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Abstract: In this paper, we propose a self-organizing feature map-based (SOM) 

monitoring system which is able to evaluate whether the physiotherapeutic exercise 

performed by a patient matches the corresponding assigned exercise. It allows patients to 

be able to perform their physiotherapeutic exercises on their own, but their progress during 

exercises can be monitored. The performance of the proposed the SOM-based monitoring 

system is tested on a database consisting of 12 different types of physiotherapeutic 

exercises. An average 98.8% correct rate was achieved. 
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1. Introduction 

At the rehabilitation departments of hospitals in Taiwan, it is not unusual that several patients are 

assigned to one exercise physiologist or physical therapist during their rehabilitation treatment in a 

clinical room. One-on-one clinical service is not possible, therefore an exercise physiologist or a 

physical therapist cannot know how well his or her patients are practicing the assigned exercises. In 

addition, patients themselves usually do not have the enough knowledge about whether they are 

practicing physiotherapeutic exercises correctly, leading to ineffective rehabilitation and even 

producing adverse compensation effects. Therefore, to alleviate the burdens of exercise physiologists 

or physical therapists, a physiotherapeutic exercise monitoring system which can automatically 

measure how well a patient is practicing the suggested exercises deserves to be developed [1–3].  

A good physiotherapeutic exercise monitoring system should be able to provide a measurement report 

about how well a patient is practicing a suggested exercise, facilitate the effective execution of the assigned 

rehabilitation programs, issue a warning alarm signal when an incorrect exercise is detected, etc. For this to 

happen, it requires an effective motion trajectory recognition algorithm which is able to evaluate whether the 

physiotherapeutic exercise performed by a patient matches the corresponding assigned exercise. 

Automatic motion trajectory recognition turns out to be very challenging because motion trajectories 

are spatio-temporal patterns. Speech recognition and gesture recognition are another two typical 

examples of spatio-temporal pattern recognition problems. Several reviews of the topics related to the 

domain of human motion analysis can be found in [4–10]. Basically, there are three kinds of approaches 

to spatio-temporal pattern recognition. The simplest way is first to turn a temporal sequence into a spatial 

pattern and then to employ a template matching technique to compute the degree of similarity between 

the test pattern and the template pattern. The dynamic time warping (DTW) algorithm provides the 

effect of a non-linear normalization process in order to make the similarity measure operate  

successfully [11]. The DTW algorithm operates by stretching the template pattern and measuring the 

amount of stretching required. The less stretching needed, the more similar the patterns are. Although 

the DTW algorithm is easy to implement, it requires substantial computation to reach an optimal DTW 

path. The other approach is to train recurrent neural networks [12]. The time delay neural network 

(TDNN) whose hidden nodes and output nodes are replicated across time is one of the popular recurrent 

neural networks [13]. Time-delayed input frames allow the TDNN to be able to respond to time-varying 

signals, however, one may also find that it usually takes a lot of time to train a recurrent neural network. 

Another approach is to employ Hidden Markov Models (HMMs) to recognize spatial-temporal patterns. 

The basic idea behind the HMM is that a spatio-temporal signal can be characterized by a parametric 

stochastic process. A HMM can be thought of as a finite-state machine where the transitions between the 

states are governed by probabilistic laws. The key parameters to be determined in an HMM are:  

(1) the number of states in the model; (2) the state-transition probability distribution; (3) the observation 

symbol probability distribution; and (4) the initial-state distribution [14–16]. The price paid for HMM is 

that we have to collect a great amount of data and a lot of time is required to estimate the corresponding 

parameters in HMMs. In addition to those three popular approaches, recently, several different 

approaches to solve motion capture data have also been proposed [17–27]. For example, the concept of 

motion templates (MTs) which can capture the spatio-temporal characteristics of an entire motion class 

in a compact matrix representation was introduced in [17,19]. The idea of incorporating spatio-temporal 
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invariance into the geometric features and adaptive segments was presented in [18]. Keogh et al. 

proposed a novel technique to speed up similarity search under uniform scaling based on bounding 

envelopes [20], and a novel fast method for global similarity searches was discussed in [21]. An efficient 

method for fully automatic temporal segmentation of human motion sequences was proposed in [22]. 

