensure
pixel diversity amongst extracted ROIs.
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Figure 1. Procedure of region of interest (ROI) selection. The blue and white lines mark the outer 
boundaries of the kidney (a). After segmentation of the background (b), calculation of the gradient 
map (c) is performed for the absorbance and reflectance image. The most homogeneous areas are 
selected as ROI (shown as red squares) (d). The orange lines separate the kidney poles from each 
other. 

Figure 1. Procedure of region of interest (ROI) selection. The blue and white lines mark the outer
boundaries of the kidney (a). After segmentation of the background (b), calculation of the gradient
map (c) is performed for the absorbance and reflectance image. The most homogeneous areas are
selected as ROI (shown as red squares) (d). The orange lines separate the kidney poles from each other.
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For this purpose, a grid of potential ROIs was rastered on the segmented organ. The
corresponding algorithm for calculating homogeneity within each potential ROI (HROI)
first calculated the Euclidean distance d between neighboring points in x- and y-direction
of the image, respectively. This is demonstrated in Equation (3) for the x-direction with
index i corresponding to the positions of a pixel in the ROI in the x-direction and index j
accordingly corresponding to the y-direction. Thus, pi,j is one pixel’s intensity, and pi+1,j is
the neighboring pixel’s intensity (see Equation (3)).

di(j) =

√(
pi,j − pi+1,j

)2
(3)

Second, HROI of each potential ROI is determined by calculating the average of all
Euclidean distances in the x- and y-directions within the ROI (see Equation (4)). Here, k
corresponds to the size of the ROI in the x-direction and l corresponds to the size of the
ROI in the y-direction.

HROI =
1

k·l (
k−1

∑
i=1

l

∑
j=1

di +
k

∑
i=1

l−1

∑
j=1

dj) (4)

A small value HROI corresponds to a high homogeneity in the ROI. The results of each
HROI were merged and plotted on a gradient map, thereby the value of HROI was assigned
to the gradient map pixel in the upper left corner of the ROI (see Figure 1c). HROI was
only calculated if all pixels of the ROI were within the segmented kidney and thus no pixel
originated from the background. Four ROIs were selected in each of the three physiological
regions (upper pole, middle, and lower pole) by smallest HROI. The overlap to another ROI
or physiological region had to be less than 50%. The extracted ROIs represent the minima
of the gradient map (see Figure 1c,d), that exhibited the highest homogeneity within the
data and contained no specular reflections.

2.6. Data Set

The data set included the HSI data of all kidneys that were normothermically perfused
during our recently published study [18]. From the 28 kidneys preserved, complete HSI
data were acquired from 26 kidneys. Kidneys (n = 2) were not included in the study if
perfusion had to be interrupted before 240 min had elapsed.

The data of one kidney consisted of 14 HSI images acquired at different time points.
For each acquisition time point, 12 ROIs were generated. In total, 168 ROIs from each
kidney were available to analyze tissue-specific features depending on the kidney function.
The kidneys of laboratory pigs were assigned to three classes, based on the inulin excretion
behavior derived from the GFR and the percentage of inulin eliminated from the blood
during NMP (Ie,total) [18]:

Class 1: nonfunctional kidneys,
Class 2: limited functional kidneys,
Class 3: functional kidneys.
HSI data were labeled according to the functional status of each kidney, thus all 168

ROIs have the same label. A stratified train-test split was performed, resulting in a grouping
of n = 20 kidneys for the training and validation data set and n = 6 kidneys for the test data
set (n = 6). The properties of all kidneys in the respective functional classes, the kidneys in
the test, and training and validation data set are listed in Table 1.
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Table 1. Overview of kidneys preserved ex vivo with normothermic machine perfusion (NMP).
Listed are the sex, race, warm ischemia time, cold ischemia time, glomerular filtration rate (GFR)
and inulin eliminated from the blood during NMP (Ie,total) for all kidneys of a class, kidneys
in the training and validation data set, and kidneys in the test data set. Data are presented as
mean ± standard deviation.

