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Abstract

Background: The human leukocyte antigen class I (HLA-I) genotype has been linked with differential immune
responses to infectious disease and cancer. However, the clinical relevance of germline HLA-mediated immunity in
gastrointestinal (GI) cancer remains elusive.

Methods: This study retrospectively analyzed the genomic profiling data from 84 metastatic GI cancer patients
treated with immune checkpoint blockade (ICB) recruited from Peking University Cancer Hospital (PUCH). A publicly
available dataset from the Memorial Sloan Kettering (MSK) Cancer Center (MSK GI cohort) was employed as the
validation cohort. For the PUCH cohort, we performed HLA genotyping by whole exome sequencing (WES) analysis
on the peripheral blood samples from all patients. Tumor tissues from 76 patients were subjected to WES analysis
and immune oncology-related RNA profiling. We studied the associations of two parameters of germline HLA as
heterozygosity and evolutionary divergence (HED, a quantifiable measure of HLA-I evolution) with the clinical
outcomes of patients in both cohorts.

Results: Our data showed that neither HLA heterozygosity nor HED at the HLA-A/HLA-C locus correlated with the
overall survival (OS) in the PUCH cohort. Interestingly, in both the PUCH and MSK GI cohorts, patients with high
HLA-B HED showed a better OS compared with low HLA-B HED subgroup. Of note, a combinatorial biomarker of
HLA-B HED and tumor mutational burden (TMB) may better stratify potential responders. Furthermore, patients with
high HLA-B HED were characterized with a decreased prevalence of multiple driver gene mutations and an
immune-inflamed phenotype.
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Conclusions: Our results unveil how HLA-B evolutionary divergence influences the ICB response in patients with GI
cancers, supporting its potential utility as a combinatorial biomarker together with TMB for patient stratification in
the future.

Keywords: Immune checkpoint blockade, Gastrointestinal cancer, HLA genotype, HLA-I evolutionary divergence,
Tumor mutational burden

Background
The emergence of immune checkpoint blockade (ICB)
therapy that targets programmed cell death protein 1/
programmed cell death ligand 1 (PD-1/PD-L1) or anti-
cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)
has markedly revolutionized the therapeutic landscape of
patients with metastatic cancers [1, 2]. However, the
clinical effectiveness of ICB treatment is still not satisfac-
tory, especially in advanced gastrointestinal (GI) cancers
[3]. To date, most studies that aimed to predict the
therapeutic response to ICB treatments have focused on
the intrinsic properties of tumor cells, including tumor
mutational burden (TMB) [4] and microsatellite instabil-
ity (MSI)/mismatch repair (MMR) status [5] and proper-
ties reflecting the immune phenotype, such as PD-L1
expression [6] and immune cell infiltration [7]. However,
how germline genetics influence the efficacy of ICB ther-
apy in GI cancer has been much less explored.
Theoretically, the fundamental basis for the ICB re-

sponse is tumor immunogenicity, which mainly de-
pends on the antigenicity of the tumor and the
efficiency of antigen presentation [8]. In particular,
the cell surface presentation of tumor-derived neoan-
tigens by human leukocyte antigen class I (HLA-I)
molecules is a critical process for recognition by cyto-
lytic T cells [9, 10]. As the most polymorphic genes
in the human genome, the HLA genes have a genetic-
ally predetermined background and play an essential
role in host immune response. Variants of the HLA
genes can possibly shape the sequence repertoire of
neopeptides presented and influence the T cell recep-
tor (TCR) repertoire during their continuous inter-
action [11]. Heterozygous HLA-I genotypes have been
shown to confer heterozygote advantages in infectious
diseases [12–14], autoimmune diseases [15] and
tumor development [16]. Most recently, the HLA-I
genotype and the concomitant sequence divergence
between HLA-I alleles have been linked with im-
munotherapy efficacy in melanoma and non-small-cell
lung cancer (NSCLC) [17, 18]. These studies present
evidence that an HLA-I genotype with two alleles
with higher sequence divergence, known as the HLA-
I evolutionary divergence (HED), may enable the
presentation of more diverse immunopeptidomes and
hence facilitate subsequent T cell recognition and the
adaptive immune response.

To further refine both host and tumor genomic contri-
butions to the therapeutic response to checkpoint block-
ade, we evaluated the DNA sequencing and clinical data
from two independent GI cancer cohorts receiving ICB
immunotherapy. We report here the predictive and
prognostic significance of the germline HLA-I allele di-
vergence, and its interrelationship with tumor genomic
determinants and immune-related gene expression
profiles.

Methods
Study design and cohorts
PUCH GI cancer cohort
We retrospectively collected and analyzed the data of 84
metastatic GI patients treated with ICB in the Depart-
ment of GI Oncology, Peking University Cancer Hospital
& Institute (PUCH), between August 1, 2015, and May
24, 2019. The blood samples and tumor tissues were
additionally collected from the clinical trials
(NCT02825940 [19], NCT02915432 [20], NCT03167853
[21], NCT03472365 [22], NCT02872116 [23],
NCT03713905 [24], NCT03736889 [25], NCT03667170
[26], and CTR20160872 [27]) and were newly analyzed.
All patients met the following criteria: (1) diagnosis of
metastatic gastrointestinal cancer with failed standard
treatment; (2) patients received at least one cycle of PD-
1/PD-L1 inhibitors; and (3) patients with eligible blood
samples, tumor sample, and adequate clinical informa-
tion. For PUCH cohort, the cancer types included gastric
cancer (GC, 33.3%), esophageal squamous cell carcinoma
(ESCC, 29.8%), colorectal cancer (CRC, 22.6%), and
other types, including pancreatic neuroendocrine tumors
(PanNETs), gastrointestinal-NETs, and cholangiocellular
carcinoma. Among all patients, 66 (78.6%) were treated
with anti-PD-1 therapy, 18 (21.4%) were treated with
anti-PD-L1 therapy. Patients’ characteristics are summa-
rized in Additional file 1: Table. S1. We have obtained
the Ethics approval from the medical ethics committee
of Peking University Cancer Hospital (2020MS01). All
patients in this study provided written informed consent
for their additional samples to be used in our transla-
tional research.
Whole-exome sequencing (WES) analysis was per-

formed on the peripheral blood mononuclear cell
(PBMC) samples from all 84 patients. Tumor specimens
were obtained from only a subset of patients from this
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cohort (n = 76), and they were subjected to WES and
immune oncology-related RNA profiling (Fig. 1a) to de-
lineate the genomic landscape and immunological
phenotype. The baseline and treatment characteristics of
all patients are depicted in Additional file 1: Table. S1.
Tumor burden was measured by imaging studies or
physical examinations according to the Response Evalu-
ation Criteria in Solid Tumors (RECIST) v1.1 and iRE-
CIST [28, 29]. Efficacy was defined as durable clinical
benefit [DCB: complete response (CR), partial response
(PR), and stable disease (SD) lasting for ≥ 24 weeks] or
no durable benefit [NDB: progressive disease (PD) or SD
that lasted < 24 weeks] [30]. A prognostic analysis was
conducted on patients who had follow-up data for over-
all survival (OS) and progression-free survival (PFS).

MSK GI cancer cohort
To validate the prognostic value of HLA-I HED, HLA
typing data, TMB values and clinical information of pa-
tients with GI cancer were obtained from a previous
study from the Memorial Sloan Kettering Cancer Center
(MSK GI cohort) [17]. The MSK GI cancer cohort com-
prised GC (4.8%), ESCC (17.9%), CRC (50.0%), pancre-
atic cancer (17.9%), and hepatobiliary cancer (9.5%)
patients, all of whom received drugs targeting CTLA-4,
PD-1/PD-L1, or a combination of both at the Memorial
Sloan Kettering Cancer Center (MSKCC). Tumors were
subjected to targeted next-generation sequencing (NGS)
(MSK-IMPACT) [31]. Altogether, 84 GI cancer samples
from the MSK cohort were included in the prognostic
analysis for OS.

