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Arbitrary quantum state 
engineering in three-state systems 
via Counterdiabatic driving
Ye-Hong Chen1, Qi-Cheng Wu1, Bi-Hua Huang1, Jie Song2 & Yan Xia1

A scheme for arbitrary quantum state engineering (QSE) in three-state systems is proposed. Firstly, 
starting from a set of complete orthogonal time-dependent basis with undetermined coefficients, 
a time-dependent Hamiltonian is derived via Counterdiabatic driving for the purpose of guiding the 
system to attain an arbitrary target state at a predefined time. Then, on request of the assumed target 
states, two single-mode driving protocols and a multi-mode driving protocol are proposed as examples 
to discuss the validity of the QSE scheme. The result of comparison between single-mode driving and 
multi-mode driving shows that multi-mode driving seems to have a wider rang of application prospect 
because it can drive the system to an arbitrary target state from an arbitrary initial state also at a 
predefined time even without the use of microwave fields for the transition between the two ground 
states. Moreover, for the purpose of discussion in the scheme’s feasibility in practice, a polynomial 
ansatz as the simplest exampleis used to fix the pulses. The result shows that the pulses designed to 
implement the protocols are not hard to be realized in practice. At the end, QSE in higher-dimensional 
systems is also discussed in brief as a generalization example of the scheme.

In recent years, to fulfill the requirement of high-precision quantum gates, teleportation, or state transfer, much 
focus is given to quantum state engineering (QSE)1–13 which aims to manipulate the system and obtain a target 
state, typically a pure state, at a designed time T, or more ambitiously, to drive the eigenstates of an initial 
Hamiltonian into those of a final Hamiltonian8–12. To be concrete about it, taking two-level system as an example, 
the goal of QSE is to construct a passage to achieve an expected final state ψ µ ν= +T( ) 1 2  (|μ|2 +  |ν|2 =  1) 
from a given initial state |ψ(0)〉  with a designed evolution time T in an undisturbed way. Typically, adiabatic tech-
niques behave very well in the field of QSE. In an adiabatic control of a quantum system, the system remains in 
one of the instantaneous eigenstates of its time-dependent Hamiltonian during the entire evolution. The control 
parameters in the Hamiltonian are carefully designed such that the adiabaticity condition always holds, which 
usually results in a very long execution time. By adiabatic passages and sequential programming1–7,14,15, robust 
protocols16,17 of realizing QSE have been provided in closed-system scenario. As the system remains in the instan-
taneous eigenstates, there is no heating or friction, but the long operation times needed may render the operation 
useless or even impossible to implement because decoherence would spoil the intended dynamics. Therefore, 
accelerating the dynamics towards the perfect final outcome is a good idea and perhaps the most reasonable way 
to actually fight against the decoherence that is accumulated during a long operation time. In this field, ways of 
speeding up an adiabatic control are available in the adiabatic regime8,18–22, for instance, in ref. 22, based on 
Berry’s transitionless tracking algorithm8, Chen et al. put forward a shortcut to adiabatic passage in two- and 
three-level systems. Soon after that, lots of speeding up protocols have been springing up and have been applied 
in a wide range of fields including “fast coldatom”, “fast ion transport”, “fast expansions”, “fast wave-packet split-
ting”, “fast quantum information processing”, and so on refs 23–40.

The transitionless tracking algorithm which is also known as Counterdiabatic driving, provides Hamiltonians 
H(t) for which the adiabatic approximation for the time-dependent wave function evolving with a reference 
Hamiltonian H0(t) becomes exact. According to ref. 8, the simplest Hamiltonian which steers the dynamics along 
the instantaneous eigenstates {|φn(t)〉 } of the original Hamiltonian H0(t) without transitions among them and 
without phase factors, formally in an arbitrarily short time, φ φ= ∑ H t i t t( ) ( ) ( )n n n , where the dot means 
time derivative. Strictly speaking, the form of the Hamiltonian deduced by transitionless tracking algorithm is 
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H(t) =  H0(t) +  H1(t), where  φ φ= ∑ H t i t t( ) ( ) ( )n n n1 . While, in fact, the addition of H0(t) is possible, but not 
necessary, it only affects the phases22. So H1 may substitute H0(t), when H(t) =  H1(t). In this case, the evolution 
operator of the system could be described as φ φ τ= ∑U t t( ) ( ) ( )n n n 0 .