Pig and Kidney Characteristics Class 1 Class 2 Class 3

Overall n = 4 n = 10 n = 12
Female:Male 3:1 4:6 4:8
German Landrace:Swabian Hall 3:1 4:6 4:8
Warm ischemia time in min 122 ± 52 67 ± 30 12 ± 7
Cold ischemia time in min 404 ± 246 402 ± 201 312 ± 170
GFR in mL/min/100 g 1.3 ± 0.6 3.0 ± 0.9 14.8 ± 10.1
Ie,total in % 45 ± 1 72 ± 9 97 ± 3

Training and validation n = 3 n = 8 n = 9
Female:Male 2:1 3:5 2:7
German Landrace:Swabian Hall 2:1 3:5 2:7
Warm ischemia time in min 114 ± 61 66 ± 34 12 ± 7
Cold ischemia time in min 341 ± 259 397 ± 233 305 ± 125
GFR in mL/min/100 g 1.5 ± 0.8 2.9 ± 0.8 16.4 ± 10.4
Ie,total in % 45 ± 1 72 ± 9 97 ± 3

Test n = 1 n = 2 n = 3
Female:Male 1:0 1:1 2:1
German Landrace:Swabian Hall 1:0 1:1 2:1
Warm ischemia time in min 145 73 ± 10 13 ± 8
Cold ischemia time in min 594 420 ± 121 333 ± 309
GFR in mL/min/100 g 0.8 3.4 ± 1.4 10.0 ± 9.3
Ie,total in % 44 75 ± 12 98 ± 1

2.7. Normalized Cross Correlation

Since kidneys from pigs of different races, sexes, and body weights were the basis
for the test data set and training and validation data set, the data were analyzed with
regard to its suitability for functional classification of kidneys. Therefore, special attention
was paid to tissue-specific characteristics that depend on the quality of the kidneys and
not on the characteristics of the pigs. For this reason, before CNN modeling, spectra
from bloodless kidneys (n = 6) were compared by normalized cross-correlation using the
MATLAB function xcorr.

Pearson’s correlation coefficient r was used as a measure of linear correlation (see
Equation (5)).

r =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2·∑n
i=1(yi − y)2

(5)

where xi corresponds to the wavelength values (in nm), x corresponds to the mean value
of the wavelength, yi corresponds to the absorbance values (in a.u.), and y corresponds
to the mean value of the absorbance. Pearson’s correlation coefficient r is a frequently
used parameter to establish a relationship between two variables and is also suitable for
comparing spectra (e.g., IR spectra [41]). It takes values between −1 and 1 and were
interpreted as follows: 0 to 0.3 (0 to −0.3), negligible; 0.3 to 0.5 (−0.3 to −0.5), low; 0.5 to
0.7 (−0.5 to −0.7), moderate; 0.7 to 0.9 (−0.7 to −0.9), high; and 0.9 to 1.0 (−0.9 to −1.0),
very high positive (negative) correlation [42].

2.8. CNN Model Architecture and Optimization

In the present work, the Residual Neural Network 18 (ResNet-18) [43], which is
a special type of a CNN network architecture, was used. The ResNet-18 implemented
will be referred to as KidneyResNet in the following. The KidneyResNet is composed of
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18 layers, 16 of which are hidden layers. These 16 layers are structured in four Residual
Blocks, each followed by a pooling layer. The number of connecting channels within
the residual blocks systematically increases: The two layers in the first residual block
have 64 channels. The number of channels doubles with each residual block, resulting in
512 channels in the fourth block. The final layer is a fully connected layer, which combines
the extracted features and performs the final classification. See the model summary with
additional comments in Table S1 for more detailed information. The implementation of the
KidneyResNet was realized in the development environment PyTorch [44].

