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Hypertension is a leading risk factor for cardiovascular diseases and can reduce life

expectancy. Owing to the widespread use of antihypertensive drugs, patients with

hypertension have improved blood pressure control over the past few decades. However,

for a considerable part of the population, these drugs still cannot significantly improve

their symptoms. In order to explore the reasons behind, pharmacomicrobiomics provide

unique insights into the drug treatment of hypertension by investigating the effect of

bidirectional interaction between gut microbiota and antihypertensive drugs. This review

discusses the relationship between antihypertensive drugs and the gut microbiome,

including changes in drug pharmacokinetics and gut microbiota composition. In addition,

we highlight how our current knowledge of antihypertensive drug-microbiota interactions

to develop gut microbiota-based personalized ways for disease management, including

antihypertensive response biomarker, microbial-targeted therapies, probiotics therapy.

Ultimately, a better understanding of the impact of pharmacomicrobiomics in the

treatment of hypertension will provide important information for guiding rational clinical

use and individualized use.
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INTRODUCTION

Hypertension is recognized as a leading risk factor for cardiovascular disease worldwide (1).
It has become a healthcare burden and the main cause of mortality from stroke, heart failure
and myocardial infarction (2). Approximately 1.5 billion people (one-third of the world’s adult
population) had hypertension, traditionally defined as a clinic blood pressure (BP) of ≥140/90
mmHg (3, 4). During the past 30 years, the treatment of hypertension has advanced considerably,
such as lifestyle intervention and antihypertensive drug therapy (5, 6). Patients with hypertension
usually have to take antihypertensive drugs continuously, as a cure is not available (7, 8). There
are 23 kinds of antihypertensive agents available with over 100 different types of antihypertensive
drugs, such as β-blockers (BB), diuretics, calcium channel blockers (CCB), angiotensin II receptor
blockers (ARB) and angiotensin-converting enzyme inhibitors (ACE-I), Ram (9). However,
according to the recent guidelines for hypertensionmanagement, nearly 40% of patients still did not
achieve their BP target (10–12), meaning some patients cannot benefit frommedication. Therefore,
insights into the potential factors that affect the efficacy of antihypertensive drugs in vivo are
urgently needed to maximize clinical response.
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In recent years, the gut microbiota has been regarded
as an “invisible organ” and affected human health and
disease development (13–15). Although pharmacogenomics
and pharmacogenetics have been at the forefront of research
examining the influence of individual genetic background on
drug response, the focus of research has also been extended to
the potential mechanism of gut microbiota to drug efficacy (16).
The human gut microbiota has a huge gene bank that encodes
approximately 100 times more genes than the human genome.
Thus, gut microbial communities may become an indispensable
part of the personalized medical movement in the future (17,
18). The study of the bidirectional effects between drugs and
microbiota, termed pharmacomicrobiomics, is an extension of
pharmacogenomics (19, 20). Recent developments in genome
sequencing technologies and bioinformatics can not only dissect
gut microbiome composition and their genes in detail, but also
investigate the influence of variations within the human gut
microbiota on antihypertensive drugs (21–23). These studies
have promoted the progress of personalized medicine in the
hypertension treatment.

In this review, we clarify the recent research in a new
field of pharmacomicrobiomics by the revealing reciprocal
interplay between the gut microbiota and the drug. We also
describe the dynamic interaction between the gut microbiome
and specific antihypertensive drugs and analyze the effect of
alteration in the composition and function of gut microbiome on
antihypertensive drug action. Finally, we discuss the strategy to
incorporate pharmacomicrobiomics into the frontier of precision
medicine in hypertension.

THE INTERACTION OF DRUG AND GUT
MICROBIOTA

In the early stages of life, humans begin to ingest various
xenobiotics, such as a multitude of drugs and dietary molecules
(24). After birth, humans are rapidly settled by trillions
of microorganisms, most of which eventually live in their
gastrointestinal tract (25, 26). The gastrointestinal tract has a
micro-environment suitable for the growth of microorganisms,
making it an excellent habitat for the metabolic potential
of microbial community (27). The microbiota can provide
nutrients to the host, assist in metabolism, and directly affect
the development of the immune system and its ability against
pathogens (28–30). In particular, variability in the component
and metabolic capacity of the gut microbiome has a major role
in determining toxicity and clinical efficacy of drugs. Enzyme
activity in gut microbial communities can alter the chemical
structure of drugs, thereby affecting their bioavailability (31–33).
Drugs also alter the composition and function of gut microbial
community, thereby changing intestinal microenvironment and
affect microbial metabolism (16) (Figure 1). The interaction
between drugs and the gut microbiome has garnered growing
interest in the field of precision medicine.

