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Transient receptor potential (TRP) channels are transmembrane protein complexes
that play important roles in the physiology and pathophysiology of both the central
nervous system (CNS) and the peripheral nerve system (PNS). TRP channels function
as non-selective cation channels that are activated by several chemical, mechanical,
and thermal stimuli as well as by pH, osmolarity, and several endogenous or exogenous
ligands, second messengers, and signaling molecules. On the pathophysiological side,
these channels have been shown to play essential roles in the reproductive system,
kidney, pancreas, lung, bone, intestine, as well as in neuropathic pain in both the CNS
and PNS. In this context, TRP channels have been implicated in several neurological
disorders, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease,
amyotrophic lateral sclerosis, and epilepsy. Herein, we focus on the latest involvement of
TRP channels, with a special emphasis on the recently identified functional roles of TRP
channels in neurological disorders related to the disruption in calcium ion homeostasis.

Keywords: TRP channels, neurological disorders, calcium homeostasis, Alzheimer’s disease, Parkinson’s
disease, Huntington’s disease, amyotrophic lateral sclerosis, epilepsy

INTRODUCTION

TRP Channel Subfamily
Transient receptor potential (TRP) channels are classified into 28 members that function as a
group of unique non-selective cation channels in mammals. TRP channels are conserved in
yeast, invertebrates, and vertebrates and share a common three-dimensional structure with six
transmembrane helical segments (S1–S6), two variable and intracellular amino (-NH2) and a
carboxy (-COOH) terminal cytosolic domain, and the channel pore formed by S5 and S6, which
allow transport of various ions including sodium (Na+), potassium (K+), calcium (Ca2+), and
magnesium ions (Mg2+). Based on significant sequence homology and a common structure, TRP
channels are divided into six subfamilies: TRPC (canonical), TRPM (melastatin), TRPV (vanilloid),
TRPA (ankyrin), TRPP (polycystin), and TRPML (mucolipin). TRP subfamilies are divided into
Group 1 (TRPC, TRPM, TRPV, and TRPA) and Group 2 (TRPP and TRPML) according to
differences in their sequence and topology. Subfamilies of TRP channels are divided into groups
and subtypes as represented in the phylogenetic tree in Supplementary Figure 1.
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Transient receptor potential channels are ubiquitously
expressed in many cell types (especially neurons and non-
neuronal cells in the central nervous system, CNS) and
tissues, including brain, kidney, pancreas, lung, bone, intestine,
reproductive system as well as dorsal root ganglia (DRG)
neurons in the peripheral nervous system (PNS). In addition,
TRP channels are primarily expressed in plasma membranes that
play critical roles in stimulus perception (i.e., thermosensation,
mechanosensation, and chemosensation) and ion homeostasis
(Nishida et al., 2006; Nilius and Owsianik, 2011).

Initially, TRP channels were shown to regulate cellular Ca2+

influx through the so-called store-operated channels (Nilius,
2004; Ramsey et al., 2006; Yazgan and Naziroglu, 2017).
Several studies have shown that TRP channels regulate neuronal
excitability, intracellular Ca2+ and Mg2+ homeostasis, as well as
cell proliferation and differentiation (Nilius, 2004).

In addition to their physiological functions, TRP channels
are known to contribute to various pathophysiological roles in
neurological disorders of the CNS (Nilius, 2007; Colsoul et al.,
2013; Takada et al., 2013).

Neurological Disorders
Neurodegenerative diseases, such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), and
amyotrophic lateral sclerosis (ALS) and epilepsy, collectively
known as “neurological disorders,” have distinct pathologies and
represent a significant medical burden in the modern world.