We should notice that if we pay no attention to that {|φn(t)〉 } are the instantaneous eigenstates of H0(t), the 
Hamiltonian H(t) seems to be irrelevant to H0(t) but only closely related to |φn(t)〉 . Therefore, assuming {|φn(t)〉 } 
are just a set of complete orthogonal basis that {|φn(t)〉 } satisfy φ φ∑ =t t( ) ( ) 1n n n  and φ φ δ=t t( ) ( )n m nm. 
According to transitionless tracking algorithm, when the Hamiltonian for driving the system is 

φ φ= ∑ H t i t t( ) ( ) ( )n n n , each of the moving states |φn(t)〉  will evolve along itself all the time without transi-
tion to others. In other words, {|φn(t)〉 } are not necessarily being the instantaneous eigenstates of an original 
Hamiltonian H0(t), as long as they satisfy orthonormality, the corresponding Counterdiabatic driving 
Hamiltonian H(t) could be deduced. In this case, suitable pathes can be designed for different purposes as one 
desired. With the designed paths, full information including the populations of the states and the phases at any 
time would be exactly known. Here, it is important to note that shortening the time implies an energy cost, so T 
could be arbitrarily value only when the energy cost could be arbitrarily value. Which means the advantage of 
obtaining an arbitrarily target state with an arbitrarily operation time T is constrained only the complementarity 
energy-time41–45.

In this paper, motivated by refs 8,22,40, we start from a set of undetermined moving states which satisfy ortho-
normality to deduce a Hamiltonian based on transitionless tracking algorithm to implement arbitrary QSE 
scheme in three-state systems. We first consider the coefficients μ, η, and ν of the expected state 
ψ µ η ν= + +T( ) 1 2 3  are all real. Then, according to transitionless tracking algorithm, we deduce the 
corresponding Counterdiabatic driving Hamiltonian. The third step, through using the initial state, the final 
states, and the limiting conditions for a realizable Hamiltonian, we set the boundary conditions. At last, the pulses 
(or the coupling coefficients) are determined, which means the Hamiltonian will be constructed. And the con-
structed Hamiltonian will accurately guide the system from the given initial state to the expected state with a 
designed evolution time T. To show the work in more detail, two single-mode driving protocols are proposed, and 
the result of numerical analysis show that, as expected, the target state could be ideally achieved along the passage 
constructed. Moreover, a protocol of multi-mode driving is proposed later. We show that even without using the 
microwave fields for the transition between the two ground states (the 1–3 pulse), the multi-mode driving proto-
col still can drive the system to an arbitrary target state from an arbitrary initial state, which makes sense in appli-
cation prospect. We give an example to discuss the situation when the coefficients μ, η, and ν contain complex 
phases. Finally, the generalization of higher-dimensional systems and several application examples of the present 
QSE scheme are given.

QSE in three-state systems via counterdiabatic driving
We start from constructing a complete orthogonal basis for a three-state system with three bare states |1〉 , |2〉 , 
and |3〉 ,

φ α β β α β= + +t( ) cos cos 1 sin 2 sin cos 3 , (1)n n n n n n

where αn and βn are time-dependent real coefficients. To satisfy the orthogonality condition that 
φ φ =t t( ) ( ) 0n m  (n ≠  m), we find αn and βn satisfy the condition

α α β β β β− + = .cos( ) cos cos sin sin 0 (2)n m n m n m

Then, according to transitionless tracking algorithm8, the Hamiltonian that exactly drives the moving states 
is derived in the form (ħ =  1),

∑ φ φ= .
=

H t i t t( ) ( ) ( )
(3)n

n n
1

3

To satisfy the condition in eq. (2), the simplest choice for the coefficients αn and βn could be

α α α α β β π β− = − = − = = .
2

, 0 (4)1 2 1 3 2 3 1

For convenience, we set α1 =  θ and β2 =  ϕ. Then, the three moving states become φ θ θ= +t( ) cos 1 sin 31 , 
φ θ ϕ ϕ θ ϕ= − − +t( ) sin cos 1 sin 2 cos cos 32 , and φ θ ϕ ϕ θ ϕ= − + +t( ) sin sin 1 cos 2 cos sin 33 . 
Putting eq. (4) into eq. (3), the Hamiltonian is deduced

ϕ θ ϕ θ
ϕ θ ϕ θ

θ θ

= − +
− +

− + .

 

 

 

H t i( ) ( sin 1 2 sin 2 1
cos 2 3 cos 3 2
1 3 3 1 ) (5)

So, supposing that the atomic system is Λ -type for the following discussion (two ground states |1〉 , |3〉 , one 
excited state |2〉 ). Accordingly, we set ϕ θΩ =


t( ) sinp , ϕ θΩ =


t( ) coss , and θΩ = − t( )a , where Ωp(t), Ωs(t), and 

Ωa(t) can be regarded as the pump, Stokes, and microwave fields, respectively. The aim is to obtain a fast popula-
tion transfer to create an arbitrary stable superposition state ψ µ η ν= + +T( ) 1 2 3  (|μ|2 +  |η|2 +  |ν|2 =  1) 
from a given initial state, i.e., |1〉 , along a chosen moving state |φk(t)〉  (k =  1, or 2, or 3). Therefore, according to 
eq. (1), the boundary condition is
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β τ α τ