Gut Microbiome Influences Drug Response
Oral drug administration is the most complicated path of
delivery. When oral medications move through the upper

gastrointestinal tract and small intestine and enter the large
intestine, they contact thousands of microbial species (16). The
gut microbiota can synthesize a series of enzymes involved in
drug metabolism, including oxidase, hydrogenase, etc. These
enzymes can activate, inactivate or reactivate drugs by structural
change of their components (34–36). Due to the high metabolic
activity of gut microbiota, it is considered a metabolic organ with
the same metabolic capacity as the liver (37). The enzymes in the
liver predominantly perform oxidative and conjugative reactions
to generate metabolites with a higher polarity or molecular mass,
while the gut microbes usually conduct hydrolytic and reductive
reactions to produce metabolites with a lower polarity and
relative molecular mass (32, 38). In addition, chemical reactions
involved in gut microbes include dehydrogenation, debenzene,
decarbonization, deethylation, desulfurization and acetylation
(39, 40). So far, over 30 drugs have been identified as gut bacteria
substrates (41). The direct influence of microorganisms on drug
response is that the gut microbiota affects the bioavailability of
drugs by transforming their chemical structures (39).

The Effect of Drugs on Gut Microbiome
When considering the influence of gut microbiome on drug
response, the pharmacological effect of drugs on gut microbiome
composition should also be considered (35). Recently, it was
demonstrated that about 24% of 1,000 tested drugs inhibited
at least one bacterial strain from gut microbiome in vitro (42–
44). Drugs may affect host metabolism or clinical efficacy by
regulating gut microbiome composition or its function (45–47).
For instance, antibiotic-induced microbiota dysbiosis not only
increases susceptibility to infection but also impairs immune
homeostasis. It is also the leading cause of Clostridium difficile
infection, and the excessive reproduction of this bacteria causes
severe intestinal inflammation (48, 49). Beyond antibiotics,
population-based studies have revealed that other commonly
used drugs can also affect the gut microbiome (50–52).
Metformin, an anti-diabetic drug, increases the abundance of
Akkermansia muciniphila in the intestine, promotes short-chain
fatty acid bacteria in the body, and plays a positive therapeutic
effect on improving insulin resistance and glucose homeostasis
(45, 53).

GUT MICROBIOME AND
ANTIHYPERTENSIVE DRUGS

Researchers have recently discovered a close relationship between
gut microbiome and antihypertensive drugs. The first-line
antihypertensive drugs include CCB, ARB, ACE-I, and BB
etc. Different species of antihypertensive drugs have significant
differences in their mechanisms for lowering blood pressure, and
their interactions with gut microbiome are also different (22).
Next, we introduce the interaction between gut microbiome and
several specific antihypertensive drugs (Table 1).

CCB
Amlodipine

Amlodipine is a typical CCB, which is one of the most
commonly used prescription drugs for hypertension treatment.
Amlodipine is relatively well-absorbed from the gastrointestinal
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FIGURE 1 | Interactions between drugs and gut microbiome (GM). In the intestinal tract, there are complex interactions between drugs and microorganisms. On the

one hand, drugs can result in alterations in the composition and function of gut microbiome. On the other hand, gut microbiome may alter chemical structure of drugs,

and directly or indirectly affect drug efficacy. TMAO, trimethylamine N-oxide; SCFA, short-chain fatty acids. Arrow mark indicates Drugs, GM metabolites and drug

ingredients after GM transformation are transferred outside the gut.

tract with a bioavailability of approximately 60% following oral
administration (61). Patients with hypertension usually take
amlodipine with other drugs, and one of the most likely co-
administered drugs is antibiotics.

Yoo et al. investigated the interactions between amlodipine
and co-administered antibiotics associated with changed
metabolic activities of gut microbiome (54). They incubated
amlodipine with human and rat feces. As the incubation time
increased, the remaining amlodipine gradually decreased and
the formation of metabolites increased. At 24 and 72 h after
incubation, the residual amlodipine decreased by 8.9 and 21.3%,
respectively. The spectrometric analysis identified structures
of the metabolites produced by gut microbiome in amlodipine
(Figure 2A), which is a pyridine metabolite (M1), mainly
produced by oxidation reaction and formed by liver metabolic
enzymes (62). The clearance rate of amlodipine indicated that gut
microbiome may participate in amlodipine biotransformation,
affecting the drug’s pharmacokinetics.