Baumann et al. presented a data-driven method for recognizing human full body actions from live 

motion data [23]. Morris et al. proposed REcoFit which is a system for automatically tracking repetitive 

exercises [24], while Beaudoin et al. presented a technique to automatically distill a motion-motif graph 

from an arbitrary collection of motion capture data [25], and Bernard et al. proposed an exploratory 

search and analysis system for sequences of human motion in large motion capture data collections [26]. 

Wilhelm et al. proposed a visual-interactive system for the exploration of horse motion data [27]. In the 

system, they employed the SOM algorithm as a non-linear projection technique to provide a data 

aggregation mechanism to facilitate visual overview. 

Numerous reports have been written about the successful applications of the self-organizing feature 

map (SOM) algorithm [28]. These applications widely range from simulations used for the purpose of 

understanding and modeling of computational maps in the brain to subsystems for engineering  

applications [29]. Recently, several different approaches to the use of SOM in spatio-temporal pattern 

recognition have been proposed [30–34]. Gao et al. [30] and Fang et al. [31] used the SOM as an implicit 

feature extractor of different signers for continuous HMM. Corradini et al. regarded the SOM as a 

quantizer of 32 defined sub-gestures for discrete HMM [32]. Huang and Kuh proposed a neural network 

system which combines a SOM and a multi-layer perceptron (MLP) for the problem of isolated word 

speech recognition [33]. In one of our previous works [34], we proposed a SOMART system for the 

recognition of hand gestures. The proposed SOMART system integrates the SOM and the ART algorithm.  

In this paper, we propose the SOM-based monitoring system of which core module is the 

SOM-based motion trajectory recognition algorithm. The algorithm starts with the generation of basic 

posture unit map. The sequence of a motion trajectory is transformed into a 2-D trajectory map based on 

the basic posture unit map. Then the problem of recognizing motion trajectories is transformed to the 

problem of recognizing 2-D trajectory maps. Finally, an unknown motion trajectory is classified to be the 

motion trajectory with the maximum similarity in the motion templates via a template matching technique.  

The remainder of the paper is organized as follows: we first briefly review the SOM algorithm in 

Section 2. Then the proposed SOM-based motion trajectory recognition algorithm is discussed in  

Section 3. In Section 4, we give the results obtained by applying the algorithm to a database consisting of 

12 different types of physiotherapeutic exercises. Finally, Section 5 concludes the paper. 

2. Brief Review of the SOM Algorithm 

The training algorithm proposed by Kohonen for forming a feature map can be summarized as  

follows [28]: 

 Step 1: Initialization: Choose random values for the initial weights )0(jw . 

 Step 2: Winner Finding: Find the winning neuron *j  at time k, using the minimum-distance 

Euclidean criterion: 
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indicates the Euclidean norm. Depending on the application of interest, the response of the network 

could be either the index of the winning neuron or the weight vector [28].  

 Step 3: Weight Updating: Adjust the weights of the winner and its neighbors, using the 

following rule: 
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where the parameter )(kσ  is the “effect width” of the topological neighborhood and *
2

,j j
d  is the lateral 

distance between neurons *j  and j  in the discrete output space. The “effect width” measures the 

degree to which the excited neurons in the vicinity of the winning neuron [28]. It should be emphasized 

that the success of the map formation is critically dependent on how the values of the main parameters 
(i.e., )(kη  and )(* k

j
Λ ), initial values of weight vectors, and the number of iterations are 

predetermined. In our experiments discussed in Section 4, the initialization method proposed in [35] was 

utilized to initialize the weight vectors to quickly construct a good initial map. As for the values of the 
main parameters (i.e., )(kη  and )(* k

j
Λ ), we set 1.00 =η , 100NK = , and 0.1)( =kσ . Depending on 

the application of interest, the response of the network could be either the index of the winning neuron or 

the weight vector [17]. 

 Step 4: Continuation. Increment time step k by one and go back to step 2 until some kind of 

termination criterion is met. 

3. The SOM-Based Motion Trajectory Recognition Algorithm 

Before we explain how the proposed SOM-based motion trajectory recognition algorithm works, we 

need to first introduce how we capture the information about the motion trajectories. The motion 

trajectories are captured via a Kinect sensor. To make the features insensitive to personal height, the 

standing distance from the user to the Kinect sensor, and the facing orientation with respect to the 

Kinect sensor, we need to adopt an effective coordinate transformation. In this paper, we propose the  

body-plane coordinate transformation to transform the original world coordinates to the new 

coordinate system with the origin of coordinate centered at the spine location of the user. Then the 

X-Y plane is transformed to the coronal plane, the Y-Z plane to the sagittal plane, and the X-Z plane to 

the transverse plane, as shown in Figure 1. 
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Figure 1. The body-plane coordinates transformation. 