β τ η α τ µ
ν

= =

= =


−





( ) 0, ( ) 0,

( ) arcsin , ( ) arctan ,
(6)

k k

k f k f

0 0

where τ0 is the initial time, τf is the final time, and T =  τf −  τ0 is the total operation time. Based on the 
Hamiltonian, anyone of the three moving states {|φn(t)〉 } could be chosen to complete the QSE scheme. Now, we 
are ready to apply QSE by means of different protocols including single-mode driving and multi-mode driving. 
Here, the single-mode driving denotes the system accurately evolves alone one of the moving states. In other 
words, when the system is initially in one of the three moving states, ψ τ φ τ =( ) ( ) 1k0 0  (k =  1, or 2, or 3), it will 
be in that moving state all the time, ψ φ =t t( ) ( ) 1k , where |ψ(t)〉  is the evolution state given by solving the 
Schrödinger equation ψ ψ=∂

∂
i t H t t( ) ( ) ( )

t
. The multi-mode driving means that the time-dependent wave 

function |ψ(t)〉  will include contributions from the three moving states. That is, when the system is initially in a 
linear superposition of the moving states, ψ τ φ τ= ∑ c( ) ( )k k k0 0  (ck is a time-independent coefficient satisfying 
∑ =c 1k k

2 ), at the time t, the system will be also in a linear superposition of the moving states 
ψ φ= ∑t c t( ) ( )k k k .

Single-mode driving
Protocol I. In the first single-mode driving protocol, assuming that the aim now is to obtain an arbitrary sta-
ble superposition state ψ µ ν= +T( ) 1 3  (|μ|2 +  |ν|2 =  1) between the two ground states |1〉  and |3〉  in a 
classical Λ -type atom. Then, |φ1(t)〉  could be chosen to gain the target. Since the moving state |φ1(t)〉  is irrelevant 
to ϕ, so in fact we can further simplify the Hamiltonian in eq. (5) by setting ϕ =  const. H(t) becomes 

θ= − + . .H t i H c( ) 1 3 , and the boundary condition is (for simplicity, we set τ0 =  0 and τf =  T)

θ θ ν
θ θ

= =
= = . 

T
T

(0) 0, ( ) arcsin ,
(0) 0, ( ) 0 (7)

To satisfy this boundary condition, the simplest choice could be assuming a polynomial ansatz to interpolate 
at intermediate time, θ = ∑ =t a t( ) j j

j
0

3 . Then, putting eq. (7) into θ(t), we obtain

ν ν
= = = = − .a a a

T
a

T
0, 3arcsin , 2arcsin

(8)0 1 2 2 3 3

Therefore, θ ν= − ( )6 arcsint
T

t
T2

2

3
. Once θ  is fixed, which means Ωa(t) is fixed, we may calculate the 

time-evolution for pulse and population (see, e.g., Fig. 1, where µ ν= = 1/ 2 is chosen as an example). Here the 
population for a quantum state Ψ  is defined as ψ= ΨP t( ) 2, where |ψ(t)〉  is the solution of the Schrödinger 
equation ψ ψ∂ =i t H t( ) ( )t . From Fig. 1, two results could be easily got: the pulse for driving the system is easy 
to be realized in practice and the system accurately evolve along the moving state |φ1(t)〉 . The pulse could be sim-
ulated by the sine curve algorithm, θ πΩ = − ≈ Ω t Tsin( / )a 0 , where Ω0 is the pulse amplitude. A classic  

Figure 1. Protocol I of single-mode driving: (a) Dependence on t/T of the Rabi frequency Ωa(t) when 
µ = 1/ 2. (b) Time-evolution for states |1〉 , |2〉 , and |3〉  when ν = 1/ 2.
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application example of protocol I is the realization of an arbitrarily fast populations inversion between the ground 
states as shown in Fig. 2 when ν =  1. The result shows that the population inversion could be realized in an arbi-
trarily interaction time T.