In a first model optimization phase, some data and training parameters were examined.
Using the early stopping method, the optimal number of epochs was identified from the
median of the model epochs during validation. Furthermore, the influence of the data
origin was analyzed, and three training parameters—dropout, adaptive weights, and
learning rate—were investigated. The corresponding variants of the parameters are shown
in Table 2.

Table 2. Investigation matrix of the training parameters. For the optimization of the KidneyResNet,
the influence of the data origin and the training parameters dropout rate, adaptive weights, and
learning rate was studied.

Data Origin/ Code Variant

Training Parameter I II III

Data origin A Absorbance Reflectance
Dropout rate in % B 0 25 50
Weight decay C 0 0.0005
Learning rate D 0 0.11

Using the thereby optimized KidneyResNet model, the data set was enlarged by data
augmentation. Table 3 lists the methods studied in this work.

Table 3. Investigation matrix of the data augmentation methods. For the enlargement of the input
data of the KidneyResNet, the influence of the data augmentation methods rotation, induction of
Gaussian noise, and random occlusion was investigated.

Data Augmentation Code Variant

Method I II III IV

Rotation A 0◦ 90◦ 180◦ 270◦

Gaussian noise, 3σ B 0 0.00625
Random occlusion in % C 0 25

2.9. Validation Strategy

The distribution of the data set into training and validation (75%) and test (25%)
data set was performed stratified but otherwise randomly. For optimization purposes,
the training and validation data set was once more split into the training data set on
which the KidneyResNet model was trained and a validation data set to evaluate the
generalization ability of the model. Due to the overall small data set, the performance of the
KidneyResNet was evaluated using the leave-one-out cross-validation. To be precise, each
single kidney was used as validation data set once, with all its 168 ROIs. This kidney-wise
split prevented the model from learning specific characteristics of a single kidney during
the training process.

For the actual training process, the training data set was fed into the KidneyResNet
during the training process while withholding the validation data until the end of each
training epoch. The error from the training data set was backpropagated applying the
Adam optimizer [45].

However, leave-one-out cross-validation was only applied during the optimization
process. For our final model, we used optimized parameters to retrain the model using all
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training and validation data without a validation split. This final model was applied to the
data of the hold-out test data set.

2.10. KidneyResNet Model Evaluation

The basis for evaluating the classification quality was the confusion matrix, in which
the predicted class was plotted against the actual class. The evaluation criteria accuracy,
precision, and recall were derived from the confusion matrix.

Accuracy is the ratio of the sum of all kidneys classified as true positives and true
negatives to the total number of classified kidneys. Precision corresponds to the quotient
of kidneys classified as true positives across all classes and the total number of kidneys
classified as true positives and false positives across all classes. Recall describes the ratio
of kidneys classified as true positives across all classes to the total number of kidneys
classified as true positives and false negatives across all classes.

During the leave-one-out cross-validation, metrics were calculated as mean results of
all validation folds.

3. Results
3.1. Spectra Comparison of the Kidneys According to the Pig Characteristics

The basis of this study is an inhomogeneous data set that includes kidneys from pigs
with different characteristics. To verify the suitability of the data set for the classification
task, spectra from bloodless kidneys were compared as a function of race, sex, body weight,
and ischemia time using normalized cross-correlation (see Table 4). Two WIT ranges
were selected for the study, so that WIT periods were physiologically congruent. This
was necessary because possible IRI-induced tissue damage at WIT ≥ 25 min could affect
spectral tissue properties [18,33]. Therefore, only groups with corresponding WIT (see
Table 4, 1–3 and 4–6) were compared.

Table 4. Overview of pig characteristics. Listed are the race, sex, body weight, and ischemia time of
the pigs whose kidneys are used for the spectra comparison.