To implement the body-plane transformation, we need three orthogonal vectors to form the new 

coordinates located at the spine position of the user. These three orthogonal vectors consist of the 

vector from the pine position to the shoulder center position, the vector from the pine position to the 

shoulder left position, and the cross product vector of the former two vectors. Based on the skeleton 

information provided from the Kinect sensor, we decide to choose 19 unit vectors of the body segment 

vectors as shown in Figure 2a and 14 joint angles as shown in Figure 2b as the features for each image 

frame of a motion trajectory. The joint angle is the angle between two connected body segments. 

Therefore, the feature vector is a 71-dimendional vector because the total dimensions for the 19 unit 

vectors are 3 × 19 and the total dimensions for the 14 joint angles are 14. 

 
(a) 

Figure 2. Cont. 
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(b) 

Figure 2. The 71 features for the motion trajectory extracted from the skeleton information 

provided from a Kinect sensor. (a) The 19 unit vectors; (b) The 14 joints. 

The proposed SOM-based motion trajectory recognition algorithm involves the following four steps: 

Step 1. Generating a basic posture unit map 

We use a data set consisting of many different motion trajectories practiced by different persons to 

run the SOM algorithm to construct a topologically preserved map with M × N neurons. The main 

mission of the SOM algorithm is to cluster motion trajectories into M × N small clusters. In our 

simulations, we found that the size 10 × 10 could produce a good recognition result. Basically, these  

100 clusters can directly be used to serve as the 100 basic posture units for motion trajectories. Based on 

the 100 basic posture units, an individual motion trajectory can be represented as a sequence of a 

combination of 100 different basic postures with the sequence length equal to the number of the frames 

of the trajectory. To increase the tolerance to the person variability problem, we do not directly make 

each neuron to correspond to a basic posture unit. We fully utilize the topology-preserving characteristic 

of the SOM algorithm and then merge neighboring small clusters of the SOM map to form so-called 

“superclusters”. This merging process can reduce the number of basic posture units from 100 to the 

number of “superclusters”. Each supercluster then contains many small clusters. Via the use of 

superclusters, we allow each basic posture unit to have many templates so the sensitivity of the person 

variability can be reduced to some extent. We first use the U-matrix algorithm [36,37] to transform the 

trained map with 10 × 10 neurons into a digital image with 10 × 10 pixels. In the U-matrix algorithm, 

distances of each neuron to each of its immediate neighbors are calculated and visualized using gray 

shade. High values on the U-matrix mean large distance between neighboring map units, and thus 

indicate cluster borders. Clusters are typically uniform areas of low values and the number of clusters 

has to be determined by visualization. To more objectively determine the number of clusters, the 

watershed algorithm [38] is then adopted to segment the U-matrix image into several catchment basins. 

A simple merging scheme is adopted to merge shallow basins to their neighboring deep basins in order 
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to prevent over-segmentation. The posture located at a basin is the most representative posture for the 

neurons located at the corresponding basin.  

The nine resultant basic postures are shown in Figure 3a. For example, while the first basic posture 

represents the postures located at the lower right corners, the second basic posture unit represents the 

postures located at the upper right corners. By viewing Figure 3a, we may find that these two basic 

postures are similar except that the left hand points up at the second basic posture. This observation 

matches the topological characteristic of the SOM algorithm. Based on the basic posture map, each 

motion trajectory can be transformed into a sequence of basic postures. For example, a motion trajectory 

shown in Figure 3b can be represented as a sequence, 11188833888811. Since repetitions contain no 

further information, we will delete repetitions in the sequence and then use the sequence 18,381 to 

represent the motion trajectory. 