It is worth noting that in confirming the boundary condition, there would be two results for θ(T), say, 
θ(T) =  arccos μ and θ(T) =  arcsin ν. Once the target state requests μ <  0, for θ(T) =  arccos μ, there are two solu-
tions: θ(T) =  π +  arcos |μ| and θ(T) =  π −  arccos |μ|, where arccos |μ| =  arcsin |ν|. Then, putting these two solu-
tions into ψ θ θ= +t t t( ) cos ( ) 1 sin ( ) 3 , for θ π µ= +T( ) arccos , we have ψ µ ν= − −T( ) 1 3 , 
while for θ π µ= −T( ) arccos , we have ψ µ ν= − +T( ) 1 3 . Meanwhile, when ν <  0, for θ(T) =  arcsin ν, 
the two solutions are θ(T) =  π +  arcsin |ν| and θ(T) =  − arcsin |ν|. These two solutions correspond to the target 
states ψ µ ν= − −T( ) 1 3  and ψ µ ν= −T( ) 1 3 , respectively. In order to embody the difference 
caused by the choices of θ(T), we plot Fig. 3, which shows the fidelities Fn of the three bare states |1〉 , |2〉 , and |3〉  
with µ ν= = 1/ 2 as an example. We define ψ=F n t( )n  (n =  1, 2, 3) as the fidelity for the state |n〉  in plot-
ting the Fig. 3. As shown in Fig. 3, both the population and the phase that affecting the coefficients of the system 

Figure 2. Protocol I of single-mode driving: Time-evolution populations for states |1〉 and |3〉 when ν = 1 
for the arbitrarily fast population inversion. 
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Figure 3. Protocol I of single-mode driving: The fidelities for states |1〉 , |2〉 , and |3〉  with µ ν= = 1/ 2 
when: (a) θ µ ν= =T( ) arccos arcsin ; (b) θ π µ= −T( ) arccos ; (c) θ π µ π ν= + = +T( ) arccos arcsin ; 
(d) θ ν= −T( ) arcsin .
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are evolved as expected. In fact, taking the global phases off, µ ν− −1 3  and µ ν− +1 3  are actually 
equivalent to µ ν+1 3  and µ ν−1 3 , respectively. Therefore, when the global phase of the target state 
is not in view, in order to reduce the pulse intensity to reduce the energy consumption, θ(T) =  arcsin ν would be 
the best choice to confirm the boundary condition to implement the protocol according to θ θ= − ( ) T6 ( )t

T
t
T2

2

3
 

which decides the pulse intensity.

Protocol II. Now, we assume the aim is to obtain an arbitrary superposition state in three levels 
ψ µ η ν= + −T( ) 1 2 3  (μ2 +  η2 +  ν2 =  1). We consider μ >  0, η >  0, and ν >  0 as a matter of  
convenience for the discussion in the following. According to eqs  (1) and (6), we choose 
φ θ ϕ ϕ θ ϕ= + −t( ) sin cos 1 sin 2 cos cos 32  as the moving state. The same as protocol I in Sec. III A, there 
also exist different choices for setting the boundary condition. Nevertheless, since the difference only happens in 
the signs of the coefficients, to avoid the fussy, duplication and repetition, we choose the boundary condition on 
the principle of less energy consumption (we set τ0 =  0 and τf =  T),

ϕ ϕ
θ θ
ϕ ϕ η

θ π θ µ
ν

= =
= =
= =

= =





.

 

 

T
T
T

T

(0) 0, ( ) 0,
(0) 0, ( ) 0,
(0) 0, ( ) arcsin ,

(0)
2

, ( ) arctan
(9)

Similar to protocol I, we set θ = ∑ = a tj j
j

0
3  and ϕ = ∑ = b tj j

j
0

3 . In this case, we obtain

π χ π χ π

η η

= = =
−

= −
−

= = = = −

a a a
T

a
T

b b b
T

b
T

2
, 0, 6

2
, 6 3

3
,

0, 0, 3arcsin , 2arcsin ,
(10)

0 1 2 2 3 3

0 1 2 2 3 3

where χ θ= = µ
ν( )T( ) arctan . Then θ and ϕ are fixed,

θ π χ π χ π

ϕ η η

θ χ π χ π

ϕ η η

= +
−

−
−

= −

=
−

−
−

= − .





t
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t
T

t
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t
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t
T

2
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2
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3
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The Rabi frequencies for driving the system are

ϕ θ η θ

ϕ θ η θ
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−
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−





Ω = − = −





−




.







t
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t
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(3 6 )
(12)

p

s

a

2

2

3

2

2

3

2

2

3

In Fig. 4, we plot the evolutions in time of the Rabi frequencies with μ =  0, η ν= = 1/ 2  and with 
µ η ν= = = 1/ 3  as examples. We accordingly plot the evolutions in time of the populations with 
µ η ν= = ={ 0, 1/ 2 } and with µ η ν= = ={ 1/ 3 } in Fig. 5. The results show that the expected states can be 

ideally obtained with a given evolution time T without doubt. Here, it is notable that to realize the pulse with Rabi 
frequency Ωa(t), in this protocol, we should substitute the original two-photon transition in a stimulated Raman 
adiabatic passage by a special one-photon 1–3 pulse. This operation possibly can be realized by exploiting the 
atomic clock transition between ground state hyperfine levels (|1〉  and |3〉 ) with microwaves in alkali atoms22.

