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Abstract

This study evaluates knee joint loading during gait and step-up-and-over tasks in control

subjects, subjects with early knee OA and those with established knee OA. Thirty-seven

subjects with varying degrees of medial compartment knee OA severity (eighteen with early

OA and sixteen with established OA), and nineteen healthy controls performed gait and

step-up-and-over tasks. Knee joint moments, contact forces (KCF), the magnitude of con-

tact pressures and center of pressure (CoP) location were analyzed for the three groups for

both activities using a multi-body knee model with articular cartilage contact, 14 ligaments,

and six degrees of freedom tibiofemoral and patellofemoral joints. During gait, the first peak

of the medial KCF was significantly higher for patients with early knee OA (p = 0.048) and

established knee OA (p = 0.001) compared to control subjects. Furthermore, the medial

contact pressure magnitudes and CoP location were significantly different in both groups of

patients compared to controls. Knee rotation moments (KRMs) and external rotation angles

were significantly higher during early stance in both patient groups (p < 0.0001) compared to

controls. During step-up-and-over, there was a high variability between the participants and

no significant differences in KCF were observed between the groups. Knee joint loading and

kinematics were found to be altered in patients with early knee OA only during gait. This is

an indication that an excessive medial KCF and altered loading location, observed in these

patients, is a contributor to early progression of knee OA.

Introduction

Osteoarthritis (OA) is a chronic degenerative and multifactorial [1,2] joint disease that most

frequently affects the knee [3], causing pain and functional disability. To date, there are no

therapeutic interventions that overcome or effectively delay the progression of this disease and

symptoms can only be managed [4]. Identifying the contributing factors associated with early

stages of OA is imperative to classify patients at high risk to develop established knee OA and
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better assess effective treatments to protect joint integrity before major structural damage

occurs.

Although the cause of OA is still not completely understood, biomechanical factors are

known to play an important role [5,6]. Aberrant knee joint loading has been identified as a fac-

tor affecting the progression of knee OA [7–9]. External joint moments can be readily calcu-

lated from motion analysis data and thus have been proposed to identify characteristics of OA

patients. Elevated knee adduction moment (KAM), the external knee joint moment in the

frontal plane, has been used as a parameter reflecting elevated medial tibiofemoral loading

[10–17] and was associated with the presence of medial knee OA [18]. Reduced external knee

flexion moment (KFM), the external knee joint moment in the sagittal plane, is commonly

reported for OA patients as a consequence of quadriceps weakness [19–22]. However, some

studies in patients with early stages of knee OA suggest that altered KAM and KFM are not

risk factors in the initial development of knee OA [16,17,23,24]. Only a few studies examined

the external knee rotation moment (KRM), the external moment in transverse plane, for

patients with knee OA and they report contradictory findings of altered KRM [19,25–28] in

patients with OA compared to healthy subjects. In addition, for KRM, no comparison between

early and established OA patients is available to date. Consequently, the ability of external

joint moments to identify the onset of OA is still under debate [17].

Knee joint moments depend only on kinematics and external forces and, therefore, do not

account for muscle forces. Consequently, a reduction in peaks KAM does not necessarily indi-

cate a reduction in medial contact load [14]. On the other hand, knee contact force (KCF), cal-

culated using musculoskeletal modeling in combination with dynamic simulations, directly

reflect cartilage loading by accounting for muscle and ligament forces.

A previous study from our group showed that in early stages of knee OA, overall KCFs

were not different from those in control subjects [23], but were more elevated in subjects with

established OA. By differentiating the loading on the medial and lateral compartment, Kumar

et al. [16] found higher medial KCFs in patients with established OA (with Kellgren-Lawrence

score (K&L)� 2) than in healthy subjects. Marouane et al. [29], have recently reported KCFs

and their respective location during the stance phase in both healthy subjects and subjects with

established knee OA (K&L = 3 or 4) aiming to compare various approaches to compute the

KCF locations in both groups. This study focused on subjects with demonstrated radiographic

knee OA. Therefore, to date no information on the medio-lateral load distribution in terms of

KCFs and/or alterations in contact location of loading in the joint are available in early OA

patients. Alterations in cartilage surface contact location have been suggested to occur during

gait and associated to the high incidence of medial knee OA after anterior cruciate ligament

(ACL) injury [30]. Interestingly, advances in musculoskeletal modeling now enable evaluation

of the pressure distribution in the joint and therefore can provide insight into the load-bearing

regions of the knee joint [31,32]. As such, shifts in contact location during weight-bearing

activities can be evaluated, an action mechanism often suggested to contribute to the onset of

OA [2].