Alzheimer’s disease is the most common neurodegenerative
disease in the world and is characterized by the accumulation
of beta-amyloid (Aβ) plaques from amyloid precursor protein
(APP) and hyperphosphorylated tau protein (Iqbal et al., 2010;
Murphy and Levine, 2010). PD is also a common brain
disorder, primarily characterized by a resting tremor, postural
instability, rigidity, and bradykinesia caused by dopaminergic
(DA) neuronal loss in the substantia nigra (SN) pars compacta
(SNpc) (Michel et al., 2013; Kalia and Lang, 2015). HD is
an inherited neurodegenerative disorder that causes cognitive
deficits, emotional imbalance, and uncontrolled excessive motor
movements caused by a CAG trinucleotide repeat expansion
within the Huntingtin gene that leads to the synthesis of
polyglutamine tracts (Kremer et al., 1994). ALS, also known as
Lou Gehrig’s disease, is another fatal type of neurodegenerative
motor disease characterized by the deterioration of motor
neurons in the motor cortex, brainstem, and spinal cord that
leads to impairments in voluntary movement (Guatteo et al.,
2007). Finally, epilepsy is a neurological disorder characterized
by recurrent epileptic seizures, abnormal brain activity, and
unusual behavior.

Over the past few decades, enormous efforts have been
made to unveil the pathogenesis of neurological disorders.
For example, endoplasmic reticulum (ER) stress, also known
as oxidative stress, which is caused by misfolded proteins
and abnormal Ca2+ homeostasis, neuroinflammation, and
mitochondrial dysfunction have been shown to lead to neuronal
cell death. Most notably, Ca2+ regulation, which is involved
in normal physiological functions such as neuronal survival,
proliferation, differentiation, gene transcription, and exocytosis

at synapses, has been shown to be dysregulated in various
neurological disorders (Bojarski et al., 2008; Bezprozvanny, 2009;
Grosskreutz et al., 2010; Surmeier et al., 2010; Wu et al., 2011;
Nikoletopoulou and Tavernarakis, 2012).

Interestingly, several studies have reported a correlation
between intracellular Ca2+ concentrations ([Ca2+]i) and
other pathogenic mechanisms, including the imbalance
between antioxidant function and reactive oxygen
species (ROS) production (Gorlach et al., 2015) as well
as mitochondrial dysfunction (Contreras et al., 2010;
Pivovarova and Andrews, 2010).

In fact, exposure of neuronal cells to Aβ peptides, induces
an elevation of [Ca2+]i that leads to cell death as observed in
in vitro experiments (Adhya and Sharma, 2019). Aggregation
of α-synuclein, which is associated with the pathology of PD,
can also induce neuronal cell death via the disruption of
cellular Ca2+ homeostasis (Fonfria et al., 2005; Danzer et al.,
2007). Furthermore, the polyglutamine-expanded huntingtin
protein and mutant superoxide dismutase-1 (SOD1), which are
implicated in the pathogenesis of HD and ALS, respectively,
also disrupt cellular Ca2+ homeostasis (Giacomello et al., 2013;
Barrett et al., 2014). The disruption of intracellular Ca2+

concentration in epilepsy induces ROS production, apoptosis,
and caspase activation through mitochondrial oxidative stress
(Yilmaz et al., 2011; Naziroglu and Ovey, 2015). Therefore,
alleviating disturbances in Ca2+ homeostasis may represent a
potential therapeutic target for the treatment of neurological
disorders (Nilius, 2007; Colsoul et al., 2013; Takada et al., 2013).