In addition, the researchers measured amlodipine plasma
concentrations in control and antibiotic-treated rats. The
area under curve (AUC) values of amlodipine in control and
ampicillin-administered rats were 922.6 ± 266.7 and 1,311.5
± 238.4 ng·h/mL, respectively. Therefore, antibiotics may
affect the gut microbiome, reducing amlodipine metabolism
by the intestinal microbiome and ultimately increasing
drug bioavailability.

Nifedipine

It is well-recognized that nifedipine, a non-polar drug, can be
basically absorbed by the human gastrointestinal tract (63, 64).
Nifedipine is likely to be transformed by gut microbiota in this
process (28). To the best of our knowledge, there are many

external factors that affect the gut microbiome. For instance,
the low-oxygen environment of the plateau can affect the
composition of the gut microbiome (65).

Zhang et al. investigated the influence of plateau hypoxia-
mediated gut microbiome dysregulation on metabolic conditions
and therapeutic effect of nifedipine (66). They divided Wistar
rats into plateau, plain, and amoxicillin-treated plain groups,
collected rat feces for analysis, and observed alteration in
the number of representative gut microbiomes microscopically.
Compared with plain rats, the number of Enterobacteriaceae was
reduced in amoxicillin-treated plain group. In addition, plateau
group rats appeared Bacillus in comparison to the amoxicillin-
treated plain group. These results demonstrated that hypoxia
at high altitudes and amoxicillin treatment can alter the gut
microbiome, thereby affecting the metabolism of drugs in vivo.

In addition, the researchers evaluated changes in themetabolic
activity and oxidation products of nifedipine after incubation
with rat feces. After 12 h of incubation, nifedipine levels
decreased by 53.72% in the plain group, 34.79% in the plateau
group, and 42.57% in the amoxicillin-treated group, and the
metabolic nifedipine percentage were 23.14, 10.84 and 16.67%,
respectively. Pharmacokinetics results showed that compared
with the plain group, the AUC of amoxicillin-treated plain
group was significantly increased by 39.10%, while the peak
time (Tmax) and plasma clearance (CL) were decreased by 48.91
and 34.71%, respectively. Tandem mass spectrometry (MS/MS)
analysis identified the structure of metabolites produced by
the gut microbiome in nifedipine, and oxidized nifedipine is
the main metabolite (Figure 2B). Consequently, gut microbial
activity could change the bioavailability and pharmacokinetics
of drugs, and this consideration can be extended to assess the
efficacy of drugs.
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TABLE 1 | Drug-microbiome interactions of antihypertensive drugs.

Drug Relationship Animal/human Effect on PK Effect on GM Refs

Amlodipine GM affects drug SD rats ↓ AUC

↓ M1

↓ Tmax

↓ Cmax

N/A (54)

Diltiazem GM affects drug Sterile mice ↓ F N/A (55)

Losartan Drug affects GM SHR, WKY N/A ↑ Akkermansia

↑ Pedobacter

↑ Verrucomicrobiacea

↓ Lactobacillus

↓ Lactobacillaceae

(56)

Captopril Drug affects GM SHR, WKY N/A ↑ Tenericutes

↑ Actinobacteria

↑ Proteobacteria

↑ Firmicutes

↓ Bacteroidesare

(57)

Captopril Drug affects GM SHR, WKY N/A ↑ Dehalobacterium

↑ Oscillospira

↑ Roseburia

↑ Coprococcus

(58)

Benazepril Drug affects GM SHR, WKY N/A ↓ Aggregatibacter

↓ Lactobacillus

↓ Veillonella

↑ Prevobacterium

(59)

Enalapril Drug affects GM Wistar rats N/A ↓ Collinsella

↑ Clostridium

(59)

Metoprolol Drug affects GM Hypertensive patients N/A Metabolites (GM):

↑ Methyluric acid

↑ Hydroxyhippuric acid

↑ Hippuric acid

(60)

Nifedipine GM interacts with drug Wistar rats ↓ AUC ↓

CL ↓ Tmax

↓ Enterobacteriaceae (55)

GM, gut microbiota; PK, pharmacokinetics; SD rats, sprague dawley rats; SHR, spontaneously hypertensive rats; WKY, wistar kyoto rats; N/A, not available; AUC, area under the

concentration–time curve; M1, amlodipine metabolite; Tmax , peak time; Cmax , maximum concentration; F, relative bioavailability; CL, plasma clearance; ↓, decreased; ↑, increased.