Nr. Race Sex Body Weight
in kg

Warm Ischemia
Time in min

Cold Ischemia Time
in min

1 Swabian Hall Male 40 ± 5 20 136

2 German
Landrace Female 40 ± 5 20 221

3 German
Landrace Female 80 ± 3 25 343

4 Swabian Hall Male 40 ± 5 60 277

5 German
Landrace Female 40 ± 5 118 463

6 German
Landrace Female 80 ± 3 80 334

The kidney spectra showed very high positive agreement with r = 0.991–0.998 at
low and high WIT (see Table 5). Therefore, it was assumed that the kidneys of different
races, sexes, and body weights did not differ significantly in their chemical composition.
Consequently, they could be used for both training and validation data and test data for
the KidneyResNet classifier.
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Table 5. Spectral comparison of kidneys. The spectra of kidneys as a function of race, sex, body
weight, and ischemia time were examined using normalized cross-correlation. The assignment of the
numbers can be found in the previously listed table.

Comparison Pearson Correlation
Coefficient Comparison Pearson Correlation

Coefficient

1 vs. 2 0.991 4 vs. 5 0.997
1 vs. 3 0.998 4 vs. 6 0.995
2 vs. 3 0.993 5 vs. 6 0.998

3.2. Spectral Properties of the Kidneys According to the Functional Classes

A qualitative analysis of the spectral curve of each functional class was performed
(see Figure 2).
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Figure 2. Spectral signature of kidneys with different inulin clearance behavior after 240 min NMP.
The mean preprocessed absorbance spectrum of all 12 ROIs of a kidney (shown as a black solid line)
and their standard deviation (shown as (a) green solid lines for a functional kidney, (b) yellow solid
lines for a limited functional kidney, and (c) red solid lines for a nonfunctional kidney) is presented.
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The kidneys’ spectra demonstrated low intra-class variation but high inter-class vari-
ation. Presumably, the low intra-class variation was mainly achieved by the selection
of homogeneous ROIs. However, the inter-class differences in the spectral properties of
kidneys may be beneficial for their classification with a KidneyResNet model.

3.3. Optimization of Classification of ROIs Using the KidneyResNet Model

In the optimization process, KidneyResNet models were trained based on absorbance
and reflectance data using various training parameters and data augmentation techniques
(see Section 2.8). Classification results for categorizing the individual ROIs of kidneys into
three classes—functional, limited functional, and nonfunctional are shown in Table 6.

Table 6. Classification results on the validation data set for the assignment of kidneys into three
functional classes depending on different training parameter combinations. The explanations for
parameters A−D and I−III are given in Section 2.8.

Model No.
Parameter Median Early

Stopping Epoch
Validation

Mean AccuracyA B C D

1 I I I I 9 0.80
2 I I I II 2 0.72
3 I I II I 9 0.85
4 I I II II 5 0.77
5 I II I I 13 0.82
6 I II I II 4 0.69
7 I II II I 12 0.81
8 I II II II 3 0.79
9 I III I I 11 0.84

10 I III I II 7 0.84
11 I III II I 6 0.75
12 I III II II 6 0.78

13 II I I I 8 0.83
14 II I I II 5 0.69
15 II I II I 15 0.82
16 II I II II 4 0.72
17 II II I I 9 0.79
18 II II I II 4 0.71
19 II II II I 12 0.81
20 II II II II 3 0.74
21 II III I I 10 0.79
22 II III I II 3 0.69
23 II III II I 12 0.81
24 II III II II 4 0.73

The best KidneyResNet model performance was achieved by models Nos. 3, 9, and 10
with a mean validation accuracy of 0.85, 0.84, and 0.84, respectively.

Using the KidneyResNet model configuration that performed the best in validation
(see Table 6, model No. 3), data augmentation was applied. The resulting validation
accuracy was consistent or worse (see Table 7). To verify this, data augmentation was
also executed with the KidneyResNet model configurations of model Nos. 9 and 10 (see
Table 6). The results of the KidneyResNet models could not be improved in validation by
data augmentation (see Table 7).
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Table 7. Classification results on the validation data set for the assignment of kidneys into three
functional classes depending on the data augmentation methods. The explanations for parameters
A−C and I−IV are given Section 2.8.