TRP CHANNELS IN NEUROLOGICAL
DISORDERS

TRP Channels in AD
Importantly, a strong correlation between the pathological
hallmarks of AD (Aβ accumulation and neurofibrillary tangles)
and perturbed cellular Ca2+ homeostasis have been reported
in AD patients as well as in animal and cell culture models
of AD (Mattson and Chan, 2001). To date, TRPC1, TRPC3,
TRPC6, TRPM2, TRPM7, TRPV1, TRPV4, TRPA1, and TRPML1
have been shown to be involved in AD (Figure 1A). TRPC1 is
a member of the most prevalent TRPC channels in the brain
and is linked to the store-operated Ca2+ channel-mediated
Ca2+ entry (SOCE) channels. Interestingly, SOCE was reduced
by downregulation of TRPC1 in astrocytes in APP knockout
(KO) mice (Linde et al., 2011). Additionally, the alteration
of the brain-derived neurotrophic factor-tropomyosin receptor
kinase B-TRPC3 (BDNF-TrkB-TRPC3) signaling pathway led
to hyperphosphorylation of tau protein caused by increased
[Ca2+]i levels in AD (Elliott and Ginzburg, 2006). Moreover,
it has been reported that TRPC1 and TRPC3 are associated
with caveolin-1, which is the main component of the plasma
membrane caveolae that interacts with APP (Ikezu et al.,
1998). Several studies have reported that TRPC6 in neurons
promotes neuronal survival (Jia et al., 2007), synaptogenesis,
and learning and memory (Zhou J. et al., 2008). Furthermore,
in pharmacological studies using hyperforin, one of the
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FIGURE 1 | Schematic of the molecular mechanism of TRP channel-mediated pathogenesis of neurological disorders: (A) Alzheimer’s disease, (B) Parkinson’s
disease, (C) Huntington’s disease, (D) Amyotrophic lateral sclerosis, and (E) epilepsy. In the figure, red arrows represent increase or up-regulation; green arrows,
decrease or down-regulation; red thick bar, inhibition of the signaling pathway; and black arrows, activation of the signaling pathway. Ion channels involved in each of
the neurological disorders and their transporting ions, channel agonists, and antagonists are also shown in the figure. Abbreviations: BDNF, brain-derived
neurotrophic factor; ROS, reactive oxygen species; Aβ, beta-amyloid; PPAR, peroxisome proliferator-activated receptor gamma; AMPK, 5′ adenosine
monophosphate-activated protein kinase; mTOR, mechanistic target of rapamycin; NMDAR, N-methyl-D-aspartate receptor; NAADP, Nicotinic acid adenine
dinucleotide phosphate; PI(3,4)P2, phosphatidylinositol (3,4)-bisphosphate; PD, Parkinson’s disease; ER, endoplasmic reticulum; GABA, gamma-aminobutyric acid;
DA, dopamine; ALS/FTD, amyotrophic lateral sclerosis patients with frontotemporal dementia; L-BMAA, L-beta-methylamino-L-alanine; IL, interleukin; TNF-α, tumor
necrosis factor alpha; CPZ, capsazepine; IRTX, 5′-Iodoresiniferatoxin; KA, kainic acid; pPKCα, phospho-protein kinase C alpha; pERK1/2, phospho-extracellular
signal-regulated kinase 1/2.

main natural compounds of the medicinal plant Saint John’s
wort that acts as an antidepressant drug (Zanoli, 2004) and
TRPC6 activator (Tu et al., 2010), or tetrahydrohyperforin, a
stable semisynthetic compound derived from hyperforin (Rozio
et al., 2005), TRPC6 was shown to play a potential role
in AD through the reduction of Aβ accumulation due to
increased cerebrovascular P-glycoprotein (Brenn et al., 2014) and
increased adult hippocampal neurogenesis and long-term spatial
memory (Abbott et al., 2013), respectively. In contrast, AD-
linked presenilin (PS)-2 mutants influenced TRPC6-mediated
neurotoxic Ca2+ entry (Lessard et al., 2005), whereas TRPC6

was shown to be neuroprotective against AD through interaction
with the cleavage of APP (Wang et al., 2015). In fact, a recent
study observed that hyperforin induced activation of TRPC6,
reduced Aβ levels, and improved mild cognitive impairment in
AD models and that TRPC6 mRNA levels in the blood cells were
reduced in AD patients (Lu et al., 2018).

While APP/PS1 transgenic (Tg) mice were observed to have
age-dependent spatial memory deficits through TRPM2 channel
activation by toxic oligomeric Aβ, genetic elimination of TRPM2
in APP/PS1 Tg mice ameliorated the synaptic loss and spatial
memory deficits (Ostapchenko et al., 2015). It has been suggested
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that the TRPM2 channel may be a possible therapeutic agent of
neuronal toxicity and memory impairment in AD. In contrast,
TRPM7, which is another TRPM channel, plays an important
role in not only inducing anoxic neuronal cell death by disrupting
Ca2+ and Mg2+ homeostasis but also increasing susceptibility to
degenerative processes (Aarts et al., 2003).