HLA-I genotyping and HED calculation
For the 84 patients in the PUCH GI cancer cohort,
HLA-I genotyping from normal germline DNA exome
sequencing data was performed as following (Additional
file 2: Supplementary methods). Briefly, reads within the
HLA gene region were extracted from the Binary Align-
ment Map (BAM) file and then imported input into
HLA-HD (v 1.2.0.1) for analysis of HLA allele type. HED
was calculated according to previous investigations [18,
32, 33]. Briefly, protein sequences of each HLA class I
allele (HLA-A, HLA-B and HLA-C) were obtained from
the IMGT/HLA database [34]. Exons 2 and 3, which
form the variable region in the peptide-binding groove,
were selected following annotation with the Ensemble
database [35]. Next, the HED were calculated using the
Grantham distance metric implemented in Pierini and
Lenz [33]. Specifically, to obtain the HED value for each
HLA-I gene, a custom Perl script and two input files
were queried: a FASTA file with aligned HLA alleles and
a specific amino acid distance matrix [32]. The mean
HED was calculated as the mean divergence at HLA-A,
HLA-B and HLA-C. In all, we studied the associations
of two parameters of germline HLA (heterozygosity and
HED at each HLA locus) with the clinical outcomes of
patients.

TMB, copy number alteration (CNA) and neoantigen
assessments
Tumor samples and paired blood cell samples from the
PUCH GI cancer cohort (n = 76) were subjected to
DNA extraction and WES analysis (Additional file 2:
Supplementary methods). Somatic alterations were

Fig. 1 Landscape of classic HLA class I evolutionary divergence in advanced GI cancer. a Schematic diagram of the PUCH study design. The HLA
genotype and HED were obtained from 84 patients, and FFPE samples from 76 patients were subjected to WES analysis and RNA profiling. b
Distributions of HED at HLA-A, HLA-B, HLA-C, and mean HED across different GI cancer types in the PUCH cohort. c Comparison of HED
distributions among HLA-A, HLA-B, and HLA-C heterozygous genotypes. ****p < 0.0001. Kruskal-Wallis test
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filtered with matched patient’s whole blood controls to
remove germline mutations. Somatic SNVs were further
selected with the following filters: (i) exonic regions; (ii)
nonsynonymous SNV or stopgain mutation type; (iii)
depth > = 40; (iv) allele frequency > = 0.03; and (v) allele
frequency < = 0.002 in the Exome Aggregation Consor-
tium (ExAC) database and Genome Aggregation Data-
base (gnomAD) and 1000 Genomes. Next, TMB of each
tumor sample was calculated by using the following for-
mula: Absolute mutation counts * 1000000/total num of
exonic base with depth larger than 40X. TMB was mea-
sured in mutations per Mb.
Based on the somatic SNVs and HLA typing results of

its paired germline sample generated via OptiType [36,
37], neoantigens were predicted through software
netMHCpan-4.0. For the copy number analysis, blood
cell samples from patients were used as paired controls,
and the CONTRA assay was used to call copy number
variations from the tumor samples [38]. CNA burden
was defined as the total number of genes with copy
number gains or losses [39].

MMR/MSI status testing
We performed the IHC staining on FFPE sections using
monoclonal anti-mutL homolog 1 (1:60; Clone ES05,
Gene Tech, Inc., South San Francisco, CA, USA), anti-
mutS homolog 2(1:40; Clone 25D12, Gene Tech), anti-
mutS homolog 6 (1:50; EP49, Gene Tech), and PMS1
homolog 2 (1:40; Clone EP51, Gene Tech). Tumors lack-
ing at least one of the four proteins were defined as
MMR deficiency (dMMR). In some cases, MSI status
was assessed by a single multiplex PCR, containing five
microsatellite loci (BAT-25, BAT-26, D2S123, D5S346,
and D17S250) [40, 41]. Instability at two or more of the
loci was defined as MSI-H; instability at one locus and
no instability at any locus were defined as MSS [42].

RNA immune oncology (IO) panel sequencing
For 76 GI cancer patients in the PUCH GI cancer co-
hort, gene expression profiling was conducted using a
RNA IO panel sequencing to determine the expression
of 395 immune-related genes simultaneously as previ-
ously reported [43]. For the NGS measurements to be
comparable for evaluations, the background-subtracted
read counts were subsequently normalized to reads per
million (RPM) values as previously described [44].
Briefly, RNA was extracted, reverse transcribed, ampli-
fied, and ligated to fluorescent barcodes. The pooled li-
braries were sequenced on the Ion S5 530 chip (Thermo
Fisher Scientific). For data analysis, 1–2M reads per
sample were obtained. Gene expression level was initially
determined as RPM. For data normalization, RPM of 10
housekeeping (HK) genes from an internal control sam-
ple was applied to determine the normalization ratio

using to normalize RPM counts for all genes in each test
sample (Additional file 2: Supplementary methods).

Statistical analysis
To quantify the differences in non-normally distributed
quantitative variables, a Kruskal-Wallis test was applied
when more than two subgroups were analyzed [45]. Sur-
vival analyses were performed using the survival and
survminer R packages [46]. Germline zygosity and HED
at each of the HLA-A, HLA-B and HLA-C genes; TMB;
and MSI status were analyzed for associations with OS
or PFS using a Kaplan-Meier survival analysis. Specific-
ally, in the PUCH cohort, HED at each of the HLA
genes or mean HED were dichotomized for OS using
the optimal cutoff values determined by using the max-
imally selected rank statistics (‘maxstat’ method from the
“surv_cutpoint” function of the “survminer” R version
3.6.1). For each HED, the patients were dichotomized
into low-HED and high-HED subgroups with differential
risk for OS. The DCB rates between the low-HED and
high-HED subgroups were then compared using a chi-
squared test. For TMB, we first analyzed its association
with DCB rate, calculated an optimal cutpoint by using
the Youden index, and subsequently TMB-high was des-
ignated as > 5.22 mut/Mb. To examine the correlation
between continuous variables, we determined Spear-
man's rank correlation coefficient using the “ggstatsplot”
or “corrplot” R package [47, 48]. Differentially expressed
genes (DEGs) between HLA-B HED high and low sub-
groups of the RNA IO panel sequencing data (log2-
transferred nRPM value) was performed by using the
limma R package [49]. The results were filtered using
thresholds of [log2 fold change] > 0.5849 and a p value
< 0.05. The DEGs were then subjected to pathway en-
richment analysis by using the enrichPathway function
from the ReactomePA R package [50].

Results
Landscape of HEDs at HLA-A, HLA-B, and HLA-C in GI
cancer cohort
Motivated by the divergent allele advantage of the HLA-
I genotype [18, 33], we sought to comprehensively delin-
eate the landscape of classic HLA class I genes in GI
cancer and investigate their implications for immuno-
therapy. HLA heterozygosity and HED at each of the
HLA-A, HLA-B, and HLA-C genes were assessed in the
PBMC samples (n = 84) using the WES analysis in the
PUCH GI cancer cohort (Fig. 1a). First, we observed no
remarkable differences in the HED of HLA-A, HLA-B,
HLA-C, or the mean-HED among different GI cancer
types (Kruskal-Wallis test, Fig. 1b).
Next, when comparing the distribution patterns of

HED for each HLA-A, HLA-B and HLA-C heterozygous
genotype in the GI cancer cohort, we found that HLA-C
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pairwise divergences were significantly lower relative to
the HLA-A and HLA-B pairwise divergences (Fig. 1c).
This observation was in accordance with previous stud-
ies that described HLA-C as the most recently evolved
gene [51, 52]. No significant difference in HED was ob-
served between HLA-A and HLA-B alleles (Fig. 1c).