Model No.
Parameter Median Early

Stopping Epoch
Validation

Mean AccuracyA B C

Input KidneyResNet model configuration: model No. 3, Table 6
1 I–IV I I 7 0.85
2 I II I 5 0.73
3 I I II 6 0.83

Input KidneyResNet model configuration: model No. 9, Table 6
4 I–IV I I 10 0.81
5 I II I 10 0.84
6 I I II 10 0.79

Input KidneyResNet model configuration: model No. 10, Table 6
7 I–IV I I 3 0.65
8 I II I 2 0.78
9 I I II 4 0.67

The five optimized KidneyResNet models that yielded the best validation mean
accuracy (see Table 6 models Nos. 3, 9, 10 and Table 7 models Nos. 1, 5) were selected to
predict the classes of ROIs in the test data set. Here, model No. 10 from Table 6 achieved
the highest accuracy, recall and precision with 62%, 58% and 58%, respectively (see Table 8).
However, since these results are mean values for all ROIs of all kidneys in the test data set,
they must not be projected on classification performance of a single kidney.

Table 8. Classification results on the test data set for the assignment of kidneys into three
functional classes.

Model No.
Test

Accuracy Recall Precision

Table 6
3 0.28 0.25 0.29
9 0.41 0.32 0.32
10 0.62 0.58 0.58

Table 7
1 0.55 0.49 0.56
5 0.59 0.48 0.49

3.4. Classification of Kidneys Using the KidneyResNet Model

To demonstrate the potential of KidneyResNet classification of HSI data in the context
of NMP, the results of model No. 10 (see Table 6) were evaluated using confusion matrices
(see Figure 3). The results of the validation and the test for the classification of each ROI
were compared (see Figure 3a,b). As a final classification step, the classification results of
all ROIs of the respective kidney were used for a majority decision to predict the functional
performance of each single kidney (see Figure 3c,d).
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Figure 3. Confusion matrices for the classification of kidneys into the three classes: nonfunctional
(class 1), limited functional (class 2), functional (class 3). Results of the KidneyResNet model No. 10
of Section 3.3 for validation/test after the classification of individual ROIs (a,b) and by the majority
decision of all ROIs of a kidney (c,d).

Considering each individual ROI, the KidneyResNet allowed a reliable classification of
functional (class 3) and limited-functional kidneys (class 2) (see Figure 3a,b). In the case of
nonfunctional kidneys (class 1), the KidneyResNet did not allow a unanimous assignment.
By applying majority decision, all but one nonfunctional kidney from the validation data
set could be correctly classified according to their function (see Figure 3c,d). As a result, a
KidneyResNet model accuracy of 96% for the validation data set and 100% for the test data
set was achieved.

In general, the KidneyResNet model assigned the correct class to kidneys with a
high degree of reliability, as calculated from the proportion of ROIs correctly classified
for a kidney (see Table 9). In 42% of organs (11/26), prediction of function was achieved
with a classification reliability of >90%. Of these, 72% (8/11) are functional kidneys
and the remaining kidneys (3/11) were organs with limited function. Exceptions to the
unambiguous classification included a nonfunctional kidney and a kidney with limited
function, which had a classification reliability of <50%. Consequently, their results were
based on a tendency rather than a primary clear assignment. Only one outlier existed,
as the KidneyResNet model could not correctly predict the class of nonfunctional kidney
No. 21 from the training and validation data set.