In recent studies of TRPV channels, the activity of TRPV1
was reported to reduce oxidative/nitrosative stress (Hofrichter
et al., 2013; Jayant et al., 2016), rescue Aβ-induced degradation
of hippocampal neurons (Balleza-Tapia et al., 2018), and increase
levels of presynaptic synapsin I and postsynaptic density 93
(PSD93). In contrast, increased TRPV4 expression has been
observed in the brain of aged rats (Lee and Choe, 2014), which
is known to increase neuronal cell death via increased Ca2+

influx and ROS production (Hong et al., 2016). In APP/PS1
Tg/TRPA1 KO mice, the genetic loss of TRPA1 has been shown
to exacerbate spatial learning and memory deficits, increase Aβ

deposition, promote the release of pro-inflammatory cytokines
such as interleukin (IL)-1β, IL-4, IL-6, and IL-10, and inhibit the
activities of transcriptional factors NF-κB and nuclear factor of
activated T cells (Lee et al., 2016).

Lastly, it has been shown that overexpression of TRPML1 is
sufficient to rescue memory and cognitive deficits by diminishing
neuronal apoptosis in APP/PS1 Tg mice (Zhang et al., 2017).

TRP Channels in PD
TRPC1, TRPC3, TRPM2, TRPM7, and TRPV1 have been shown
to be involved in PD (Figure 1B). The activation of TRPC1
channels has been reported to induce neuroprotection against
apoptosis in SH-SY5Y neuroblastoma cells (Bollimuntha et al.,
2006), as well as to regulate SOCE channels and reduce DA
neuronal cell death in the SN of TRPC1 KO mice (Selvaraj
et al., 2009, 2012). Consistent with these reports, decreased
levels of TRPC1 have been detected in brain lysates from the
SNpc of PD patients (Sun et al., 2017). In contrast to TRPC1
levels, TRPC3 levels are not altered in SNpc DA neurons in PD
patients (Sun et al., 2017) although their levels are increased
by the compensatory effect of decreased TRPC1 in 1-methyl-
4-phenyl-1,2,3,6-tetrahyrdropyridine (MPTP)-induced PD-like
conditions (Selvaraj et al., 2009). Constitutively active TRPC3
channels are known to express and regulate firing intensity and
pattern in GABAergic neurons of the SN pars reticulata (SNpr)
(Zhou F. W. et al., 2008). Therefore, this channel may also
be involved in different brain subregions or pathophysiological
mechanisms of PD.

Additionally, 1-methyl-4-phenylpyridinium ion (MPP+)-
induced oxidative stress has been shown to increase intracellular
Ca2+ influx via TRPM2 channel activity and promote DA
neuronal cell death in the SNpc (Sun et al., 2018). Importantly,
TRPM7 channels regulate Mg2+ homeostasis in cells, and
increased concentrations of Mg2+ significantly inhibit MPP + -
induced neurotoxicity by reducing the number of DA neurons
and ameliorating the length of DA neurites (Hashimoto et al.,
2008; Paravicini et al., 2012).

The activation of TRPV1 has also been shown to induce
cell death in DA neurons, increase Ca2+ influx, and mediate
mitochondrial disruption (Kim et al., 2005; Nam et al., 2015).

Furthermore, activation of TRPML1 evokes global ER Ca2+

release and Ca2+ influx (Kilpatrick et al., 2016) and results in
upregulated lysosomal exocytosis, thus preventing α-synuclein
accumulation in DA neurons (Tsunemi et al., 2019).