High HLA-B HED is associated with improved DCB and OS
in patients with GI cancers receiving ICB treatment
Zygosity at HLA-I genes has been linked with the clin-
ical outcome of cancer patients treated with ICBs, espe-
cially in melanoma and NSCLC [17, 18]. We therefore
explored its functional relevance to immunotherapy in
the PUCH GI cancer cohort. Unexpectedly, heterozygos-
ity at HLA-A, HLA-B, or HLA-C was not associated
with improved OS or PFS when compared with homozy-
gosity at each locus (Additional file 3: Fig. S1A and 1B).
Previously, HLA divergence, especially mean HED of

HLA class I genes, has been shown to impact immuno-
therapeutic efficacy [18]. We then examined whether the
germline HED of HLA class I was associated with clin-
ical outcomes in our cohort. First, we calculated the op-
timal cutoff point for OS for each HLA-I gene using the
“surv_cutpoint” function from the “survminer” R pack-
age (Fig. 2). Intriguingly, patients with a high level of
HLA-B HED (cutpoint: 8.61) experienced a remarkable
prolonged OS compared with patients with a low level
(Fig. 2b). Similarly, prolonged PFS was observed after
ICB in patients with high HLA-B HED (cutpoint: 8.61,
Fig. 2e). On the other hand, higher levels of and HLA-C
HED (cutpoint 2.55) and HLA-A HED (cutpoint 6.06)
even showed opposite trend towards poor OS (p =
0.054, Fig. 2c) and PFS (p = 0.12, Fig. 2d), respectively.
Previous investigations presented evidence that mean
HED is associated with the response to ICBs in melan-
oma and NSCLC [18]; we therefore determined the opti-
mal cutoff point for OS for mean HED using the “surv_
cutpoint” function. However, the optimal cutpoint of
high mean HED only stratify 9 patients with better OS,
and these patients did not show any improvements in
PFS when compared with the mean-HED low subgroup
(Additional file 3: Fig. S2), suggesting that HLA diver-
gence in GI cancers may play different roles from that of
melanoma or NSCLC.
Moreover, we performed univariable (Additional file 3:

Fig. S3) and multivariable Cox regression analysis (Fig.
2g) on patients with available information. Our data
showed that HLA-B HED is a prognostic factor for OS
in the PUCH cohort (Fig. 2g), independent of TMB
(Youden index: 5.22 mut/Mb) and MSI status.
Furthermore, we determined the odds ratio (OR) for

DCB in different subgroups according to zygosity or the
HED level at each HLA-I gene. The association between
the DCB rate and heterozygosity was not significant at

any HLA-I gene (Additional file 3: Fig. S1C), nor was the
association between high HED at the HLA-A or HLA-C
locus (Additional file 3: Fig. S4A and 4C) significant.
Notably, the DCB rate was significantly higher in GI
cancer patients with high HLA-B HED (cutpoint: 8.61)
than in patients with low HLA-B HED (53% vs. 30%,
chi-squared test, p < 0.05, Fig. 2 h and Additional file 3:
Fig. S4B).
In addition, to test the hypothesis that HLA-B HED

might be a potential germline genomic determinant for
predicting the response to immunotherapy, we examined
the prognostic effect of HLA-B HED in the MSK GI co-
hort. We observed no significant difference in the distri-
bution pattern of HED at any HLA-I gene between the
PUCH and MSK GI cancer patients (Additional file 3:
Fig. S5A). Interestingly, when using the same cutpoint
(cutpoint 8.61) calculated from the PUCH cohort, the
patients with high HLA-B HED from the MSK GI co-
hort experienced a trend towards a favorable OS (Add-
itional file 3: Fig. S5B, log-rank test p = 0.092).
Undoubtedly, when we calculated the optimal cutoff
(cutpoint 10.19) for the MSK GI cohort, the HLA-B
HED high subgroup experienced a markedly improved
survival after ICB treatment (Additional file 3: Fig. S5C,
log-rank test p = 0.016). In accordance with the observa-
tions in the PUCH cohort, no significant correlation was
identified between OS and the HED at the HLA-A or
HLA-C locus in the MSK GI cohort (Additional file 3:
Fig. S5D and 5E).
Taken together, our results indicated that the germline

divergent allele advantage of the HLA-B gene, and not
HLA-I zygosity, may influence the therapeutic efficacy
and clinical outcomes of GI cancer patients receiving
ICB therapy.

High HLA-B HED correlated with favorable OS in both the
MSS and MSI-H subpopulations
MSI-H/deficient mismatch repair (dMMR) has emerged
as a potential biomarker for PD-1/PD-L1 blockade in GI
cancer; we therefore performed a subgroup analysis in the
PUCH cohort to test whether the prognostic value of
germline HLA-B HED remains regardless of MSI status.
As expected, patients with MSI-H/dMMR tumors re-
vealed better clinical outcomes relative to those with Mi-
crostate stability (MSS) tumors (Additional file 3: Fig. S6).
Next, we examined the associations between the HLA-

B HED levels and clinical outcomes in the MSI-H/
dMMR and MSS subpopulations (Fig. 3). Among the 15
patients with MSI-H/dMMR tumors, those with high
HLA-B HED tended to experience prolonged OS (Fig.
3a, log-rank test p = 0.098) and PFS (Fig. 3b, log-rank
test p = 0.25), although the difference did not reach stat-
istical significance. We speculate that a larger sample
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size may help verify the prognostic significance of HLA-
B HED.
We also examined the impact of HLA-B HED on the

clinical outcomes of MSS GI cancer patients. Notably,
the patients with high HLA-B HED showed a pro-
nounced trend towards prolonged OS (Fig. 3c, log-rank
test p = 0.041) and PFS (Fig. 3d, log-rank test p = 0.18).
In summary, HLA-B HED may function as a potential

germline genomic determinant for predicting clinical
outcomes in GI cancer patients with either MSI-H or
MSS tumors after ICB treatment.

Joint utility of germline HLA-B HED and TMB for patient
stratification
The effect of both high mean HED (calculated as the
mean divergence at HLA-A, HLA-B, and HLA-C) and
high TMB on OS after ICB has previously been reported
to be more pronounced than the effect of either alone in
melanoma [18]. We thus sought to explore the combina-
torial utility of HLA-B HED and TMB in the GI cancer
cohort. We determined the optimal cutoff point for
TMB in the PUCH cohort by using the Youden index in
receiver operating characteristic (ROC) analysis for DCB

Fig. 2 Associations between HED and immunotherapeutic efficacy and the prognosis. a–c Kaplan-Meier survival analysis comparing OS between
patients with high and low HED at each locus: HLA-A (a), HLA-B (b), and HLA-C (c). Patients were dichotomized into low-HED and high-HED
subgroups with differential risks for OS by using the optimal cutoff values determined by the “surv_cutpoint” function of the “survminer” R
package. d–f Kaplan-Meier survival analysis comparing PFS between patients with high and low HED at each locus: HLA-A (d), HLA-B (e), and
HLA-C (f) (PFS information was available for 83 patients). g Forest plot showing the HRs and 95% CIs for the associations of potential prognostic
factors (HLA-B HED, TMB, and MSI) with OS in multivariable Cox proportional hazards model (all information was available for 76 patients). h
Forest plot showing the ORs and 95% CIs for the associations of germline determinants with DCB
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(Additional file 3: Fig. S7A-B). As expected, in the
PUCH cohort, TMB-high (> 5.22 mut/Mb) patients ex-
perienced longer median OS and PFS time than TMB-
low patients (Additional file 3: Fig. S7C and 7D). When
76 patients were classified into three subgroups based
on TMB and HLA-B HED (both high, single high and
both low), the proportion of DCB patients was remark-
ably higher in the TMB-high/HLA-B HED-high (both
high) subgroup (6 of 9) than in the subgroup where both
were low (5 of 31) (Fig. 4a, Fisher’s exact test p < 0.05).
This effect was consistent with the percentages of max-
imal tumor reduction in all three subgroups of patients
after ICB treatment (Fig. 4b). Moreover, the median OS
and PFS times of the TMB-high/HLA-B HED-high (both
high) subgroup was significantly longer than those of the
other two subgroups (Fig. 4c and 4d, log-rank test p <
0.01 for all comparisons). Strikingly, when using the

same cutoff values as for the PUCH cohort, a similar
finding was also observed in the MSK GI cancer cohort,
in which TMB-high/HLA-B HED-high (both high) GI
patients experienced better OS than other GI cancer pa-
tients (Fig. 4e, log-rank test p < 0.05).
Collectively, our data confirm the robust prognostic

value of the germline divergent allele advantage of the
HLA-B gene and its potential joint utility with TMB in
predicting efficacy and clinical outcomes in GI cancer.