In fact, there is a special case that we can make the pulses more simple by suitably choosing parameters. After 
reanalysing the moving state |φ2〉 , we find if the initial state is |2〉 , through time evolution, the moving state will 
also end up with an arbitrary stable superposition state ψ µ η ν= + −T( ) 1 2 3  with a time-independent 
special θ. In this case, Ωa =  0, which means the microwave fields for the transition between |1〉  and |3〉  to realize 
the special one-photon 1–3 pulse is no longer required and the protocol maybe easier to be realized in practice. 
We will discuss this special case in the following.

When θ is a const, the boundary condition should be a little different from eq. (9). The initial state is no longer 
in state |1〉  but changes into |2〉 . Then, the boundary condition becomes (τ0 =  0 and τf =  T)
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ϕ ϕ
θ θ

ϕ π ϕ η

θ θ µ
ν

= =
= =

= =

= =





.

 

 

T
T

T

T

(0) 0, ( ) 0,
(0) 0, ( ) 0,

(0)
2

, ( ) arcsin ,

(0) ( ) arctan
(13)

The same as protocol I, we obtain the polynomial function for ϕ

Figure 4. Protocol II of single-mode driving: Rabi frequencies Ωp(t), Ωs(t), and Ωa(t) when (a) μ =  0, 
η ν= = 1/ 2; (b) µ η ν= = = 1/ 3 .

Figure 5. Protocol II of single-mode driving: Time-evolution populations when (a) μ =  0, η ν= = 1/ 2;  
(b) µ η ν= = = 1/ 3 .
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and the Rabi frequencies
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In this case, the Rabi frequencies are shown in Fig. 6 with two set of parameters µ ν= = 1/ 2 , η =  0 and 
µ = 1/ 6 , η = 1/ 3 , ν = 1/ 2  as examples. As we can see from Fig. 5, the shapes of the pulses are sinusoid. 
Also, we accordingly deduce the populations versus time with these two set of pulses (see Fig. 7), which demon-
strates that the expected superposition states are ideally achieved at the designed time t =  T.

Multi-mode driving
The protocols proposed above in Sec. III are all based on single-mode driving which means only one of the moving 
states participates in the evolution. In fact, since each of the moving states |φn(t)〉  will evolve along itself all the time 
without transition to other ones, multi-mode driving is also applicable for the QSE scheme. That is, the initial state 
is not necessary in one of the moving states, it is feasible to set ψ φ τ= ∑ c(0) ( )n n n 0 , where φ τ ψ=c ( ) (0)n n 0  
and τ0 is an arbitrary time for the use of the boundary conditions. The final state will be ψ φ τ| = ∑ | 〉T c( ) ( )n n n f , 
where τf is also a time for setting the boundary conditions. According to Sec. II, the three moving states in the 
s implest  form are φ θ θ= +t( ) cos 1 sin 31 ,  φ θ ϕ ϕ θ ϕ= + −t( ) sin cos 1 sin 2 cos cos 32 ,  and 
φ θ ϕ ϕ θ ϕ= − −t( ) sin sin 1 cos 2 cos sin 33 . Supposing the initial state is |1〉  and the target state is 
ψ µ η ν= + +T( ) 1 2 3  (μ2 +  η2 +  ν2 =  1). According to the initial condition, we have

φ τ θ
φ τ θ ϕ
φ τ θ ϕ

= =
= =
= =

c
c
c

( ) 1 cos ,
( ) 1 sin cos ,
( ) 1 sin sin , (16)

1 1 0 0

2 2 0 0 0

3 3 0 0 0

and according to the final condition, we have

Figure 6. Protocol II of single-mode driving: Dependence on t/T of the Rabi frequencies Ωp(t), Ωs(t), and Ωa(t) 
in case of θ = 0 (without using the 1–3 pulse) when (a) µ = 1/ 2, η =  0, and ν = 1/ 2; (b) µ = 1/ 6, 
η = 1/ 3, and ν = 1/ 2.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:38484 | DOI: 10.1038/srep38484

φ τ ψ

µ θ ν θ

φ τ ψ

µ θ ϕ η ϕ ν θ ϕ

φ τ ψ

µ θ ϕ η ϕ ν θ ϕ

=

= +

=

= + −

=

= − −

c T

c T

c T

( ) ( )

cos sin ,

( ) ( )

sin cos sin cos cos ,

( ) ( )

sin sin cos cos sin , (17)

f

f f

f

f f f f f

f

f f f f f

1 1

2 2

3 3

where θ0 =  θ(τ0), θf =  θ(τf), ϕ0 =  ϕ(τ0), and ϕf =  ϕ(τf). A set of equations are obtained