TRP Channels in HD
TRPC1, TRPC5, and TRPV1 have been shown to be involved
in HD (Figure 1C). Recently, it was shown that the expression
level of endogenous TRPC1 was decreased in Q111 HD striatal
cells compared to wild-type (Q7) cells (Hong et al., 2015).
Furthermore, increased glutathionylation of TRPC5, activated
by oxidants, leads to Ca2+-induced apoptosis of the striatal
neurons in HD Tg mice (Hong et al., 2015). However, knockdown
by siTRPC5 and inhibition of TRPC5 with ML204, a selective
TRPC4 blocker produced by the Molecular Libraries Probe,
produces a protective effect against oxidative stress in Q111 HD
striatal cells and improves motor behavior in HD Tg mice (Miller
et al., 2011; Hong et al., 2015, 2020a).

Moreover, it has been shown that administration of
N-arachidonoylphenolamine (AM404), an inhibitor of
endocannabinoid reuptake, has potential antihyperkinetic
effects via the TRPV1 receptor using the 3-nitropropionic acid-
induced HD model, suggesting that the activity of the TRPV1
channel may contribute to the motor dysfunction in HD patients
(Lastres-Becker et al., 2003).

TRP Channels in ALS
TRPC4, TRPM2, TRPM3, TRPM7, and TRPML1 have been
shown to be involved in ALS (Figure 1D). The clinical
symptoms of ALS overlap with those of Parkinsonism dementia
complex (PDC), a neurodegenerative disorder characterized by
symptoms of PD and dementia (Garruto, 2006; Hermosura and
Garruto, 2007). While the pathogenesis of ALS/PDC is not
fully understood, it is thought to be caused by two potential
scenarios: (i) low levels of Ca2+ and Mg2+, which cause
excess ROS production and cell death, and (ii) excess exposure
to putative neurotoxin β-methylamino-L-alanine (L-BMAA),
derived from the cycad plant, which causes an increase of [Ca2+]i
(Brownson et al., 2002).

A previous study demonstrated that the expression of
TRPC4 is increased by nerve growth factor and dibutyryl-cAMP
treatment in cultured DRG neurons. Conversely, inhibition
of TRPC4 using a selective siRNA approach reduces neurite
outgrowth in cultured DRG neurons (Wu et al., 2008). In ALS,
reactive astrocytes accelerate nerve growth factor production
(Pehar et al., 2004). In addition, a recent study demonstrated that
ALS-resistant motor neurons from mutant SOD1 ALS models
upregulate axonal outgrowth and dendritic branching (Osking
et al., 2019). Taken together, these findings suggest that TRPC4
regulates DRG differentiation and plays a pivotal role in ALS.

In contrast, mutations in both TRPM2P1018L and
TRPM7T1482I have been found in Guamanian ALS/PDC patients.
Importantly, the TRPM2P1018L variant was shown to attenuate
oxidative stress-induced Ca2+ influx through inactivation of the
channel (Hermosura et al., 2008). In contrast, the TRPM7T1482I

variant promotes an imbalance in Ca2+ and Mg2+ homeostasis
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(Hermosura and Garruto, 2007). TRPM3, which is in the
same group as TRPM2, has also been considered as a possible
candidate gene involved in the pathogenesis of ALS with
frontotemporal dementia (Lee et al., 2003).

TRPML1 was expressed in cell lysosomes or in the endosomal
membrane and in the main Ca2+-releasing channel used as
a regulator of lysosomal storage via phosphatidylinositol 3,5-
biphosphate (PI(3,5)P2) (Cheng et al., 2010; Li et al., 2013). In
addition, TRPML1 also regulates the maintenance of lysosome
homeostasis and accumulation of autophagy (Cheng et al., 2010;
Curcio-Morelli et al., 2010; Morgan et al., 2011). Interestingly,
PI(3,5)P2 levels are significantly impaired in some forms of ALS
(Chow et al., 2009; Osmanovic et al., 2017). Moreover, in an
experimental model of ALS/PDC, the expression of TRPML1
was shown to be reduced through autophagy leading to the loss
of motor neurons. Additionally, with an L-BMAA-induced ALS
mouse model, it was discovered that TRPML1 is downregulated,
and autophagy is impaired in primary motor neurons, which
leads to ER stress and neuronal cell death (Tedeschi et al., 2019).