Diltiazem

Diltiazem, a calcium channel blocker, works by relaxing the
smooth muscles of the arterial wall and mainly treats angina
pectoris and hypertension (67). After oral administration of
diltiazem, a potential complicating factor in its pharmacokinetic
and pharmacodynamic characteristics is that there are
two metabolites in plasma, desacetyldiltiazem, and N-
desmethyldiltiazem. Both of these metabolites have important
pharmacological activity in animal tissues (68, 69).

Zimmermann et al. revealed that when diltiazem is
administered orally, the vasodilator diltiazem can be metabolized
to diacetyl diltiazem by human gut microorganism Bacteroides
thetaiotaomicron. This strain was used as an exemplary source
species because its gene product BT4096 can metabolize
diltiazem through deacetylation (Figure 2C). The researchers
colonized sterile mice with Bacteroides thetaiotaomicron wild-
type or BT4096-deletion strains and administered diltiazem
orally. The levels of drug and metabolite in the intestine
demonstrate that BT4096 is required for deacetylation of
diltiazem and its metabolites. In the human intestine, diltiazem
is converted to its deacetylated metabolites by removing the
acetyl group from parent drugs through GDSL/SGNH series
hydrolase BT4096. By repeating oral administration, bacteria’s

impact on diltiazem metabolism is further enhanced. This also
demonstrates the critical role of a single gut bacterial in drug
metabolism (55).

ARB (Losartan)

Losartan is recommended as one of the most commonly
used antihypertensive drugs. Recent studies indicated that the
hypotensive effect of losartan is closely related to gut microbiota
(56) (Figure 2D). Robles-Vera et al. used losartan to treat
spontaneously hypertensive rats (SHR) and Wistar Kyoto rats
(WKY) for 5 weeks. After treated with losartan for 5 weeks, they
found that most of the abnormal indexes of SHR improved and
were close toWKY. For example, losartan-treated SHR increased
the abundance and diversity of gut microbiome and restored
the Firmicutes/Bacteroidetes (F/B) ratio. It also increased the
percentage of anaerobic bacteria in SHR. In addition, losartan
treatment increased mRNA levels of zonula occludens-1 (ZO-
1) and occludin in the colon of SHR. And they also found
reduced expression of tyrosine hydroxylase (TH) in losartan -
treated SHR, a key enzyme involved in noradrenaline production
and noradrenaline content in the intestine. These changes
improved intestinal integrity and intestinal sympathetic tone
in SHR.
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FIGURE 2 | The influence of gut microbiome on the metabolism of antihypertensive drugs. (A) Oxidation of amlodipine. Amlodipine is converted into

dehydroamlodipine through the oxidation reaction of gut microbiome. (B) Oxidation of nifedipine. Biotransformation of nifedipine produces dehydronifedipine through

gut microbiome. (C) Deacetylation of diltiazem. Diltiazem is converted into desacetyldiltiazem through the action of gut microbiome. (D) Deglucuronidation of losartan.

Losartan is converted into losartan N2-glucuronide through the action of gut microbiome. (E) De-esterification of enalapril. Enalapril is converted into enalaprilat

through the de-esterification reaction of gut microbiome.

Losartan may elicit alterations in gut microbiome through
three mechanisms. First, losartan may elicit changes in
microbiome by promoting the production of α-defensins.
Microbiota components are recognized by Toll-like receptors
expressed by intestinal epithelial cells and trigger the production
and secretion of defensins. Compared with WKY, mRNA levels
of defensins in SHR colon samples were changed, which may
also be related to microbiota alterations of this hypertensive
rat. Losartan treatment restores the expression of defensin
in SHR to a level similar to that of WKY. Second, losartan
may cause changes in microbiome by improving the intestinal
integrity of SHR. Changes in the compositions of intestinal
flora are related to intestine’s integrity (70). The epithelial
cells of digestive tract of mammals form a tight barrier in
the intestine, contributing to the hypoxic environment in
the lumen (71). The content of anaerobic bacteria in SHR
feces is reduced, which is related to intestinal integrity loss.
Losartan-treated SHR showed an increase in colon integrity
and a strict anaerobic bacteria ratio comparable to WKY.
Finally, losartan may cause changes in microbiome by reducing
sympathetic tone activity in the intestine. The intestinal
sympathetic drive is a crucial regulator of intestinal integrity and
microbiota composition. Increased intestinal sympathetic drive
(increased tyrosine hydroxylase expression and norepinephrine
accumulation) is related to SHR intestinal integrity loss (72).
Losartan treatment reduces sympathetic nerve activity in the
colon, improves intestinal integrity and microbial dysbiosis.
Overall, losartan treatment reduced gut dysbiosis in SHR

and significantly altered the composition and ratio of host
gut microbiota.