θ µ θ ν θ

θ ϕ µ θ ϕ η ϕ ν θ ϕ

θ ϕ µ θ ϕ η ϕ ν θ ϕ

= +

= + −

= − − .

cos cos sin ,
sin cos sin cos sin cos cos ,
sin sin sin sin cos cos sin (18)

f f

f f f f f

f f f f f

0

0 0

0 0

Obviously, there are four unknowns θ0 =  θ(τ0), θf =  θ(τf), ϕ0 =  ϕ(τ0), and ϕf =  ϕ(τf) in a set of three equations. 
So, in order to solve the equations set in eq. (18), it is better to confirm one of the unknowns. For example, we can 
set ϕ0 =  0 to make c3 =  0 such that the time evolution of the system is irrelevant to the moving state |φ3(t)〉 . In this 
case, the results of eq. (18) are

θ µ θ ν θ

θ ϕ η

θ ϕ µ θ ν θ

= +

=

= − .

cos cos sin ,
sin sin ,
sin cos sin cos (19)

f f

f

f f f

0

0

0

Here, we should notice that since ϕ π ϕ= −sin sin( )f f , according to the second equation of eq. (19), there 
would be two results for ϕf, say ϕ η θ= arcsin( /sin )f 0  and ϕ π η θ= − arcsin( /sin )f 0 . So, it is better to use the 
third equation in eq. (19) to determine ϕf, then, go back and check out which one of the two results is correct. As 
we have mentioned in Sec. III B that a protocol would be relatively easy to be realized if the microwave field is not 
needed. In view of that, according to eq. (19), we can further set θ0 =  θ(t) =  θf =  const to make θ = 0. We obtain

θ θ µ
ν

ϕ µ ν θ

= =



− 



= − .

arctan 1 ,

arccos( cot ) (20)

f

f

0

0

That is, the boundary condition for the system is confirmed

Figure 7. Protocol II of single-mode driving: Time-evolution populations for states |1〉 , |2〉 , and |3〉  in case of 
θ = 0 when (a) µ = 1/ 2, η =  0, and ν = 1/ 2; (b) µ = 1/ 6, η = 1/ 3, and ν = 1/ 2.
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Also, by fitting of a three-order polynomial ϕ = ∑ = a tj a
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3 , we have
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where ζ µ ν θ ϕ= − =arccos( cot ) f0 , and the Rabi frequencies are
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We plot Fig. 8 to show time-evolutions for pulses [Fig. 8(a)] and corresponding populations transfer 
[Fig. 8(b)]. We take ψ = + +T( ) ( 1 2 3 )1

3
 as the target state, which corresponds to µ η ν= = = 1/ 3. 

By comparison with the single-mode driving in protocol II, the benefit of multi-mode driving is clear, the initial 
state is not necessary to be prepared in |2〉 , the designed process will guide the system from an arbitrary initial 
state to the target state without using the microwave field. To demonstrate that arbitrary target state would be 
achieved by using multi-mode driving, in Fig. 9, we plot time-evolution for the populations for states |1〉 , |2〉 , and 
|3〉  when: (a) μ =  η =  0, ν =  1; (b) μ =  0, η ν= = 1/ 2 ; (c) µ = 1/ 2 , η =  ν =  1/2; (d) µ = 1/ 2 , η =  0, 
ν = 1/ 2. The results show that, as expected, the multi-mode driving would guide the system to attain arbitrary 
target state in an ideal way.

Noting that energy consumption is also an important index for the effectiveness of the protocol, we calculate 
the behavior of the time-averaged frequency (interpreted geometrically as a length in ref. 46),

∫Ω ≡ Ω + Ω
τ

τ

T
dt1 ,

(24)p s
2 2f

0

and the time-averaged energy

Figure 8. Protocol of multi-mode driving: (a) Dependence on t/T of the Rabi frequencies Ωp(t) and Ωs when 
µ η ν= = = 1/ 3 . (b) Time-evolution for states |1〉 , |2〉 , and |3〉  when µ η ν= = = 1/ 3 .
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 ∫= Ω + Ω
τ

τ
E dt( ) ,

(25)p s
2 2f

0

where T =  τf −  τ0. For comparison, we put eqs (15) and (23) into eqs (24) and (25). The results are
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where the subscripts o and m denote the single-mode driving protocol and the multi-mode driving protocol, 
respectively. Obviously, as η ranges from 0 to 1, the ratio Ω

Ω
o

m
 or E

E
o

m
 is less than 1. Figure 10 which shows the ratio 

Ω
Ω

o

m
 versus η and μ also demonstrates this point. This result signifies that the multi-mode driving protocol con-

sumes more energy than the single-mode driving protocols.