Genomic characterization of high HLA-B HED tumors in
patients with HLA-B heterozygosity
Higher HED is expected to increase the diversity of
HLA-I presented neopeptide repertoires. Moreover, a
previous report has described an association between the
mean HED and the abundance of neopeptides among
patients fully heterozygous at HLA-I genes [18]. We

Fig. 3 Comparison of survival distributions by HED levels in different subpopulations in the PUCH cohort. a, b Kaplan-Meier survival analysis
comparing the OS (a) and PFS (b) curves between the high-HLA-B HED and low-HLA-B HED subgroups of patients with MSI-H GI cancer (n = 15).
c, d Kaplan-Meier survival analysis comparing the OS (c) and PFS (d) curves between the high-HLA-B HED and low-HLA-B HED subgroups of
patients with MSS GI cancer (n = 61). For the MSS subgroup, only 60 patients had PFS information (the subgroup survival analysis was not
performed in the MSK GI cohort since the MSI status was not available when downloaded)
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therefore aimed to explore how HLA-B HED correlates
with somatic genomic features in GI cancer (Additional
file 3: Fig. S8). Interestingly, in the subgroup analysis
limited to patients who were heterozygous at the HLA-B
locus as described previously [18], we observed no sig-
nificant association between HLA-B HED and other gen-
omic features, such as CNA burden, TMB, and tumor
neoantigen burden (TNB) (Additional file 3: Fig. S8).
As previously reported, MSI-H/dMMR tumors repre-

sent a distinct phenotype that harbors a large number of
somatic mutations and mutation-associated neoantigens
[53]. We therefore subclassified our cohort according to
the MSI/MMR status of tumor samples among patients
heterozygous at the HLA-B gene (n = 71). Intriguingly, a
trend towards a positive correlation between HLA-B
HED and TMB (r = 0.41, p = 0.125) as well as TNB (r =
0.37, p = 0.17) was found in the MSI-H/dMMR subset
(Fig. 5a). Furthermore, a strong negative correlation was
also identified between CNA burden and HLA-B HED

(Fig. 5a, r = − 0.57, p = 0.025). On the contrary, in the
MSS subset, no significant correlation was detected
among all genomic features (Fig. 5b). These observations
suggest that HLA-B HED might be associated with in-
creased genome instability and the diversity of neopep-
tide repertoire in MSI-H/dMMR GI tumors. However,
our limited sample size and power call for larger studies.
It was hypothesized that the oncogenic mutational

landscape could be restricted during tumor development
in a manner that is dependent on the sub-peptidome
presented by each individual’s HLA molecules [54]. As
HED was calculated by measuring the Grantham dis-
tance between the peptide-binding domains of the two
alleles, even among patients who are fully heterozygous
at each of the HLA-I genes, the physiochemical se-
quence divergence between alleles still varies substan-
tially. We thus compared the mutational frequencies of
cancer driver genes between the high- and low- HLA-B
HED subgroups in patients with HLA-B heterozygosity

Fig. 4 Joint utility of HLA-B HED and TMB in predicting immunotherapeutic outcomes of GI cancer patients. a Proportions of patients with DCB
calculated within each of the three indicated subgroups. b Waterfall plot of tumor response to ICB according to the joint biomarker (HLA-B HED
and TMB). The Y-axis represents the percentage of maximum tumor change from baseline according to RECIST 1.1. c Kaplan-Meier survival
analysis of PFS among patients within each of the three indicated subgroups in the PUCH cohort (n = 75, the PFS information was not available
for one patient). d Kaplan-Meier survival analysis of OS among patients within each of the three indicated subgroups in the PUCH cohort (n =
76). e Kaplan-Meier survival analysis of OS among patients within each of the three indicated subgroups in the MSK GI cohort (n = 84, the MSK GI
cohort included 84 patients in all). For both cohorts: Both high, HLA-B HED > 8.61 and TMB > 5.22 mut/Mb; single high, HLA-B HED > 8.61 or TMB
> 5.22 mut/Mb; and both low, HLA-B HED ≤ 8.61 and TMB ≤ 5.22 mut/Mb
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(n = 71). Interestingly, we observed that multiple driver
genes, including lysine methyltransferase 2D (KMT2D),
TP53, AT-rich interaction domain 1A (ARID1A), and
NOTCH1, tended to show a higher prevalence (Fig. 5c–
e, p < 0.2) in the HLA-B HED low subgroup versus the
high subpopulation. Among these driver genes, the
prevalence of KMT2D reached a statistical significance
(Fig. 5c, p < 0.05) and the differential mutational fre-
quency of TP53 showed a definite trend (Fig. 5e, p =
0.094). More importantly, TP53 mutation was associated
with worse OS and PFS in GI cancer patients after ICB
treatment (Fig. 5f, log-rank p < 0.01 for all comparisons).
Additionally, univariate and multivariate cox regression
analysis showed that HLA-B HED, TP53 mutation, and
TMB are all independent prognostic factors for these pa-
tients (Additional file 3: Fig. S9). Altogether, we showed
here that increased HLA-B sequence diversity may cor-
relate with different mutational characteristics.

Immunophenotypic changes associated with high
sequence divergence at the HLA-B locus
Finally, we applied a RNA IO profiling platform to assess
the associations between HLA-B HED and immunophe-
notypic changes in the tumor microenvironment (Fig. 6).
When comparing the 395 immune-related gene profiles
between two distinct subgroups as high HLA-B HED (n
= 27) and low HLA-B HED (n = 49), we detected a
strong enrichment of immune-related genes (Fig. 6a).
Strikingly, no downregulated genes were identified in
the high HLA-B HED subgroup versus the low HLA-B
HED subgroup (Fig. 6b). Moreover, the upregulated
genes in the high HLA-B HED samples mainly fall into
the following pathways, including signaling by interleu-
kins, interleukin-4 and interleukin-13 signaling, and
interleukin-10 signaling (Fig. 6c). These observations in-
dicate that patients with high HLA-B HED may repre-
sent an immune-inflamed phenotype, which might be
associated with the improved efficacy of ICB treatment
in GI cancer patients.

Discussion
Heterozygosity or high sequence divergence at the HLA-
I locus has been shown to be indicative of favorable clin-
ical outcomes after ICB immunotherapy, particularly in
melanoma and NSCLC [17, 18]. In our investigation, we

identified that GI cancer patients with a high level of
germline sequence divergence at the HLA-B gene expe-
rienced improved efficacy and favorable clinical out-
comes. Furthermore, the joint utility of germline HLA-B
HED and TMB may better stratify GI cancer patients
into benefited and non-benefited subgroups.
To explore the clinical relevance of host genetic fac-

tors during ICB immunotherapy in GI cancer, we com-
prehensively analyzed the effects of both zygosity and
HED at the HLA-A, HLA-B and HLA-C loci on the clin-
ical outcomes of two independent GI cancer cohorts.
Interestingly, heterozygosity in each HLA class I locus
revealed no correlation with efficacy or outcome in the
PUCH cohort. Most recently, Marcelo et al. also showed
no significant correlations for HLA class I zygosity and
PFS or OS in three independent cohorts of patients with
NSCLC received ICB treatment [55]. These observations
are distinct from the large pan-cancer cohort analysis
demonstrating the influence of the HLA genotype in
ICB-treated patients [17]. One possible explanation for
this finding is that HLA class I zygosity may have a
marked impact on the clinical outcomes of patients with
melanoma, as patients with melanoma account for ~
35% of those in the pan-cancer cohort [17]. Here, we
present new evidence that sequence divergence at the
HLA-B locus is a reliable germline genomic determinant
for predicting clinical outcomes in GI cancer patients
following ICB treatment, as demonstrated in studies of
both the PUCH and MSK GI cohorts. Although a previ-
ous investigation showed that the mean HED of the
three HLA-I loci strongly influences response to ICB im-
munotherapy [18], we found that neither HLA-A nor
HLA-C showed predictive or prognostic significance in
our cohort. Indeed, well-established differences between
the HLA class I loci have been found, despite their simi-
lar roles in pathogen defense [56]. It appears that HLA-
B alleles may display greater diversity than the other
two, as the HLA-B alleles might be diversifying more
rapidly [57]. Accordingly, we observed that the HED was
remarkably higher in HLA-B than in HLA-C, but the
difference between HLA-B and HLA-A was not signifi-
cant. HLA genotypes with more divergent alleles were
hypothesized to increase immunocompetence and allow
for broader antigen-presentation to immune effector
cells. Importantly, an in silico analysis revealed a strong