ACE-I
Captopril

Captopril is the first generation of ACE-I. It can reduce blood
pressure by inhibiting renin-angiotensin system (RAS) at both
central and peripheral sites (73). Numerous studies indicate
that captopril continues to exert antihypertensive effects after
discontinuation (74–76). Captopril not only has a long-lasting
antihypertensive effect but also possesses a close relationship with
gut microbiome composition.

Yang et al. used captopril to treat SHR and WKY for 4 weeks,
followed by withdrawal for 16 weeks (57). They used 16S rRNA
gene sequencing method to analyze gut microbial composition
of these rats. After captopril treatment, the blood pressure of
SHR dropped and the amounts of bacterial spores increased, such
as Parabacteroides, Mucispirillum and Allobaculum. Compared
withWKY, the changes in gutmicrobiome of SHR in the 4th week
included significant enrichment of Tenericutes, Actinobacteria,
Proteobacteria, and Firmicutes and a decrease in Bacteroides.
This phenomenon resulted in increased trends in the evenness
in SHR at the 4th week. Notably, these increasing trends
were observed in the 8th week of no CAP treatment. This
phenomenon may be due to captopril continuing to affect
neuronal activity. Compared with the control WKY, the neuronal
activity of the posterior pituitary in SHR increased by 52.7%.
After 4 weeks of captopril treatment, this increase was reduced
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to a level equivalent to WKY and maintained at the 8th
week. Therefore, captopril inhibits the neuroinflammation of the
autonomic nervous area and weakens the sympathetic driving
force of intestinal overactivation (77, 78), thereby balancing the
intestinal flora.

In addition, recent research indicates that maternal
captopril treatment may have a long-lasting antihypertensive
effect by reshaping the gut microbiome and enhancing
intestinal pathology and permeability, thereby rebalancing the
dysfunctional intestinal-brain axis in male offspring (58). For
instance, the class Clostridia and order Clostridiales were richer
in SHR of maternal captopril. Compared with pregnant SHR, the
order Clostridiales (Dehalobacterium, Oscillospira, Roseburia,
and Coprococcus) in gut microbiome of pregnant SHR using
captopril showed higher average abundance. Therefore, captopril
may affect intestinal bacteria growth in the body and flora
composition, thereby changing the drug efficacy (79).

Benazepril

Benazepril is the second generation of ACE-I, mainly used to
treat cardiovascular diseases such as congestive heart failure and
arterial hypertension. Benazepril metabolism is mainly in the
liver. It is hydrolyzed into diacid benazeprilat through ethyl ester
(80, 81). Recently, a research experiment compared the feces of
the SHR group, the WKY group, and the SHR group treated with
benazepril (82). The results showed that the composition ratio of
gut microbes in SHR after drug treatment changed significantly.
From the gate level, Proteobacteria in the gut of SHR is higher
than that of WKY, while SHR treated with benazepril reversed
this trend. According to the genus level analysis, Streptococcus
genus in the gut of SHR is higher than that of WKY, but
Benazepril treatment reduces the proportion of this microbiota
in the gut microbiota. Furthermore, benazepril treatment also
reduced Aggregatibacter, Lactobacillus and Veillonella, and
slightly increased the proportion of Prevotella in gutmicrobiome.
According to the analysis of Ace index, Category index, Simpson
index and Chao1 index, the abundance and diversity of microbial
community in the intestinal tract of SHR tend to WKY after
benazepril treatment. Therefore, benazepril can promote the
restoration of gut microbiome structure in SHR.

Enalapril

Enalapril, the second generation of ACE-I, is an important
drug for treating hypertension. Recent experimental studies
have manifested that enalapril treatment can reduce blood
trimethylamine N-oxide (TMAO) levels (59) (Figure 2E).
Plasma TMAO mainly originates from intestinal bacteria
metabolism and positively correlates with cardiovascular
disease risk (83–85). The intestinal microbes in the body,
including Proteus, Desulfovibrio, Lactobacillus, Collinsella and
Clostridium, produce some methylamines from lecithin and
dietary choline (86, 87). Part of these methylamines is absorbed
into the blood and excreted with sweat, urine and other forms.
Therefore, the plasma TMAO level depends on many factors,
such as diet, microbiota composition and other factors, etc.
(88, 89).