TRP Channels in Epilepsy
TRPC1, TRPC3-7, TRPM2, TRPM7, TRPV1, TRPV4, and
TRPA1 have been shown to be involved in epilepsy (Figure 1E).
As mentioned above, TRPC channels are not only known to play
an important role in neuronal outgrowth and survival during
brain development but are also believed to play a pivotal role
in various epileptogenic processes. For example, the expression
of TRPC1 is increased in cortical lesions of epilepsy patients
and regulated by the mediation of astrocyte-induced epilepsy
(Zang et al., 2015). Using a pilocarpine (muscarinic agonist)-
induced status epilepticus (PISE) model, studies have shown
that the genetic elimination of TRPC3 reduces the susceptibility
of seizures to pilocarpine, while enhancing the expression of
TRPC3 induces hyperexcitability and increases susceptibility to
epileptiform activity in the cortex (Zhou and Roper, 2014; Phelan
et al., 2017). In contrast, the expression of TRPC6 has been
shown to be down-regulated in chronic epileptic rats, whereas
the genetic ablation by siTRPC6 increases seizure susceptibility
and seizure-induced neuronal damage in the dentate gyrus
but not in CA1 and CA3 neurons of the hippocampus
(Kim and Kang, 2015). In addition, in other members of
the TRPC family, the genetic deletion of TRPC1/4 reduces
seizure-induced neuronal cell death. Furthermore, TRPC5 KO
mice exhibit significantly reduced seizures as well as minimal
seizure-induced neuronal cell death in the CA1 and CA3
areas of the hippocampus (Phelan et al., 2013). Conversely,
the TRPC7 channel plays an important role in spontaneous
epileptiform bursting in the CA3, the reduction of which
is correlated with a reduction in PISE in TRPC7 KO mice
(Phelan et al., 2014).

The TRPM family is also involved in the pathogenesis of
epilepsy. For example, TRPM2 channels are co-expressed with
the EF-hand domain-containing protein 1 gene, which is related
to an increased susceptibility to juvenile myoclonic epilepsy,
and are regulated in the hippocampal neurons (Katano et al.,
2012). Moreover, TRPM7 has been shown to be activated during
epilepsy (Aarts and Tymianski, 2005). Importantly, genetic

ablation of TRPM7 blocks the activation of a cation current,
which is produced by oxygen-glucose deprivation (IOGD), and
prevents ROS-mediated IOGD activation (Aarts et al., 2003).

Although the TRPV1 channel is believed to play an essential
role in the development of neurogenic pain and inflammation
in the sensory neurons (Caterina and Julius, 2001; Julius
and Basbaum, 2001), it is also expressed in other brain
regions, including the cerebral cortex, hippocampus, cerebellum,
thalamus, hypothalamus, striatum, midbrain, and amygdala
(Cristino et al., 2006). Furthermore, increased expression of
TRPV1 has been found in the hippocampus of rats and the
dentate gyrus of mice with temporal lobe epilepsy as well as in
the cortex of patients with temporal lobe epilepsy (Bhaskaran and
Smith, 2010; Sun et al., 2013; Saffarzadeh et al., 2015). In fact, a
recent study suggested that the activation of the TRPV1 channel
may play a key role in the development of epilepsy (Naziroglu
and Ovey, 2015). Using capsazepine, 5′-iodoresiniferatoxin, and
resolvins, the authors showed that inhibition of the TRPV1
channel induced protective effects against epilepsy and epilepsy-
induced Ca2+ entry in the hippocampal and DRG neurons
(Naziroglu and Ovey, 2015).