(See figure on previous page.)
Fig. 5 Correlation of HLA-B HED with genomic determinants and mutational patterns in patients with HLA-B heterozygosity. a, b Correlation of
HLA-B HED with the CNA burden, TMB and neoantigen burden in the MSI-H (a) or MSS (b) subpopulations (two-sided Spearman’s correlation) in
patients with HLA-B heterozygosity (n = 71). c Mutation frequency of driver genes between the high- and low-HLA-B HED subgroups in patients
with HLA-B heterozygosity (n = 71) were compared using mafCompare function of the maftools R package. d Oncoplot of the potentially
differentially mutated driver genes. e Association of HLA-B HED with TP53 mutations. f Kaplan-Meier survival analysis of OS and PFS between
patients with or without TP53 mutations in patients with HLA-B heterozygosity (PFS information was not available for one patient). HLA-B HED
high was designated as HLA-B HED > 8.61
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correlation between peptides derived from intracellular
pathogens and pairwise sequence divergence in the
HLA-B and HLA-C alleles [33]. Taken together, these
findings may partially explain why HLA-B functions as a
dominant germline genomic correlate for clinical out-
comes in ICB-treated GI cancer patients. However, the
relative contributions of each HLA-I allele in altering
tumor immunogenicity have not yet been evaluated.
Moreover, we assessed the predictive and prognostic

value of HLA-B HED in different subgroups and showed
that patients with high HLA-B HED levels tended to
have better clinical outcomes than those with low HED
level regardless of TMB and MSI status. Intriguingly, in

the MSI-H patients, we observed a positive trend of as-
sociation between HLA-B HED and TMB or TNB, al-
though the correlation coefficient did not quite achieve
the threshold for statistical significance with the limited
sample size. Within MSI-H tumors, TMB appears to be
an important independent biomarker [58], as high muta-
tion load leads to the generation of neoantigens pre-
sented by HLA-I molecules, which attract cytotoxic T
lymphocytes to the tumor microenvironment via TCR
engagement with HLA [53, 59]. Here, we showed that
germline HLA-B sequence diversity may correlate with
the abundance mutation load and neopeptides in MSI-H
tumors. In addition, we also found a negative correlation

Fig. 6 Correlation between HLA-B HED and the expression of immune-related genes. a Heatmap of differentially expressed genes (DEGs)
between the low HLA-B HED and high HLA-B HED subgroups in the PUCH cohort. DEGs were obtained from a 395-plex RNA immune oncology
(RNA IO) profiling platform. b Volcano plot of DEGs. c Pathway enrichment analysis of DEGs by using the enrichPathway function from the
ReactomePA R package
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between HLA-B HED and CNA burden. It has been pro-
posed that high level of CNA may weaken some aspects
of antigen presentation by HLA molecules, a key step
for tumor cells to be recognized by the immune system
[60]. However, how the germline HLA genotype inter-
feres or interacts with aneuploidy during tumor progres-
sion remains much less explored. Notably, we did not
identify any associations between HLA-B HED and TNB
in the MSS subgroup. Presumably, these observations
may, at least partially, be explained by the mutational
heterogeneity across different types of GI cancer from
our PUCH cohort. Indeed, substantial difference in the
landscape of neoantigen among different cancer types
has been reported [61].
Avoiding immune destruction is one of the hallmarks

of cancer, suggesting that the functional host immune
system is an essential determinant to tumor progression.
A previous report has demonstrated that the HLA-I
genotype-based binding affinity score can predict which
mutations are more likely to emerge in their tumor [54].
Therefore, we investigated whether the oncogenic muta-
tional landscape could be influenced by the sequence di-
vergence of HLA-B loci in our cohort. Interestingly,
patients with low HLA-B HED tended to exhibit higher
TP53 mutational frequencies, and patients with TP53
mutated cancers experienced unfavorable clinical out-
comes than patients within the wildtype subgroup. Our
finding was in accordance with prior studies reporting
that TP53 mutations play a negative role in antitumor
immunity in GI cancer [62]. Theoretically, the binding
affinity of the HLA-I complex for peptides is a major de-
terminant of antigenicity, and its diversity may ultim-
ately shape the landscape of oncogenic mutations [54].
Here, our results suggest the influence of HLA-B allele
divergence in shaping the mutational frequency of
KMT2D, TP53, NOTCH1, and several other driver
genes, warranting further research to explore the effect
of the HLA-B genotype on the restricted immunoediting
pattern during tumor progression.
Finally, we also noted a positive correlation between

HLA-B HED and enrichment of immune-related gene
expression in tumor samples. Thus far, little is known
about the associations between host genetic factors and
tumor immune infiltration. Our data provide evidence
that higher HLA-B sequence diversity may imply an “in-
flammatory” phenotype in GI cancer patients. However,
further investigation will be needed to unravel the
underlying biological mechanisms.

Conclusions
In summary, our data propose an interesting perspective
on the association between germline HLA-B sequence
diversity and the immunotherapeutic response in GI
cancer. Moreover, patients with high HLA-B HED and

high TMB tend to experience favorable clinical out-
comes, suggesting the potential utility of a combinatorial
biomarker for patient stratification. HLA typing via
blood sample DNA sequencing may offer valuable infor-
mation on how host genetic factors impact the efficacy
of immunotherapy in GI cancer, especially when tissue
samples suffer from limited accessibility, tumor purity,
and heterogeneity.

Abbreviations
ICB: Immune checkpoint blockade; PD-1: Programmed cell death protein 1;
PD-L1: Programmed cell death ligand 1; GI cancer: Gastrointestinal cancer;
TMB: Tumor mutational burden; MSI: Microsatellite instability; MMR: Mismatch
repair; HLA-I: Human leukocyte antigen class I; TCR: T cell receptor; NSCL
C: Non-small-cell lung cancer; HED: HLA-I evolutionary divergence;
PUCH: Peking University Cancer Hospital & Institute; MSK: Memorial Sloan
Kettering Cancer Center; WES: Whole-exome sequencing; PBMC: Peripheral
blood mononuclear cell; RECIST: Response Evaluation Criteria in Solid
Tumors; DCB: Durable clinical benefit; CR: Complete response; PR: Partial
response; SD: Stable disease; NDB: No durable benefit; PD: Progressive
disease; OS: Overall survival; PFS: Progression-free survival; NGS: Next-
generation sequencing; BAM: Binary Alignment Map; HLA-A: HLA class I
allele; CNA: Copy number alteration; SNVs: Single nucleotide variants;
FFPE: Formalin fixation and paraffin embedding; MSI-H: Microsatellite
instability high; ExAC: Exome Aggregation Consortium; gnomAD: Genome
Aggregation Database; dMMR: Deficient mismatch repair; MSS: Microsatellite
stability; RPM: Reads per million; HK: Housekeeping; DEG: Differentially
expressed genes; TNB: Tumor neoantigen burden

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13073-021-00997-6.

Additional file 1: Table S1. Clinic characteristics of PUCH cohort.

Additional file 2:. Supplementary Methods

Additional file 3: Figure S1. Effect of HLA class I zygosity on clinical
outcomes of GI patients receiving ICB treatment. Figure S2. Associations
between mean HED and OS in the PUCH cohort. Figure S3. Univariate
cox regression analysis. Figure S4. Association of HLA-I HED with clinical
outcomes of GI patients receiving ICB treatment. Figure S5. HLA-B HED
is associated with improved OS in the MSK GI cancer cohort. Figure S6.
MSI status is associated with favorable prognosis in the PUCH GI cancer
cohort. Figure S7. TMB is associated with improved survival in the PUCH
GI cancer cohort. Figure S8. Correlation of HLA-B HED with genomic de-
terminants in patients with HLA-B heterozygosity. Figure S9. Univariate
and multivariate cox regression analysis on patients with HLA-B
heterozygosity.

Acknowledgements
We would like to acknowledge Zhen Liu for advice and consultation of data
analysis and all patients and their families for their contributions to this
study.

Authors’ contributions
ZL, HC, XJ, and YW contributed equally to this study. LS, HZ, and ZL
designed the study. JG, JL, XZ, ZP, ML, and ZW performed the clinical
treatment. XJ, YW, SL, and JZ assisted with clinical samples consent and
collection. HC, XJ, YW, LW, HS, KY, YH, BM, and LZ contributed to the analysis
and interpretation of the data. HC, XJ, LW, HS, and KY conducted statistical
analysis. ZL, HC, XJ, and YW wrote the manuscript. All authors contributed to
the scientific discussion of the data and of the manuscript. The authors read
and approved the final manuscript.