Konop et al. studied whether enalapril treatment reduces
the blood TMAO level by changing the composition and

ratio of gut microbiome (59). They divided Wistar rats into
enalapril treatment groups (5.29 ± 0.5 mg/kg in the low-
dose group and 12.6 ± 0.4 mg/kg in the high-dose group)
and the control group, and analyzed the feces of each group.
Compared with controls, Collinsella content in the intestine of
enalapril-treated rats was slightly decreased, while Clostridium
content was slightly increased. In comparison to controls,
Desulfovibrio content was essentially unchanged in the low-
dose group but slightly increased in the high-dose group. All
research groups showed similar diversity by data analysis, and
gut microbiome composition of each group has little difference.
However, compared with controls, the plasma TMAO level
of rats treated with enalapril was significantly reduced. This
indicated that enalapril affects plasma TMAO levels. In addition,
24-h urinary excretion of trimethylamine (TMA) and TMAO
increased in enalapril-treated rats. It indicated that enalapril may
be involved in controlling methylamines excretion with urine.
Simultaneously, enalapril may also reduce the level of TMAO by
affecting the metabolic activities of the intestinal flora.

Beta-Blockers (Metoprolol)

Metoprolol is the most commonly prescribed BB used to
treat cardiovascular diseases, including coronary artery
disease, hypertension, and heart failure. Metoprolol is
metabolized by a saturable metabolic pathway, namely hepatic
cytochrome2D6 (CYP2D6). This drug is mainly metabolized
to O-desmethylmetoprolol and α-hydroxymetoprolol (90).
Approximately 85% of metoprolol and related metabolites are
excreted in urine, making it an ideal object for monitoring (91).

Brocker et al. analyzed the urine of patients taking metoprolol
through metabolomics data. They discovered elevated levels of
methyluric acid, hydroxyhippuric acid, and hippuric acid in the
urine of hypertensive patients after taking metoprolol orally.
These three compounds are considered to be metabolites of
gut microbiome (60). Methyluric acid is a microbial-dependent
metabolite; Hippuric acid is formed by the conjugation of
glycine and benzoic acid through gut microbial metabolism
and hydroxyhippuric acid is a microbial-derived end product,
both of which originate from the polyphenol metabolism of
the gut microbiota. These compounds reflect gut microbiota
composition (92, 93). It indicates that long-term metoprolol
treatment may affect gastrointestinal tract microbial composition
and diversity (94). Moreover, metagenomics analysis of stool
samples from patients with atherosclerotic cardiovascular disease
revealed that metoprolol treatment was positively correlated
with changes in metagenomic linkage group (MLGs) (95).
Therefore, the drug may affect the microbiome by affecting the
expression of genes in gut microbiome. As mentioned above,
metoprolol therapy seems to change the intestinal microbiome,
indicating that metoprolol may directly or indirectly affect gut
microbiota composition.

Avenues Toward Gut Microbiome-Based
Precision Medicine
The gut microbiota, like any ecosystem, is profoundly complex.
The composition and number of specific gut microbiota vary
among individuals and can be changed rapidly, such as different
dietary structures and environmental changes (high altitude
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TABLE 2 | The effect of probiotics in the regulation of blood pressure.

Probiotic strains Subjects (No. of

intervention/

control)

Age range

(year)

Dose

(CFU/day)

Time,

week

Form Study design Intervention

baseline (changes

from baseline)

Control baseline

(changes from

baseline)

Refs

Lactobacillus.

helveticus;

Saccharomyces.

cerevisiae

30 hypertensive

patients

(17/13)

40–86 7.0 × 1011;

2.5 × 109
8 Fermented

milk

Randomized,

placebo-controlled

SBP: 158.5 (↓ 14.1)

DBP: 88.7 (↓ 6.6)

SBP: 150.9 (↓ 4.4)

DBP: 87.6 (↓ 2.2)

(116)

Lactobacillus.

plantarum 299v

36 healthy

volunteers

(18/18)

35–45 5 × 107 6 Rose-hip

drink

Randomized,

double-blind,

placebo-controlled

SBP: 134 (↓ 13)

DBP: 89 (↓ 5)

SBP: 128 (↓ 2)

DBP: 89 (↓ 4)

(117)

Lactobacillus.

plantarum TENSIA

40 hypertensive

patients

(25/15)

30–69 1.5 × 1011 3 Probiotic

cheese

Randomized,

blinded-controlled

SBP: 134 (↓ 12.2)

DBP: 82.4 (↓ 8.0)

SBP: 131.4 (↓ 11.4)

DBP: 82.1 (↓ 3.5)

(118)

Bifidobacterium.lactis;

Lactobacillus.