Biomedicines 2022, 10, 397 14 of 20

Table 9. Overview of the 3-class division of kidneys with a KidneyResNet. The kidneys of the test data
set are marked with *. Note that all kidneys without * were part of the training process. The color coding
corresponds to the functional status of the kidneys: red = nonfunctional kidneys (class 1), yellow =
limited functional kidneys (class 2), green = functional kidneys (class 3). The actual class refers to the
functional classes of the kidneys as determined by the clinical gold standard, which is compared to the
predicted class resulting from the KidneyResNet analysis. In addition, the classification reliability is
presented, which corresponds to the proportion of correctly classified ROIs of a kidney. A diagonal line
represents kidneys that could not be assigned to the correct functional class.
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4. Discussion

The present work is the first to provide an objective classification of normothermic
perfused kidneys based on their ex vivo functional status. Here, HSI in the wavelength
range of 550 nm to 995 nm was used to identify function-related kidney tissue variations.
To prepare HSI data as input to the machine learning algorithm, automated ROI selection
was an essential preprocessing step. Different model variations were tested based on the
KidneyResNet architecture and various optimization methods were applied to classify
kidneys according to their inulin clearance behavior. The best model allowed a classification
of the renal status into functional, limited functional, and nonfunctional. KidneyResNet in
combination with HSI input appears to learn relevant spectral properties to evaluate ex
vivo kidney function. Thus, this technique builds the fundament for the development of
new diagnostic tools for non-invasive organ assessment.
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4.1. Organ Classification Methods

Research in the field of organ assessment in the period between ex- and implantation
is still in its early stages. Only a few studies used multivariate classifiers to predict organ
injury based on specific markers.

Rat livers during a six-hour NMP were evaluated by considering the perfusion mark-
ers glucose, lactate, and urea using the partial least squares (PLS) discriminant analysis. The
organs were classified with a specificity of 90% into freshly explanted organs and ischemi-
cally pre-damaged organs (WIT = 60 min to 90 min). In addition, a retrospective analysis of
liver transplantability was performed using multiway principal component analysis (PCA).
Perfusate markers allowed classification into three groups—freshly harvested organs and
organs with 60 min and 90 min WIT [46].

Bruinsma et al. published a study in which human livers rejected for transplantation
were subnormothermically perfused. Using mass spectrometry, 159 metabolites were
detected, allowing classification of the livers into two groups—organs with WIT < 30 min
and WIT > 30 min—by PCA [47].

Furthermore, in investigations on hypothermic machine perfusion-treated pig livers
using logistic regression, Liu et al. established a damage index based on aspartate amino-
transferase activity and pH in the perfusate, which could reflect organ damage caused by
IRI [48].

These studies demonstrated that objective assessment of organs in the context of
extracorporeal machine perfusion is possible with appropriate machine learning algorithms.
The limitation of these studies is that the authors mainly focused on realizing a classification
of organs depending on the ischemia time rather than the organ function itself.

Classification methods applied for medical hyperspectral imaging are, among others,
support vector machines and artificial neural networks (ANN) [49]. The CNN is an ANN,
that is particularly suited for interpreting hyperspectral data sets by selectively abstracting
fundamental features and enabling rapid processing of large data sets [35]. In addition,
modeling can be performed with both spectral and spatial features [35].

The combination of CNN and HSI has been successfully applied to assist in the
diagnosis of various tissue types. Examples of histologic tissue examination include
classification or segmentation of head and neck cancer [39,50], breast cancer [37,51], gastric
cancer [38], oral cancer [52], esophagus [53], hepatocellular carcinoma [54], glioblastoma
tumor cells [40], and blood cells [55]. Its use in neurosurgery has been investigated for
in vivo real-time segmentation of the tumor margin [40]. Furthermore, research has been
conducted on the classification of pathogenic bacteria [56] and corneal epithelial injury [57].

In contrast, this work is the first to objectively classify the functional state of ex vivo
normothermically perfused kidneys based on measuring tissue-specific optical properties
with HSI and the use of KidneyResNet. No similar applications are known in the literature.

4.2. ROI Selection for Preprocessing of HSI Data

Depending on the data basis and application, different methods were used in the
literature to extract ROIs and different sized ROIs were chosen for data analysis.