 
(a) 

 
(b) 

Figure 3. The basic posture unit map. (a) The basic posture map consisted of nine basic 

postures (b) A motion trajectory and its corresponding sequence. 
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Step 2. Transforming a motion trajectory into a trajectory map 

As mentioned in the previous step, each motion trajectory can be represented as a sequence of nine 

symbols (i.e., nine basic postures). We do not directly use a one-dimensional sequence to represent a 

motion trajectory because the length will vary with different motion trajectories. Therefore, we propose 

the use of a 2-dimensional trajectory map with a fixed size to represent a motion trajectory. The resultant 

sequence is projected on the basic posture map to generate a so-called “trajectory map” in the following 

way. Each frame of a motion trajectory is sequentially input to the basic posture map to locate the 

corresponding winner on the map. The basin corresponding to the winner will be rendered using a gray 

shade. Darker shades on the trajectory map mean earlier frames. Therefore, a motion trajectory will 

result in a trajectory map. Via this kind of rendering scheme, the temporal information will be retained in 

the trajectory map. We use an example shown in Figure 4 to illustrate how to generate a trajectory map. 

The motion trajectory shown in Figure 4a is consisted of basic posture units 1 and 5. Its corresponding 

sequence is 151. Therefore, its corresponding trajectory map is shown in Figure 4b where the gray levels 

for the basic posture units, 2, 3, 4, 6, 7, 8, and 9 are all white except the two regions corresponding to the 

basic postures 1 and 5. The binary string labeled at each cell of the basic posture unit map shown in 

Figure 4b represents the appearance orders of the corresponding basic postures. For example, the 

corresponding sequence is 151; therefore, there are three digits in the binary string. The first basic 

posture appears twice at the sequence and appears at the first time and the third time respectively; 

therefore, the binary string 101 is labeled at the region of the first basic posture located at the right 

bottom corner of the basic posture map. 

 
(a) 

 
(b) 

Figure 4. The trajectory map. (a) The motion trajectory and its corresponding sequence 151; 

(b) The resultant trajectory map. 
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Step 3. Generating trajectory map templates 

Human variability causes the same type of a motion trajectory to be conducted differently each time. 

Even for the same person, different instances of a motion trajectory may not be identical. Therefore, a 

motion trajectory may result in more than one trajectory maps. There are two approaches to solve the 

variability problem. One approach is to store multiple templates for each motion trajectory. A problem 

associated with this kind of approach is the determination of the number of templates. The other 

approach is to generate one most representative template for each motion trajectory. We adopt the 

second approach to generate one template for each motion trajectory. We collect many instances for 

each motion trajectory and then the longest common subsequence (LCS) algorithm is adopted to search 

the longest common subsequence of multiple sequences [39]. An example is given in Table 1. In this 

example, there were three kinds of motion trajectories and four different users were asked to execute the 

motion trajectory for one time. Each motion trajectory is first converted into a sequence of basic postures 

via the basic posture unit map. Then resultant template for each kind of trajectory is shown at the last row 

of the table. 

Table 1. The example of finding the template for each motion trajectory. 

User Trajectory 1 Trajectory 2 Trajectory 3 

1 6, 1, 2, 1, 6 6, 11, 9, 11, 6 6, 1, 3, 6 
2 6, 1, 2, 9, 2, 1, 3, 6 6, 10, 9, 10, 11, 6 6, 1, 5, 3, 6 
3 6, 2, 1, 6 6, 11, 10, 9, 6, 11,6  6, 5, 1, 5, 3, 6 
4 6, 5, 4, 2, 1, 6 6, 10, 9, 11, 6 6, 1, 6 

LCS 6, 2, 1, 6 6, 10, 9, 11, 6 6, 1, 6 

Step 4. Decision making 

To classify an unknown motion trajectory, we first project the sequence of the motion trajectory into 

the basic posture unit map to create the corresponding trajectory map. Then we match the trajectory map 

with the templates of the motion trajectories in the database. Finally, the unknown motion trajectory is 

classified to be the motion trajectory with the largest similarity in the database. One immediate problem 

is how to measure the similarity degree between two trajectory maps. The simplest way to measure the 

similarity degree between two trajectory maps is the use of the image correlation computation. The 

similarity degree Sk between the present trajectory map to be recognized, p(x, y), and the template map 

for the kth motion trajectory, tk (x, y), can be computed as follows: 