Example for coefficients containing phases
The discussions above have not considered the situation when the moving states’ coefficients contain phases. 
However, it is possible that one may ask for a target state in form of

ψ µ η ν= + + .γ κe e1 2 3 (28)i i

Therefore, in this section, we will discuss how to obtain such a target state. Obviously, to obtain a target state 
like that in eq. (28), the moving state should be in form

φ θ ϕ ϕ θ ϕ= + + .γ κt e e( ) sin cos 1 sin 2 cos cos 3 (29)i i
1

Generally speaking, it does not matter whether γ and κ are time-dependent or not, but for the veracity of dis-
cussion, we set γ and κ are time-dependent in the following. Using the analysis above in Sec. III and Sec. IV, we 
can easily set the other two moving states to complete the system
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Figure 9. Protocol of multi-mode driving: Time-evolution populations for states |1〉 , |2〉 , and |3〉  when  
(a) μ =  η =  0, ν =  1; (b) μ =  0, η ν= = 1/ 2; (c) µ = 1/ 2, η =  ν =  1/2; (d) µ = 1/ 2, η =  0, ν = 1/ 2.
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Then, the Hamiltonian is given as

∑ φ φ
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Contrasting eq. (31) with eq. (5), we can find the Hamiltonians in eqs (5) and (31) are very close to each other. 
Therefore, we can similarly consider the system is a three-level Λ -type system. The three Rabi frequencies are 

ϕ θΩ =


sinp , ϕ θΩ =


coss , and θΩ = 

a . Then, at the instance of the final state, we can suitably set the boundary 
conditions to design the pulses and perform the QSE scheme as what we do in Sec. III and Sec. IV. For instance, 
assuming the initial state is |3〉  and the target state is µ ν+ κe1 3i , the coefficients could be chosen as
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3

where λ is a coefficient decided by the target state. To demonstrate the time evolution governed by the designed 
Hamiltonian H is accurately along the moving state when phases are considered, we extract θ and κ from |ψ(t)〉  
with relations (− π/2 <  θ <  π/2)

θ ψ

κ
ψ
ψ

′ =

′ = −












t

i
t
t

arcsin 1 ( ) ,

ln
3 ( )
3 ( )

,
(33)

2

where |ψ(t)〉  is the solution of Schrödinger equation ψ ψ∂ =i t H t( ) ( )t . Based on eqs (32) and (33), we plot θ, 
κ, θ′ , and κ′  versus time in Fig. 11 with µ = 1/ 2 . Obviously, from the figure, we find θ =  θ′  and κ =  κ′ . That is, 
when the phases are considered, the system still evolves along the way as we expected. In fact, when ϕ =  0, the 
system can be regarded as a two-state system, in which any quantum state can be depicted as a point at the origin 
of the Bloch sphere. We plot the time evolution of the system in Fig. 12 with the help of Bloch sphere when r =  1, 
µ = 1/ 2 , and λ =  0.5/T. Any point on the black solid curve expresses a quantum state containing information 
of population and phase. As the information of phase during the whole evolution is accurately known, the present 
QSE scheme has a good application prospect in quantum phase gates.

Figure 10. The ratio Ω Ω/o m versus η and μ, we impose Ω Ω =/ 0o m  when η2 + μ2 > 1 in plotting the figure.
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Discussion and Conclusion
An classical application of the QSE scheme could be the implementation of beam splitters in a system with longi-
tudinal coordinate three coupled waveguides36,47–50, or in a system with a single particle in a triple well51. For such 
systems the minimal channel basis for left, center, and right wave functions are = =C 2 [0, 1, 0]t , 
= =L 1 [1, 0, 0]t, and = =R 3 [0, 0, 1]t, where the superscript t means transposition. The Rabi frequen-

cies Ωp, Ωs, and Ωa play the roles of coupling coefficients between the adjacent waveguides or between the adja-
cent wells. For example, if we would like to implement a 1 : 3 beam splitter, the goal is to drive the system from |C〉  
to +L R( )1

2
. So, we can choice protocol II to realize the process. The boundary condition is given according 

to eq. (13), and the coefficients for the final state are η µ ν= = ={ }0, 1
2

. If the coefficients for the final state are 

chosen as η µ ν= = ={ }1
3

, the protocol II can be used to implement a 1:3 beam splitter. The QSE scheme also 