acidophilus

38 healthy men

(20/18)

18–54 1 × 109 4 Yogurt Randomized,

double blind,

placebo-controlled

SBP: 104.6 (↓ 2.5)

DBP: 70.2 (↓ 0.9)

SBP: 103.8 (↓ 0.8)

DBP: 69 (+ 1.3)

(119)

Enterococcus.

faecium;

Streptococcus.

thermophilus

30 healthy

volunteers

(16/14)

18–55 4.7 × 1011 8 Yogurt Randomized,

double-blind,

placebo- controlled

SBP: 131.9 (↓ 8)

DBP: 83 (↓ 4)

SBP: 116.5 (↓ 2.2)

DBP: 76.4 (↓ 1.5)

(120)

Streptococcus.

thermophilus;

Lactobacillus.

Acidophilus;

Bifidobacteria infantis

101 healthy

volunteers

(53/48)

20–60 4.8 × 1012 8 Yogurt Randomized,

double-blind,

placebo-controlled

SBP:110.2 (↓ 1.07)

DBP:70.7 (↓ 0.32)

SBP: 110.9 (↑ 0.91)

DBP: 71.6 (↓ 0.43)

(121)

Lactobacillus

sporogenes

54 diabetic

patients

(27/27)

35–70 1 × 108 8 Bread Randomized,

double-blind,

placebo-controlled

SBP: 143.9 (↓ 6.4)

DBP: 87.1 (↓ 3.8)

SBP: 145.0 (↓ 5.7)

DBP: 92.3 (↓ 5.2)

(122)

SBP, systolic blood pressure; DBP, diastolic blood pressure.

hypoxia), as well as the combined use of drugs (antibiotics
and antihypertensive drugs) (54, 65, 96). These factors may
change the initial state of gut microbes. Since the gut microbiota
is highly individualized (97), individuals’ gut microbiomes
may have different effects on absorption, distribution, and
metabolism of certain drugs. Consequently, the gut microbiota
presents a significant potential for personalized treatment (98,
99), including antihypertensive response biomarker, microbial-
targeted therapies, probiotics therapy, etc.

Gut Microbiota Is a Potential New Territory
for Individualization and Precision
Medicine
The importance of gut microbiome in drug therapy of
hypertension indicates a precision medical approach driven by
the microbiome, explicitly targeting the microbiome to obtain
clinical results and improve clinical efficacy (24). Firstly, the
gut microbiome is considered a response biomarker. Predicting
the efficacy and toxicity of antihypertensive drugs in the body
by measuring composition and quantity of gut microbiome
and relative abundance of its metabolites. Fecal microbial
characteristics may also be used as a non-invasive diagnostic
method or provide prognostic evaluation. Secondly, designing
small molecules to inhibit the activity of microbial metabolism
in vivo related to biotransformation of drugs into toxic
metabolites (99). For example, research is currently underway

to inhibit TMAO precursor, trimethylamine, a small molecule
produced by gut microbiome regulating blood pressure (100,
101). Finally, since new technologies now identify microbial
communities, strains, or metabolites that can affect drug efficacy,
the microbial composition can be modified by introducing
natural or engineered products such as probiotics (99). Adjusting
the composition and ratio of microbiome can improve the
bioavailability of drugs and reduce adverse reactions.

In the era of precision medicine, gut microbiota has made
great progress in the role of allogeneic hematopoietic cell
transplantation (102). The diversity and stability of the gut
microbiota are important indicators for identifying patients at
risk for graft vs. host disease (GVHD) and adverse outcomes
(103), and may become a biomarker of GVHD, predicting
the recurrence, infection and transplant-related mortality of
GVHD (104). Therefore, gut microbiota may become a new
strategy to improve the prognosis of allogeneic hematopoietic
cell transplantation in the future, such as the study of fecal
microbiota transplantation, prebiotics administration, the use of
different antibiotics, intestinal decontamination and the effect of
E.limosum in relapse effect (25, 105).

The Therapeutic Effect of Probiotics
The effects of probiotics on human health have sparked
widespread interest. Probiotics have been widely used in food
and even pharmaceutical fields for decades (106). Probiotics
are defined as “live microorganisms, if used properly, can
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bring health benefits to the host” (107, 108). As a result,
it is unsurprising that probiotics are a critical tool for
influencing human health and disease via gut microbiome
balance (109).