Funding
This work was supported by the National Key Research and Development
Program of China (2018YFC1313302 and 2017YFC1308900), the Beijing

Lu et al. Genome Medicine          (2021) 13:175 Page 12 of 15

https://doi.org/10.1186/s13073-021-00997-6
https://doi.org/10.1186/s13073-021-00997-6


Municipal Science and Technology Commission Program
(Z141107002514013), the National Key Sci-Tech Special Project of China
(2018ZX10302207), and the Digestive Medical Coordinated Development
Center of Beijing Hospitals Authority (No.XXT19).

Availability of data and materials
The WES-FASTQ files data were deposited at Genome Sequence Archive,
https://bigd.big.ac.cn/gsa-human/browse/HRA000898 (bioProject:
PRJCA005338; accession: HRA000898) [63]. Because patients, within the con-
text of therapeutic trials, did not consent to release of raw sequence data for
confidentiality or privacy purposes, the data will be available via controlled
access by reasonable request. The data generated and analyzed during this
study are described in the following data record: the HLA genotype, gen-
omic data, and clinical characteristics are available in the figshare repository:
https://doi.org/10.6084/m9.figshare.16607891 [64]; https://doi.org/10.6084/
m9.figshare.16607894 [65]. The RNA IO data of is available in the following
data record: https://doi.org/10.6084/m9.figshare.16607900 [66]. The data in-
volving the analysis of the MSK-GI cohort is available in the figshare reposi-
tory: https://doi.org/10.6084/m9.figshare.14179295 [67].

Declarations

Ethics approval and consent to participate
This study was approved by the medical ethics committee of Peking
University Cancer Hospital (2020MS01) and was performed according to the
principles of the Helsinki declaration. All patients in this study provided
written informed consent for their additional samples to be used in our
translational research.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis
and Translational Research (Ministry of Education), Peking University Cancer
Hospital & Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing 100142,
People’s Republic of China. 2Genecast Biotechnology Co., Ltd., 88 Danshan
Road, Xidong Chuangrong Building, Suite D-401, Xishan District, Wuxi City,
Jiangsu 214104, People’s Republic of China. 3Biomedical Innovation Center,
Beijing Shijitan Hospital, School of Oncology, Capital Medical University,
Beijing, People’s Republic of China.

Received: 8 March 2021 Accepted: 22 October 2021

References
1. Pardoll DM. The blockade of immune checkpoints in cancer

immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. https://doi.org/10.1038/
nrc3239.

2. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade.
Science. 2018;359(6382):1350–5. https://doi.org/10.1126/science.aar4060.

3. Lu Z, Peng Z, Liu C, Wang Z, Wang Y, Jiao X, et al. Current status and future
perspective of immunotherapy in gastrointestinal cancers. The Innovation.
2020;1(2):100041. https://doi.org/10.1016/j.xinn.2020.100041.

4. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY,
et al. Tumor mutational load predicts survival after immunotherapy across
multiple cancer types. Nat Genet. 2019;51(2):202–6. https://doi.org/10.1038/
s41588-018-0312-8.

5. Asaoka Y, Ijichi H, Koike K. PD-1 Blockade in tumors with mismatch-repair
deficiency. N Engl J Med. 2015;373(20):1979. https://doi.org/10.1056/NEJMc1
510353.

6. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al.
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in
cancer patients. Nature. 2014;515(7528):563–7. https://doi.org/10.1038/na
ture14011.

7. Tang H, Wang Y, Chlewicki LK, Zhang Y, Guo J, Liang W, et al. Facilitating T
cell infiltration in tumor microenvironment overcomes resistance to PD-L1

blockade. Cancer Cell. 2016;29(3):285–96. https://doi.org/10.1016/j.ccell.2016.
02.004.

8. Wang S, He Z, Wang X, Li H, Liu XS. Antigen presentation and tumor
immunogenicity in cancer immunotherapy response prediction. Elife. 2019;8
https://doi.org/10.7554/eLife.49020.

9. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al.
Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune
checkpoint blockade. Science. 2016;351(6280):1463–9. https://doi.org/10.112
6/science.aaf1490.

10. Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I
antigen processing and presenting machinery: organization, function, and
defects in tumor cells. J Natl Cancer Inst. 2013;105(16):1172–87. https://doi.
org/10.1093/jnci/djt184.

11. Schneider-Hohendorf T, Gorlich D, Savola P, Kelkka T, Mustjoki S, Gross CC,
et al. Sex bias in MHC I-associated shaping of the adaptive immune system.
Proc Natl Acad Sci U S A. 2018;115(9):2168–73. https://doi.org/10.1073/pna
s.1716146115.

12. Hraber P, Kuiken C, Yusim K. Evidence for human leukocyte antigen
heterozygote advantage against hepatitis C virus infection. Hepatology.
2007;46(6):1713–21. https://doi.org/10.1002/hep.21889.

13. Penn DJ, Damjanovich K, Potts WK. MHC heterozygosity confers a selective
advantage against multiple-strain infections. Proc Natl Acad Sci U S A. 2002;
99(17):11260–4. https://doi.org/10.1073/pnas.162006499.

14. Arora J, Pierini F, McLaren PJ, Carrington M, Fellay J, Lenz TL. HLA
heterozygote advantage against HIV-1 is driven by quantitative and
qualitative differences in HLA allele-specific peptide presentation. Mol Biol
Evol. 2020;37(3):639–50. https://doi.org/10.1093/molbev/msz249.

15. Ramos PS, Shedlock AM, Langefeld CD. Genetics of autoimmune diseases:
insights from population genetics. J Hum Genet. 2015;60(11):657–64.
https://doi.org/10.1038/jhg.2015.94.

16. Wang SS, Carrington M, Berndt SI, Slager SL, Bracci PM, Voutsinas J, et al.
HLA class I and II diversity contributes to the etiologic heterogeneity of
non-Hodgkin lymphoma subtypes. Cancer Res. 2018;78(14):4086–96. https://
doi.org/10.1158/0008-5472.CAN-17-2900.

17. Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, et al.
Patient HLA class I genotype influences cancer response to checkpoint
blockade immunotherapy. Science. 2018;359(6375):582–7. https://doi.org/1
0.1126/science.aao4572.

18. Chowell D, Krishna C, Pierini F, Makarov V, Rizvi NA, Kuo F, et al.
Evolutionary divergence of HLA class I genotype impacts efficacy of cancer
immunotherapy. Nat Med. 2019;25(11):1715–20. https://doi.org/10.1038/s41
591-019-0639-4.

19. Shen L, Zhang L, Hu X, Pan H, Liu T, Bai Y, et al. Atezolizumab monotherapy
in Chinese patients with locally advanced or metastatic solid tumours. Ann
Oncol. 2018;29(suppl_9):ix49.

20. Wang F, Wei XL, Wang FH, Xu N, Shen L, Dai GH, et al. Safety, efficacy and
tumor mutational burden as a biomarker of overall survival benefit in
chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody
in phase Ib/II clinical trial NCT02915432. Ann Oncol. 2019;30(9):1479–86.
https://doi.org/10.1093/annonc/mdz197.

21. Lu M, Zhang P, Zhang Y, Li Z, Gong J, Li J, et al. Efficacy, safety, and
biomarkers of toripalimab in patients with recurrent or metastatic
neuroendocrine neoplasms: a multiple-center phase Ib trial. Clin Cancer Res.
2020;26(10):2337–45. https://doi.org/10.1158/1078-0432.CCR-19-4000.

22. Peng Z, Wei J, Wang F, Ying J, Deng Y, Gu K, et al. Camrelizumab combined
with chemotherapy followed by camrelizumab plus apatinib as first-line
therapy for advanced gastric or gastroesophageal junction adenocarcinoma.
Clin Cancer Res. 2021;27(11):3069–78. https://doi.org/10.1158/1078-0432.
CCR-20-4691.

23. Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, et al. First-
line nivolumab plus chemotherapy versus chemotherapy alone for
advanced gastric, gastro-oesophageal junction, and oesophageal
adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial.
Lancet. 2021;S0140-6736(21):00797–2.