ROIs can be determined by visual inspection confirmed by a physician [38,52,54] or by
appropriate labeling of acquired images by a surgeon using a semi-automated tool based
on the spectral angle mapper algorithm [40]. Masks are also used to allow ROI selection
by avoiding specular reflections [39,50]. Furthermore, programs were used to select ROI
(CytoSpec, ENVI) [56,58].

The spatial size of the ROI used as input to the CNN ranged from 11 px × 11 px
[40,53,55] to 250 px × 250 px [52] but is mostly < (50 px × 50 px) [37,39,50,51]. The number
of ROIs used varied considerably. For the ROI selection, either several ROIs [38,52] or all
pixels of the measured biological object, which then represent the respective center of the
ROIs [39,50,53], were selected.

In this study, ROIs of 50 px × 50 px were defined. It was possible to select up to four
ROIs in the specific kidney regions with the selected ROI size. This approach allowed the
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objective selection of 12 ROIs from each hyperspectral image at each measurement time
point, resulting in 168 ROIs of each kidney.

Automated ROI selection was implemented in the present work to develop an objective
and standardized method for determining ROIs (see Figure 1). Since the computational
time and effort required to develop CNN models increase with the amount of data, the
hyperspectral data cubes were limited to information-containing regions. The strategy here
was to first segment a background with no tissue properties and then determine only ROIs
with unique homogeneous characteristics. This homogenous ROI selection maximizes the
probability that the KidneyResNet will be trained on spectral rather than spatial changes.
It also ensures that no specular reflections or outlier spectra are selected that could falsify
the classification with KidneyResNet. Consequently, it was possible to determine a small
intra-class variation in the spectral signature and thus extract the kidneys’ mainly relevant
spectroscopic tissue properties (see Figure 2).

4.3. CNN Model Architecture and Optimization Methods

Compared to other studies that focus on the application of CNN models in HSI
analysis in medical research, the ResNet-18 was selected as the network architecture in
this work. The ResNet has proven to be very effective in providing high classification
accuracy with resource optimized training. In 2015, this network won the prestigious
ImageNet competition with an error rate of 3.57% [43]. In addition, in a study by Zhong
et al. on a hyperspectral data set, higher classification accuracy was demonstrated with
ResNet compared to other CNNs [59]. For this reason, we applied the ResNet-18 and did
not perform any optimizations to the network architecture itself. Other research groups
focused also on the number and size of convolutional kernels [38,39], the number of neurons
in fully connected layer [38], and the number of convolutional layers [38,39].

In the literature, the application of different training parameters to optimize CNN
models in HSI analysis was described. The following methods were mainly implemented:
dropout [37,39,50,54,57], learning rate optimization [37,38,40,51,53,55,57], weight decay
[51,55,57], and momentum factor [38,51]. The three most commonly used training param-
eters were investigated in this work for their suitability to improve the KidneyResNet
model performance (see Table 2). As a result, it was found that a suitable KidneyResNet
model with a dropout rate of 50% and a learning rate decay of 0.11 provided adequate
classification results (see Tables 6 and 9, model No. 10).

In addition, we investigated whether the classification result could be further improved
by increasing the size of the data set using data augmentation. Commonly used data
augmentation methods are rotation [37,40,51,57], vertical/horizontal flipping [37,40,51,57],
and presence of Gaussian noise [53]. They are often used simultaneously and without
systematic studies towards the influence of single data augmentation methods on the
outcome of CNN models [37,40,51,57]. In this work, three data augmentation methods—
rotation, random pixel occlusion, and presence of Gaussian noise—were investigated for
their potential to optimize the KidneyResNet model (see Table 3). However, no general
improvement was achieved implementing these methods (see Table 7).