Activation of TRPV3 by eugenol was shown to suppress
epileptiform field potentials and decrease the amplitude of
field postsynaptic potentials evoked in CA1 neurons of the
hippocampus and the third layer of the neocortex (Muller et al.,
2006). Another study using the PISE model of epilepsy found
that activation of TRPV4 by the specific agonist GSK1016790A
increased pro-inflammatory cytokines (TNF-α, IL-1β, and IL-
6), while the inhibition of TRPV4 by HC-067047, a selective
TRPV4 antagonist, significantly increased cell survival post status
epilepticus (Wang et al., 2019).

Using a kainic acid-induced seizure model, TRPA1 was found
to be upregulated while TRPV4 was not, which is contradictory
to the earlier findings concerning TRPV4 (Hunt et al., 2012;
Wang et al., 2019).

CONCLUSION AND FUTURE
PERSPECTIVES

In this review, we described the functional importance of TRP
channels in the regulation of Ca2+ and oxidative stress responses
as well as their contributions to neurological disorders, including
AD, PD, HD, ALS, and epilepsy.

Overall, in addition to playing a broad range of physiological
roles throughout the CNS and PNS, TRP channels also contribute
to pathophysiology across a wide range of diseases and disorders
through abnormalities in Ca2+ homeostasis. In the CNS, TRP
channels are expressed in several brain regions (including the
spinal cord) and have been shown to be key regulatory proteins
involved in lipid metabolism, glucose homeostasis (Liu et al.,
2009; Zhu et al., 2011), and the pathobiology of aforementioned
neurological disorders.

Apart from their important role in neurological disorders of
the CNS, TRP channels are also expressed in the neurons of
the DRG, trigeminal ganglion, and sympathetic ganglion, and
contribute to both normal and pathological sensory processing in

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 March 2021 | Volume 9 | Article 611773

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-611773 February 27, 2021 Time: 15:50 # 6

Lee et al. The Role of TRP Channels in Neurological Disorders

the PNS (Lee et al., 2019). For example, TRP channels are known
to be involved in diabetic peripheral neuropathy, chemotherapy-
induced peripheral neuropathy, and autonomic neuropathy.

In light of the physiological and pathophysiological functions
of TRP channels in both the CNS and PNS, we believe that they
represent potential therapeutic targets for treating neurological
disorders of the CNS as well as neuropathic pain in the PNS.
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Supplementary Figure 1 | Summary of TRP subfamilies-mediated studies
related to neurological disorders [modified from Nilius (2007), Hong et al. (2020b),
Thapak et al. (2020)]. Different colors are used in the table for better classification
and the gray boxes in the “Related Disease” column represent the roles of specific
TRP subfamilies in each neurological disorders as reported in the published
literature. Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral
sclerosis; AMG, amygdala; APP, amyloid precursor protein; BBB, blood-brain
barrier; BG, basal ganglia; Bs, brainstem; CB, cerebellum; CC, corpus callosum;
Cd, caudate; Cg, cingulate gyrus; CNS, central nervous system; CTX, cortex; DA,
dopamine; DG, dentate gyrus; DRG, dorsal root ganglion; ER, endoplasmic
reticulum; FB, forebrain; fCTX, frontal cortex; GABA, gamma-aminobutyric acid;
GP, globus pallidus; HD, Huntington’s disease; HPC, hippocampus; HT,
hypothalamus; IC, inferior colliculus; JME, juvenile myoclonic epilepsy; KA, kainic
acid; LS, lateral septum; MB, midbrain; mFBb, medial forebrain bundle; mPFC,
medial prefrontal cortex; mTOR, mechanistic target of rapamycin; n.d., not
determined; OB, olfactory bulb; PD, Parkinson’s disease; PISE,
pilocarpine-induced status epilepticus; PNS, peripheral nervous system; Pm,
putamen; PS1, presenilin 1; RCh, retrochiasmatic area; SC, spinal cord; Sep,
septum; SN, substantia nigra; SNpc, substantia nigra pars compacta; SNpr,
substantia nigra pars reticulata; SOCE, store-operated calcium entry; Str, striatum;
TH, thalamus; vS, ventral subiculum.
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