24. Liu D, Ma C, Lu P, Gong J, Ye D, Wang S, et al. Dose escalation and
expansion (phase Ia/Ib) study of GLS-010, a recombinant fully human
antiprogrammed death-1 monoclonal antibody for advanced solid tumors
or lymphoma. Eur J Cancer. 2021;148:1–13. https://doi.org/10.1016/j.ejca.2
021.01.020.

25. Li J, Xu Y, Zang A, Gao Y, Gao Q, Zhang Y, et al. A phase 2 study of
tislelizumab monotherapy in patients with previously treated, locally

Lu et al. Genome Medicine          (2021) 13:175 Page 13 of 15

https://bigd.big.ac.cn/gsa-human/browse/HRA000898
https://doi.org/10.6084/m9.figshare.16607891
https://doi.org/10.6084/m9.figshare.16607894
https://doi.org/10.6084/m9.figshare.16607894
https://doi.org/10.6084/m9.figshare.16607900
https://doi.org/10.6084/m9.figshare.14179295
https://doi.org/10.1038/nrc3239
https://doi.org/10.1038/nrc3239
https://doi.org/10.1126/science.aar4060
https://doi.org/10.1016/j.xinn.2020.100041
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1056/NEJMc1510353
https://doi.org/10.1056/NEJMc1510353
https://doi.org/10.1038/nature14011
https://doi.org/10.1038/nature14011
https://doi.org/10.1016/j.ccell.2016.02.004
https://doi.org/10.1016/j.ccell.2016.02.004
https://doi.org/10.7554/eLife.49020
https://doi.org/10.1126/science.aaf1490
https://doi.org/10.1126/science.aaf1490
https://doi.org/10.1093/jnci/djt184
https://doi.org/10.1093/jnci/djt184
https://doi.org/10.1073/pnas.1716146115
https://doi.org/10.1073/pnas.1716146115
https://doi.org/10.1002/hep.21889
https://doi.org/10.1073/pnas.162006499
https://doi.org/10.1093/molbev/msz249
https://doi.org/10.1038/jhg.2015.94
https://doi.org/10.1158/0008-5472.CAN-17-2900
https://doi.org/10.1158/0008-5472.CAN-17-2900
https://doi.org/10.1126/science.aao4572
https://doi.org/10.1126/science.aao4572
https://doi.org/10.1038/s41591-019-0639-4
https://doi.org/10.1038/s41591-019-0639-4
https://doi.org/10.1093/annonc/mdz197
https://doi.org/10.1158/1078-0432.CCR-19-4000
https://doi.org/10.1158/1078-0432.CCR-20-4691
https://doi.org/10.1158/1078-0432.CCR-20-4691
https://doi.org/10.1016/j.ejca.2021.01.020
https://doi.org/10.1016/j.ejca.2021.01.020


advanced unresectable ormetastatic microsatellite instability-high/mismatch
repair deficient solid tumors. J Clin Oncol. 2021;39(15_suppl):2569.

26. Li J, Deng Y, Zhang W, Zhou AP, Guo W, Yang J, et al. Subcutaneous
envafolimab monotherapy in patients with advanced defective mismatch
repair/microsatellite instability high solid tumors. J Hematol Oncol. 2021;
14(1):95. https://doi.org/10.1186/s13045-021-01095-1.

27. Shen L, Guo J, Zhang Q, Pan H, Yuan Y, Bai Y, et al. Tislelizumab in Chinese
patients with advanced solid tumors: an open-label, non-comparative,
phase 1/2 study. J Immunother Cancer. 2020;8(1):e000437. https://doi.org/1
0.1136/jitc-2019-000437.

28. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al.
iRECIST: guidelines for response criteria for use in trials testing
immunotherapeutics. Lancet Oncol. 2017;18(3):e143–52. https://doi.org/10.1
016/S1470-2045(17)30074-8.

29. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al.
New response evaluation criteria in solid tumours: revised RECIST guideline
(version 1.1). Eur J Cancer. 2009;45:228–47.

30. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al.
Cancer immunology. Mutational landscape determines sensitivity to PD-1
blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.
https://doi.org/10.1126/science.aaa1348.

31. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational
landscape of metastatic cancer revealed from prospective clinical
sequencing of 10,000 patients. Nat Med. 2017;23(6):703–13. https://doi.org/1
0.1038/nm.4333.

32. Grantham R. Amino acid difference formula to help explain protein
evolution. Science. 1974;185(4154):862–4. https://doi.org/10.1126/science.1
85.4154.862.

33. Pierini F, Lenz TL. Divergent allele advantage at human MHC genes:
signatures of past and ongoing selection. Mol Biol Evol. 2018;35(9):2145–58.
https://doi.org/10.1093/molbev/msy116.

34. Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SG. The IPD
and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 2015;
43(D1):D423–31. https://doi.org/10.1093/nar/gku1161.

35. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, et al. The Ensembl
gene annotation system. Database (Oxford). 2016;2016:baw093.

36. Kawaguchi S, Higasa K, Shimizu M, Yamada R, Matsuda F. HLA-HD: an
accurate HLA typing algorithm for next-generation sequencing data. Hum
Mutat. 2017;38(7):788–97. https://doi.org/10.1002/humu.23230.

37. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O.
OptiType: precision HLA typing from next-generation sequencing data.
Bioinformatics. 2014;30(23):3310–6. https://doi.org/10.1093/bioinformatics/
btu548.

38. Li J, Lupat R, Amarasinghe KC, Thompson ER, Doyle MA, Ryland GL, et al.
CONTRA: copy number analysis for targeted resequencing. Bioinformatics.
2012;28(10):1307–13. https://doi.org/10.1093/bioinformatics/bts146.

39. Budczies J, Seidel A, Christopoulos P, Endris V, Kloor M, Gyorffy B, et al.
Integrated analysis of the immunological and genetic status in and across
cancer types: impact of mutational signatures beyond tumor mutational
burden. Oncoimmunology. 2018;7(12):e1526613. https://doi.org/10.1080/21
62402X.2018.1526613.

40. Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, et al.
ESMO recommendations on microsatellite instability testing for
immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression
and tumour mutational burden: a systematic review-based approach. Ann
Oncol. 2019;30(8):1232–43. https://doi.org/10.1093/annonc/mdz116.

41. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW,
et al. A National Cancer Institute Workshop on Microsatellite Instability for
cancer detection and familial predisposition: development of international
criteria for the determination of microsatellite instability in colorectal cancer.
Cancer Res. 1998;58(22):5248–57.

42. Suraweera N, Duval A, Reperant M, Vaury C, Furlan D, Leroy K, et al.
Evaluation of tumor microsatellite instability using five quasimonomorphic
mononucleotide repeats and pentaplex PCR. Gastroenterology. 2002;123(6):
1804–11. https://doi.org/10.1053/gast.2002.37070.

43. Paluch BE, Glenn ST, Conroy JM, Papanicolau-Sengos A, Bshara W, Omilian
AR, et al. Robust detection of immune transcripts in FFPE samples using
targeted RNA sequencing. Oncotarget. 2017;8(2):3197–205. https://doi.org/1
0.18632/oncotarget.13691.

44. Lu Z, Chen H, Jiao X, Zhou W, Han W, Li S, et al. Prediction of immune
checkpoint inhibition with immune oncology-related gene expression in

gastrointestinal cancer using a machine learning classifier. J Immunother
Cancer. 2020;8(2):e000631. https://doi.org/10.1136/jitc-2020-000631.

45. Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am
Stat Assoc. 1952;47(260):583–621. https://doi.org/10.1080/01621459.1952.104
83441.

46. Kassambara A, Kosinski M, Biecek P, Fabian S. survminer: drawing survival
curves using ‘ggplot2’; 2017.

47. Patil I, Powell C. ggstatsplot:“ggplot2” based plots with statistical details;
2018.

48. Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. corrplot: visualization of a
correlation matrix; 2013.

49. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015;43(7):e47–7. https://doi.org/10.1093/nar/gkv007.

50. Yu G, He Q. ReactomePA: an R/Bioconductor package for reactome
pathway analysis and visualization. Mol BioSyst. 2016;12(2):477–9. https://doi.
org/10.1039/C5MB00663E.

51. Anderson SK. Molecular evolution of elements controlling HLA-C expression:
adaptation to a role as a killer-cell immunoglobulin-like receptor ligand
regulating natural killer cell function. HLA. 2018;92(5):271–8. https://doi.org/1
0.1111/tan.13396.