Researchers have found that probiotics are beneficial in
treating hypertension, dyslipidemia, lactose intolerance, obesity,
heart failure and myocardial infarction (110–112). For instance,
probiotic strains and probiotic fermented foods have great
benefits for regulating blood pressure based on in vivo
studies (113–115). Numerous studies have shown probiotics
can reduce systolic or diastolic blood pressure (SBP/DBP)
(Table 2). In a randomized, double-blind, placebo-controlled
study, consumption of Lactobacillus helveticus fermented milk
product by 46 borderline hypertensive men reduced SBP 5.2
mmHg and DBP 2.0 mmHg (123). A mean reduction of
SBP 13 mmHg and DBP 5 mmHg has been recorded in
36 smokers (aged 35–45 years) given fermented food with
Lactobacillus plantarum 299v for 6 weeks (117). In addition,
probiotics strains such as Lactobacillus casei, Lactococcus spp,
Lactobacillus plantarum and Streptococcus thermophilus can
also reduce SBP (124, 125). Probiotics can regulate blood
pressure through several different mechanisms. For example,
lactic acid bacteria can metabolize milk protein and help release
short bioactive peptides with ACE-inhibitory activity, thereby
regulating hypertension (126). Lactobacillus johnsonii La1 might
lower blood pressure by changing autonomic neurotransmission
of the central histaminergic nerve and suprachiasmatic nucleus
in rats (127).

As mentioned above, the antihypertensive function of
probiotics will make it possible to become antihypertensive drugs
(114). To our knowledge, certain synthetic antihypertensive
drugs may cause adverse reactions, such as coughing, dizziness,
angioedema, headache and indigestion (128, 129). Compared
with conventional drugs, probiotics reduce the adverse
effects and provide new treatment options for hypertension.
Considering that hypertension pathophysiological mechanisms
could vary between patients, we can choose specific probiotics to
gain benefits in a specific hypertensive patient (130). In addition,
probiotics might also be combined with antihypertensive drugs
to assist drug treatment and better exert the effects of drugs.
Probiotics interact with original microbial community in vivo
to maintain intestinal flora homeostasis and affect the related
enzyme activity, thereby change pharmacological activity and
bioavailability of drugs (131). Precise control of intestinal flora
may be used as a treatment option, either alone or combined with
other therapeutic targets. This treatment strategy is very novel
and attractive. It targets microorganisms and their metabolism
rather than the host. Compared with drugs that target host
metabolism, the intestinal flora is much less likely to have side
effects (132).

Fecal Microbiota Transplantation
Fecal microbiota transplantation (FMT) is a therapeutic
intervention that aims to transplant the gut microbiota
obtained from the feces of a healthy donor into the patient’s
gastrointestinal tract, gaining therapeutic enefit (133). Most

often, this therapy is used to treat gastrointestinal diseases
caused by the activity of pathogenic or conditional pathogenic
microorganisms, including Clostridium difficileinfection, and
inflammatory bowel disease (134). Mounting evidence indicates
that FMT also treats metabolic syndrome, diabetes, and
hypertension (94, 135). Suez et al. compared the effects
of probiotics and FMT methods in rebuilding the gut
microbiome of mice and humans, and found that FMT aided
in quickly and thoroughly restore the human gut microbiome
and host intestinal transcriptome compared with probiotic
supplementation (136). Therefore, the use of FMT to reshape the
gut microbiome is an attractive strategy to restore hostmicrobiota
crosstalk (137). For example, the FMT from SHRs to normal rats
increased the SBP of normal rats. Conversely, FMT from normal
rats to SHR reduced the SBP of SHRs (138, 139). In addition,
FMT from normotensive rats to SHRs not only improved blood
pressure, but also improved vasodilation function (138). FMT
is now on the edge of a new era. Despite the therapeutic
promise of FMT, its application to precision medicine requires
overcoming considerable hurdles. Therefore, we need to more
accurately characterize the characteristics of patients and donors
to determine who, when and how doctors should provide FMT.

CONCLUSION

Research into the gut microbiome has opened up a whole
new approach for precision treatment of hypertension. We
have described the effective interactions between commonly
used antihypertensive drugs and the gut microbiome. The
gut microbiome affects the drug metabolism by changing
their chemical structures. Simultaneously, the gut microbiome
composition and function may also be changed in the process
of drug metabolism. When combining clinical medications,
clinicians need to combine this factor to use medications more
rationally. Given the individual differences of the gutmicrobiome
and the complex drug-microbiota interactions, we need to
further understand the underlying causality and mechanisms.
In the field of precision medicine, the specific mechanisms and
clinical trials of the interaction between microorganisms and
drugs will be deeply studied, and the results will affect clinical
practice in the foreseeable future.
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