ܵ = ∑ ∑ ሾݔ), (ݕ − ,ݔ)̅ ,ݔ)ݐሿሾ(ݕ (ݕ − ഥݐ ,ݔ) ∑ሿ௬௫൛(ݕ ∑ ሾݔ), (ݕ − ,ݔ)̅ ሿଶ(ݕ ∑ ∑ ሾݐ(ݔ, (ݕ − ഥݐ ,ݔ) ሿଶ௬௫௬௫(ݕ ൟଵ/ଶ (4)

where ݔ)̅, ഥݐ and (ݕ ,ݔ)  represent the average value of p(x, y) and tk (x, y), respectively. If the (ݕ

computed similarity degree is below a pre-specified threshold, then the test motion trajectory is claimed 

to be not similar to any template in the database.  
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4. Experimental Results 

To evaluate the performance of the proposed SOM-based motion trajectory recognition algorithm, 

four databases consisting of 12 physiotherapeutic exercises recommended for patients with Parkinson’s 

disease were generated. These 12 physiotherapeutic exercises are shown in Figure 5. Ten subjects as 

shown in Table 2 were invited to generate the four databases shown in Table 3.  

 

Figure 5. The 12 exercises recommended for patients with Parkinson’s disease. 

Table 2. The ten persons invited to generate the four databases. 

Subject Gender Height (cm) Weight (kg)

1 Male 176 58 
2 Female 162 47 
3 Male 174 68 
4 Male 177 72 
5 Male 184 78 
6 Female 160 43 
7 Male 173 64 
8 Female 163 45 
9 Male 173 68 
10 Male 170 65 

The first five subjects including four males and one female were asked to perform the 12 exercises. 

Each subject practiced each exercise for one time to generate the first database called the template 

database. This database was used to generate the basic posture unit map as shown in Figure 3a. Then we 

used the LCS method to generate one template for each exercise from the trajectories practiced by five 

persons. The resultant motion trajectory maps were shown in Figure 6. Obviously, these 12 trajectory 

maps look different. This observation confirms that the idea about representing motion trajectories in 

terms of trajectory maps works. These 12 trajectory maps were then stored as the templates for the use of 

testing the following four experiments. 
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Table 3. The four databases generated for testing the performance of the proposed method. 

Database Name Subjects Exercises 

1 The template database 
S1, S2, S3, 

S4, S5 
Each exercise for one time 

2 
The user dependent 

database 
S1, S2, S3, 

S4, S5 
Each exercise for ten times 

3 
The user robustness 

database 
S1, S2, S3, 

S4, S5 
Each exercise for ten times under three different conditions 

(i.e., exercise speed, pause, and facing orientation) 

4 
The user independent 

database 
S6, S7, S8, 

S9, S10 
Each exercise for ten times 

 
Exercise 1 Exercise 7 

Exercise 2 Exercise 8 

Exercise 3 Exercise 9 

Figure 6. Cont. 
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Exercise 4 Exercise 10 

Exercise 5 Exercise 11 

Exercise 6 Exercise 12 

Figure 6. The 12 motion trajectory maps generated from the first database. 

Experiment One: User Dependent Test 

We asked the same five subjects to practice the 12 exercises again. Each exercise was repeated ten 

times for each person to generate the second database called the user dependent database. The user 

dependent database was used for the purpose of testing. The experimental results showed that the 

average recognition rates achieved by the proposed method were 100% correct as shown in Table 4. For 

the comparison purpose, we adopted the popular DTW method and Support Vector Machines (SVMs) to 

test the second database. The unknown motion trajectory is classified to be the motion trajectory with the 

smallest accumulated Euclidean distance in the database. Since there were five trajectories for each 

exercise, one randomly chosen trajectory was used for the template and the remaining four trajectories 

were used for testing. The recognition performance achieved by the DTW method was 78.3% correct. 

As for the training of the SVMs, we used the template database to train SVMs (i.e., each exercise has 

only one training data point). The inputs presented to the SVMs were the trajectory map. Then the user 

dependent database was used to test the trained SVMs. The recognition performance achieved by the 

SVMs was 83.0% and 91.7% correct with the standard Gaussian radial basis function kernels and the 

polynomial kernels, respectively. Obviously, our proposed method outperformed the DTW method and 

the SVMs based on the comparison of correct recognition rate. 
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Table 4. The recognition performance achieved by the proposed method. 