52. Buhler S, Nunes JM, Sanchez-Mazas A. HLA class I molecular variation and
peptide-binding properties suggest a model of joint divergent asymmetric
selection. Immunogenetics. 2016;68(6-7):401–16. https://doi.org/10.1007/
s00251-016-0918-x.

53. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al.
Mismatch repair deficiency predicts response of solid tumors to PD-1
blockade. Science. 2017;357(6349):409–13. https://doi.org/10.1126/science.aa
n6733.

54. Marty R, Kaabinejadian S, Rossell D, Slifker MJ, van de Haar J, Engin HB, et al.
MHC-I genotype restricts the oncogenic mutational landscape. Cell. 2017;
171:1272–1283.e1215.

55. Negrao MV, Lam VK, Reuben A, Rubin ML, Landry LL, Roarty EB, et al. PD-L1
expression, tumor mutational burden, and cancer gene mutations are
stronger predictors of benefit from immune checkpoint blockade than HLA
class I genotype in non-small cell lung cancer. J Thorac Oncol. 2019;14(6):
1021–31. https://doi.org/10.1016/j.jtho.2019.02.008.

56. Snary D, Barnstable CJ, Bodmer WF, Crumpton MJ. Molecular structure of
human histocompatibility antigens: the HLA-C series. Eur J Immunol. 1977;
7(8):580–5. https://doi.org/10.1002/eji.1830070816.

57. McAdam SN, Boyson JE, Liu X, Garber TL, Hughes AL, Bontrop RE, et al. A
uniquely high level of recombination at the HLA-B locus. Proc Natl Acad Sci
U S A. 1994;91(13):5893–7. https://doi.org/10.1073/pnas.91.13.5893.

58. Schrock AB, Ouyang C, Sandhu J, Sokol E, Jin D, Ross JS, et al. Tumor
mutational burden is predictive of response to immune checkpoint
inhibitors in MSI-high metastatic colorectal cancer. Ann Oncol. 2019;30(7):
1096–103. https://doi.org/10.1093/annonc/mdz134.

59. Eso Y, Shimizu T, Takeda H, Takai A, Marusawa H. Microsatellite instability
and immune checkpoint inhibitors: toward precision medicine against
gastrointestinal and hepatobiliary cancers. J Gastroenterol. 2020;55(1):15–26.
https://doi.org/10.1007/s00535-019-01620-7.

60. Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with
markers of immune evasion and with reduced response to immunotherapy.
Science. 2017;355:eaaf8399.

61. Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, et al.
Insertion-and-deletion-derived tumour-specific neoantigens and the
immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017;18(8):
1009–21. https://doi.org/10.1016/S1470-2045(17)30516-8.

62. Jiao X, Wei X, Li S, Liu C, Chen H, Gong J, et al. A genomic mutation
signature predicts the clinical outcomes of immunotherapy and
characterizes immunophenotypes in gastrointestinal cancer. NPJ Precis
Oncol. 2021;5(1):36. https://doi.org/10.1038/s41698-021-00172-5.

63. Lu Z, Chen H, Jiao X, Wang Y, Wu L, Sun H, Li S, Gong J, Li J, Zou J, et al.
Germline HLA-B Evolutionary divergence influences the efficacy of immune
checkpoint blockade therapy in gastrointestinal cancer. Accession number
HRA000898, Genome Sequence Archive 2021. https://bigd.big.ac.cn/gsa-
human/browse/HRA000898.

64. Lu Z, Chen H, Jiao X, Wang Y, Wu L, Sun H, Li S, Gong J, Li J, Zou J, et al.
Germline HLA-B evolutionary divergence influences the efficacy of immune
checkpoint blockade therapy in gastrointestinal cancer. figshare. 2021;
https://doi.org/10.6084/m9.figshare.16607891.

Lu et al. Genome Medicine          (2021) 13:175 Page 14 of 15

https://doi.org/10.1186/s13045-021-01095-1
https://doi.org/10.1136/jitc-2019-000437
https://doi.org/10.1136/jitc-2019-000437
https://doi.org/10.1016/S1470-2045(17)30074-8
https://doi.org/10.1016/S1470-2045(17)30074-8
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1038/nm.4333
https://doi.org/10.1038/nm.4333
https://doi.org/10.1126/science.185.4154.862
https://doi.org/10.1126/science.185.4154.862
https://doi.org/10.1093/molbev/msy116
https://doi.org/10.1093/nar/gku1161
https://doi.org/10.1002/humu.23230
https://doi.org/10.1093/bioinformatics/btu548
https://doi.org/10.1093/bioinformatics/btu548
https://doi.org/10.1093/bioinformatics/bts146
https://doi.org/10.1080/2162402X.2018.1526613
https://doi.org/10.1080/2162402X.2018.1526613
https://doi.org/10.1093/annonc/mdz116
https://doi.org/10.1053/gast.2002.37070
https://doi.org/10.18632/oncotarget.13691
https://doi.org/10.18632/oncotarget.13691
https://doi.org/10.1136/jitc-2020-000631
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1039/C5MB00663E
https://doi.org/10.1039/C5MB00663E
https://doi.org/10.1111/tan.13396
https://doi.org/10.1111/tan.13396
https://doi.org/10.1007/s00251-016-0918-x
https://doi.org/10.1007/s00251-016-0918-x
https://doi.org/10.1126/science.aan6733
https://doi.org/10.1126/science.aan6733
https://doi.org/10.1016/j.jtho.2019.02.008
https://doi.org/10.1002/eji.1830070816
https://doi.org/10.1073/pnas.91.13.5893
https://doi.org/10.1093/annonc/mdz134
https://doi.org/10.1007/s00535-019-01620-7
https://doi.org/10.1016/S1470-2045(17)30516-8
https://doi.org/10.1038/s41698-021-00172-5
https://bigd.big.ac.cn/gsa-human/browse/HRA000898
https://bigd.big.ac.cn/gsa-human/browse/HRA000898
https://doi.org/10.6084/m9.figshare.16607891


65. Lu Z, Chen H, Jiao X, Wang Y, Wu L, Sun H, Li S, Gong J, Li J, Zou J, et al.
Germline HLA-B evolutionary divergence influences the efficacy of immune
checkpoint blockade therapy in gastrointestinal cancer. figshare. 2021;
https://doi.org/10.6084/m9.figshare.16607894.

66. Lu Z, Chen H, Jiao X, Wang Y, Wu L, Sun H, Li S, Gong J, Li J, Zou J, et al.
Germline HLA-B evolutionary divergence influences the efficacy of immune
checkpoint blockade therapy in gastrointestinal cancer. figshare. 2021;
https://doi.org/10.6084/m9.figshare.16607900.

67. Lu Z, Chen H, Jiao X, Wang Y, Wu L, Sun H, Li S, Gong J, Li J, Zou J, et al.
Germline HLA-B evolutionary divergence influences the efficacy of immune
checkpoint blockade therapy in gastrointestinal cancer. figshare. 2021;
https://figshare.com/articles/dataset/4_MSK_GI/14179295.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Lu et al. Genome Medicine          (2021) 13:175 Page 15 of 15

https://doi.org/10.6084/m9.figshare.16607894
https://doi.org/10.6084/m9.figshare.16607900
https://figshare.com/articles/dataset/4_MSK_GI/14179295

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study design and cohorts
	PUCH GI cancer cohort
	MSK GI cancer cohort

	HLA-I genotyping and HED calculation
	TMB, copy number alteration (CNA) and neoantigen assessments
	MMR/MSI status testing
	RNA immune oncology (IO) panel sequencing
	Statistical analysis

	Results
	Landscape of HEDs at HLA-A, HLA-B, and HLA-C in GI cancer cohort
	High HLA-B HED is associated with improved DCB and OS in patients with GI cancers receiving ICB treatment
	High HLA-B HED correlated with favorable OS in both the MSS and MSI-H subpopulations
	Joint utility of germline HLA-B HED and TMB for patient stratification
	Genomic characterization of high HLA-B HED tumors in patients with HLA-B heterozygosity
	Immunophenotypic changes associated with high sequence divergence at the HLA-B locus

	Discussion
	Conclusions
	Abbreviations
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