has a good application prospect in the field of multiparticle entanglement generation, for instance, by Rydberg 
blockade52,53. For the multi-mode driving protocol, the application area would be much wider as the Hamiltonian 
turns out to be a stimulated Raman passage Hamiltonian, for example, the multi-mode driving protocol would be 
applied in field of entangled states’ fast generation in cavity quantum electrodynamics (QED) systems31–33. As it is 
known to all, the 1–3 pulse has been regarded as a problematic term31–36 because it is possibly an outstanding 
challenge to realize the 1–3 pulse in some specific systems. Therefore, in the schemes proposed in refs 31–33, the 
authors did a lot to design Hamiltonian to overcome the problem caused by the problematic term which is actu-
ally equivalent to the special one-photon 1–3 pulse (the microwave field). However, the operations in refs 31–33 
usually cause other problem or make other limiting conditions to the schemes, for examples, there will be a lim-
iting condition for the total operation time to generate the entangled states. So, researchers never ceased finding 
realizable methods to replace or nullify the problematic term in some specific systems. In this paper, we find that 
by applying the multi-mode driving, the problem will probably be avoided because the multi-mode driving allows 
the designed Hamiltonian without using the problematic terms to guide the system to achieve the target state. 
Taking a cavity QED system with two two-level atoms (ground state |g〉  and excited state |e〉 ) in a cavity as an 
example, the Hamiltonian for the one-excited subspace under rotating wave approximation is (ħ =  1)
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Figure 11. Time-evolution for θ, κ, θ′, and κ′ when µ = 1 2/  and λ = 0.5/T.

Figure 12. Time-evolution for the system on the Bloch sphere when µ = 1 2/  and λ = 0.5/T.
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where the basis for the Hamiltonian are = e g1 , 0 c12
, = g g2 , 1 c12

, and = g e3 , 0 c12
. We just need 

to set g1 =  − iΩp and g2 =  iΩs according to eq. (23). Choosing µ η= = 1/ 2 , time-evolution of the system [see 
Fig. 13] will end up with ψ = +T e g g e( ) ( , , )/ 212 12

 which is a two-atom maximal entangled state.
Moreover, this universal QSE scheme can be extended straightforwardly into higher-dimensional systems. For 

example,  a simple set  of moving states for a four-dimensional system could be given as 
φ α β α β α β α β= + + +t( ) (cos cos 1 cos sin 2 sin cos 3 sin sin 4 )n n n n n n n n n

1
2

. Then, the orthogonality 
condition requests α α β β− ⋅ − =cos( ) cos( ) 0n m n m . We can accordingly set the four moving states as
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The corresponding Hamiltonian is

∑ φ φ
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Then, according to the initial state and the target state, we set the boundary condition to construct the 
pulses to determine the Hamiltonian. By applying the constructed Hamiltonian, arbitrary quantum states in a 
four-dimensional system will be achieved.

In conclusion, we have proposed an effective scheme for arbitrary quantum state engineering via 
Counterdiabatic driving. The scheme enables to achieve an arbitrarily fast population transfer in a three-state 
quantum system. As it is known to all, the transitionless tracking algorithm provides a Hamiltonian to accurately 
drive one of the eigenstates of an original Hamiltonian without transition to other ones. Different from the previ-
ous work based on the transitionless tracking algorithm that the start point is usually assuming 

φ φ=H t t E t t( ) ( ) ( ) ( )n n n0  which means |φn(t)〉  should be the eigenstate of H0(t), in this paper, we directly start 
from a time-dependent moving state |φn(t)〉  to design a process to achieve the target state. Strictly speaking, the 
moving states {|φn(t)〉 } are probably (but not necessary) the eigenstates of an unknown Hamiltonian because 
{|φn(t)〉 } satisfy orthonormality. While that does not matter because the unknown Hamiltonian affects nothing to 
the proposed QSE scheme. In this QSE scheme, the key point is to make sure that the moving states satisfy 
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Figure 13. Time-evolution for states |e, g〉12 |0〉, |g, g〉12 |1〉, and |g, e〉12 |0〉 for the example of entangled 
state’s generation.
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orthonormality which means φ φ∑ =t t( ) ( ) 1n n n  and φ φ δ=t t( ) ( )n m nm. We have proposed different pro-
tocols based on single-mode driving and multi-mode driving as examples to discuss the QSE scheme. The result 
shows that all the protocols, especially, the multi-mode driving protocol, can realize the target state in a perfect 
way: guiding the system to attain an arbitrary target state at a predefined time. The only drawback is that by 
single-mode driving, there might be some limits for the initial condition according to some special requirements. 
For example, if it is impossible to perform the one-photon 1–3 pulse (the microwave field), in order to achieve an 
arbitrary target state, the initial state should be ideally in the intermediate state, i.e., |2〉 . Moreover, the pulses 
designed by polynomial fitting to realize the QSE scheme are shown as the shapes of sinusoid or linear superpo-
sition of sinusoids, which means realizing the QSE scheme in practice is not a challenge. Therefore, we hope the 
QSE scheme would be possible to realize within the current experimental technology.
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