    Subject 
Type 

1 2 3 4 5 Average 

1 100% 100% 100% 100% 100% 100% 
2 100% 100% 100% 100% 100% 100% 
3 100% 100% 100% 100% 100% 100% 
4 100% 100% 100% 100% 100% 100% 
5 100% 100% 100% 100% 100% 100% 
6 100% 100% 100% 100% 100% 100% 
7 100% 100% 100% 100% 100% 100% 
8 100% 100% 100% 100% 100% 100% 
9 100% 100% 100% 100% 100% 100% 

10 100% 100% 100% 100% 100% 100% 
11 100% 100% 100% 100% 100% 100% 
12 100% 100% 100% 100% 100% 100% 

Average 100% 100% 100% 100% 100% 100% 

Experiment Two: Robustness Test 

To test the robustness (e.g., exercise speed, pause, and facing orientation) of the proposed method, the 

third database called the robustness database was generated. The same five subjects were asked to 

perform the 12 exercises under three different conditions for ten times. The first condition was that the 

exercise speed was about two times slower than the speed they generated the second database. The 

second condition was that each person intended to pause for a little while during each exercise practice. 

The third condition was that they rotated their bodies with respect to the Kinect sensor about 45°. The 

performance was tabulated in Table 5. The average recognition rate was 99.20% correct. It means that 

the proposed method was very robust since the recognition rate just degraded for 0.8%. Based on these 

observations, our proposed algorithm seems promising. One thing should be emphasized is that if the 

facing orientation with respect to the Kinect sensor is larger than 45°, then the recognition performance 

will greatly degrade since the Kinect sensor is unable to stably capture the skeletal information. 

Table 5. The robustness performance achieved by the proposed method. 

       Subject 
Type 

1 2 3 4 5 Average 

1 
Slow speed 100% 100% 100% 100% 100% 100% 

Pause 100% 100% 100% 100% 100% 100% 
45° 100% 100% 100% 100% 100% 100% 

2 
Slow speed 100% 100% 100% 100% 100% 100% 

Pause 100% 100% 100% 100% 100% 100% 
45° 100% 100% 100% 100% 100% 100% 

3 
Slow speed 100% 100% 100% 100% 100% 100% 

Pause 100% 100% 100% 100% 100% 100% 
45° 100% 100% 100% 100% 100% 100% 
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Table 5. Cont. 

       Subject 
Type 

1 2 3 4 5 Average 

4 
Slow speed 100% 100% 100% 100% 100% 100% 

Pause 100% 100% 100% 100% 100% 100% 
45° 100% 100% 100% 100% 100% 100% 

5 
Slow speed 100% 100% 100% 100% 100% 100% 

Pause 100% 100% 100% 100% 100% 100% 
45° 100% 100% 100% 100% 100% 100% 

6 
Slow speed 100% 90% 100% 90% 100% 96% 

Pause 100% 100% 90% 100% 100% 98% 
45° 100% 100% 90% 90% 90% 94% 

7 
Slow speed 100% 100% 100% 100% 100% 100% 

Pause 100% 100% 100% 100% 100% 100% 
45° 100% 100% 100% 100% 100% 100% 

8 
Slow speed 100% 100% 100% 100% 100% 100% 

Pause 100% 100% 100% 100% 100% 100% 
45° 100% 100% 100% 100% 100% 100% 

9 
Slow speed 100% 90% 90% 100% 100% 96% 

Pause 100% 100% 100% 90% 90% 96% 
45° 90% 90% 100% 90% 100% 94% 

10 
Slow speed 100% 100% 100% 100% 100% 100% 

Pause 100% 100% 100% 100% 100% 100% 
45° 100% 100% 100% 100% 100% 100% 

11 
Slow speed 100% 100% 100% 100% 100% 100% 

Pause 100% 100% 100% 100% 100% 100% 
45° 100% 100% 100% 100% 100% 100% 

12 
Slow speed 100% 100% 100% 100% 100% 100% 

Pause 100% 100% 100% 100% 100% 100% 
45° 100% 100% 100% 100% 100% 100% 

Average 100% 99% 99% 99% 99% 99.2% 

Experiment Three: User Independent Test 

To test whether the proposed recognition algorithm is user-independent, the remaining five subjects 

including three males and two females were asked to perform the 12 exercises. Each exercise was 

repeated for ten times for each subject to generate the fourth database called the user independent 

database. The fourth database was used for testing purpose. The experimental results showed that the 

average recognition rates achieved by the proposed method were 97.7% correct as shown in Table 6. 