4.4. Analysis of Exclusively Tissue-Specific Data Enables Functional Evaluation of Kidneys

The KidneyResNet classifier achieved excellent predictive results in assigning kidneys
into three functional classes (see Figure 3, Table 9). The KidneyResNet correctly predicted
the function of 19 of the 20 kidneys during leave-one-out cross-validation and 6 of the
6 kidneys in the hold-out test data. Consequently, for the first time the kidneys could be
divided into three functional classes, and nonfunctional kidneys can be distinguished from
kidneys with limited function and functional kidneys. Initial results of measured perfusion
characteristics (renal blood flow, mean arterial pressure, intrarenal resistance, total urine
output) showed no significant differences between limited functional and nonfunctional
kidneys [18].
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Due to the small data set that was available for optimization and testing of the model,
these results are only proof of concept. It is very promising, that a model trained on samples
from only 20 kidneys can classify validation and test data with a high reliability. However,
the ranking of the kidneys by classification reliability in Table 9 shows the test data to be at
the bottom half of the table. This is most likely due to the phenomenon of overfitting, which
is common in machine learning and can be amended by regularization techniques. As
we already tested regularization techniques (dropout rate, weight decay) without further
improvements, we conclude that the most effective enhancement of our model would come
from more input data for training, i.e., more HSI data from more kidneys during NMP.
Also, more test data would lead to a higher statistical certainty of the resulting metrics.

Overall, the results obtained in this work suggest that an appropriate KidneyResNet
model trained on HSI data can predict renal quality during NMP. Additional measurements
of various markers from blood and urine were not required to ensure this evaluation.
Research groups that have focused on assessing organs in NMP postulated that only a
combination of different markers could provide an adequate determination of the renal
status [12–15]. These research groups had previously attempted functional assessment
based on hemodynamic and/or blood and urine markers. According to the current state
of research, the statement that a combination of the markers above is necessary for renal
quality evaluation cannot be refuted. Nevertheless, in this work, a novel evaluation strategy
based solely on VIS/NIR spectroscopic tissue properties was developed and achieved
excellent classification results.

In further research, the classification results obtained in this work have to be con-
firmed using a larger data set. This would allow the KidneyResNet to better generalize
from the training data. Due to the small amount of data in the present work that is resulting
in a limited number of training data (20 kidneys, 3360 ROIs) and test data (6 kidneys,
1008 ROIs), the classification quality of the models may be strongly affected by outliers.
Thus, selecting the training and validation data set and test data set decisively deter-
mines the classification result. In addition, the large variability in the validation results
and the lower reliability on test data shows that more data is needed to train a steady
KidneyResNet model.

Furthermore, clinical follow-up studies should be performed in cases where NMP
is applied before kidney transplantation. Thus, inulin clearance, the reference for the
ex vivo renal function used in this work, could be compared with the postoperative
in vivo function. If the inulin clearance does not prove to be the gold standard for ex vivo
functional assessment, the KidneyResNet could also easily be trained on other markers
(e.g., hemodynamic and/or blood and urine markers). Thus, the presented KidneyResNet
model is highly adaptable depending on the reference markers used for the assessment of
the renal quality.

In conclusion, the assessment strategy to determine the functional status of ex vivo
kidneys presented here is based on a KidneyResNet model trained with HSI data. The
spectral information of the HSI data forms the basis for classification. The here established
algorithms integrate pre-processing of HSI data with a focus on automated ROI selection
and training parameters that enable the optimization of the KidneyResNet model. Our
optimized model shows high classification quality for differentiating kidneys according to
their inulin clearance behavior.

Our approach thus demonstrates the feasibility of classifying kidneys by renal function
using KidneyResNet models based on tissue-specific features. The necessary data can
be determined noninvasively by HSI during NMP. Knowledge about the ex vivo renal
functional status could be the first step towards the objective evaluation of ex vivo kidneys
and encourage the increased use of viable organs from marginal donors in the long term.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines10020397/s1, Table S1: KidneyResNet model architecture.
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