Although the recognition performance degraded from 100% to 97.7%, the average recognition rate was 

still high. It means that the proposed recognition algorithm had good generation ability. 
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Table 6. The recognition performance achieved by the proposed method for the  

user-independent test. 

     Subject 
Type 

6 7 8 9 10 Average 

1 100% 100% 100% 100% 100% 100% 
2 100% 100% 100% 100% 100% 100% 
3 100% 100% 100% 100% 100% 100% 
4 100% 100% 100% 100% 100% 100% 
5 100% 100% 100% 100% 100% 100% 
6 70% 90% 100% 100% 70% 86% 
7 100% 100% 100% 100% 100% 100% 
8 100% 100% 100% 100% 100% 100% 
9 90% 100% 90% 90% 60% 86% 

10 100% 100% 100% 100% 100% 100% 
11 100% 100% 100% 100% 100% 100% 
12 100% 100% 100% 100% 100% 100% 

Average 96.7% 99.2% 99.2% 99.2% 94.2% 97.7% 

Experiment Four: Grid Size Influence Test 

In this experiment, we wanted to determine whether the grid size influences the recognition 

performance. Three different grid sizes, 6 × 6, 8 × 8, and 10 × 10 were compared here. The basic posture 

unit maps resulting from these three different grid sizes are shown in Figure 7. 

 

(a) (b) (c) 

Figure 7. The basic posture unit maps resulted from grid size: (a) 6 × 6, (b) 8 × 8, and  

(c) 10 × 10. 

The numbers of basic posture units were 5, 8, and 9, for 6 × 6, 8 × 8, and 10 × 10, respectively. The 

three resultant trajectory maps were shown in Figure 8. Then we used the user dependent database to test 

the recognition performance of the three different grid sizes. The performance comparison was tabulated 

in Table 7. Several interesting observations could be concluded as follows. First of all, the larger the grid 

size, the larger the number of the basic posture units. Secondly, the larger the grid size, the better the 

recognition performance. Thirdly, there existed more difference among the trajectory maps as the grid 

size increases; therefore, the recognition performance was improved as the grid size increased. Based on 

these observations, if we want to recognize more motion trajectories then we need a larger grid size to 

exhibit enough differences among trajectory maps. 
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Figure 8. Cont. 
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Figure 8. The trajectory maps resulted from grid size: 6 × 6, 8 × 8, and 10 × 10. 

Table 7. The recognition performance achieved by the three different grid sizes. 

Grid Size 6 × 6 8 × 8 10 × 10 

Performance 33.67% 67% 100% 

5. Conclusions 

A method of recognizing spatio-temporal motion trajectories was proposed in this paper. Based on 

the proposed SOM-based motion trajectory recognition algorithm, we are able to implement a 

physiotherapeutic exercise monitoring system which can automatically measure how well a patient is 

practicing the suggested exercises. We used three databases to evaluate the effectiveness of the 

proposed SOM-based motion trajectory recognition algorithm. The average recognition rate that could 

be achieved was at least 97.7%. The robustness of the proposed algorithm was also verified by the 

second experiment.  

Although the SOM algorithm has been applied in motion capture data for several years now, the 

major contribution of our method is the use of trajectory maps. Via a special kind of the proposed 

rendering scheme, the temporal information can be retained in the trajectory map. In addition, we adopt 

the image correlation computation to measure the similarity degree between two trajectory maps.  

Since the Kinect depth sensor is more or less subject to the deployment environment (e.g., the 

distance between the sensor and the user, orientations, the lighting, etc.), our method is suitable for 

coarse-grained movements such as the twelve exercises shown in Figure 5. As for some more complex 
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or subtle rehabilitation exercises such as palmar pinch, wrist motion (e.g., flexion, extension, and 

deviation), hand-axis motion (e.g., pronation and supination), etc., our present method may not work 

well. This can be partly attributed to the features of the Kinect sensor because the current Kinect 

sensor is inadequate to provide the fine-grained rotation information about the fingers and the wrists. 

Inexpensive tracking cameras can provide enough information about the fine-grained rotation 

exercises, so we will try to generalize our method to those complex or subtle rehabilitation exercises to 

meet the needs of physiotherapy patients in the future. 
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