Most studies in literature have focused on knee loading during gait as a biomarker for OA

onset and progression. However, subjects with knee OA initially present pain complaints in

more demanding tasks, specifically weight-bearing activities that involve large knee flexion

[33]. There are only a few studies that have reported joint moments [33–37] and muscle activa-

tions [38] during stair negotiation in patients with severe knee OA. Similar to stair negotiation

(walking on a flight of stairs/steps), step-up-and-over requires an upward propulsive phase (as

stair ascent) as well as a downward energy absorption phase (as stair descent), recruiting large

knee motion and high muscle force. Studies have shown lower KFM [33,37] and indications of

lower KAM during stair ascent and descent [35] in patients with knee OA compared to healthy
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subjects. So far, compartmental KCFs have not been described in patients with knee OA dur-

ing higher demanding tasks. However, these metrics are extremely relevant, as demanding

movements might explain mechanical alterations earlier and therefore may be more helpful in

identifying early OA, enabling earlier screening and treatment.

The first aim of this study is to evaluate the magnitude of knee joint loading (KCF in the

medial and lateral knee compartment, maximum contact pressures and centre of pressure

locations in the medial compartment) during gait in patients with early knee OA, and those

with established knee OA compared to healthy subjects. We hypothesize that these parameters

are more helpful in detecting early altered knee joint loading, prior to the onset of structural

degeneration. Secondly, this study evaluates knee joint loading during step-up-and-over task

in early OA subjects. We hypothesize that this higher demanding activity may already cause

larger alterations in the medial compartment loading, present prior to alterations during gait

and, therefore, may be able to discriminate patients with early knee OA from healthy subjects.

Methods

The current study represents an extended analysis of the data set reported in [23].

Participants

Fifty-three participants (all women, mean age of 64.8±7.5, from 37 to 78 years) were recruited

and separated into three groups: asymptomatic healthy subjects (n = 19) as control; patients

with symptomatic early medial knee OA (n = 18), and patients with symptomatic established

medial knee OA (n = 16). Participants were recruited between 2008 and 2011. Patients with

OA were recruited by a rheumatologist or orthopedic surgeon during weekly consultations in

the University Hospitals Leuven. Healthy participants were recruited from cultural and social

organizations. All procedures were approved by the local ethics committee of Biomedical Sci-

ence, KU Leuven, Belgium. Written informed consent was obtained from each subject. The

current analysis is part of a larger study already published by Baert et al. [39–41] and Mahmou-

dian et al.[42–44].

Early medial knee OA was diagnosed based on novel classification criteria of Luyten et al.

[45], including fulfillment of three criteria, namely knee pain, a K&L [46] grade 0, 1 or 2−
(osteophytes only) and structural changes observed on MRI.

Established medial knee OA was diagnosed based on slightly adapted American College of

Rheumatology classification criteria [47], including knee pain, morning stiffness of less than

30 min duration and crepitus, together with structural changes defined as presence of mini-

mum grade 2+ (osteophytes and joint space narrowing) on K&L scale for at least the medial

compartment on radiography.

A control group was also analyzed, which included asymptomatic healthy subjects with no

history of knee OA or other pathology involving any lower extremity joints, and with a radio-

logical score of 0 or 1 according to K&L score.

Participants were excluded if they had a prior significant trauma or surgery in lower limbs

and/or low back, if they suffered from a neurological disease affecting coordination and/or bal-

ance during gait and/or musculoskeletal disorders other than knee OA in one of the limbs dur-

ing the last six months prior to testing.

Subject characteristics are listed in Table 1. Knee pain was assessed through the Knee Injury

and Osteoarthritis Outcome Score (KOOS) (Dutch version [48]). Knee joint alignment in the

frontal plane was measured by a single experienced observer on full-leg, anterior-posterior,

weight-bearing radiographs of the lower limbs (Oldelft, Triathlon, Agfa ADC M Compact

Plus) [49].

Medial knee loading in early knee OA
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For healthy subjects, both legs were analyzed. For symptomatic patients with unilateral

knee OA, only data of the affected knee were analyzed. For those with bilateral knee OA, both

legs were analyzed except if the less involved side presented with a K&L score� 2 (Fig 1 and

Table 1) for the established OA group.

All recruited subjects performed gait and step-up-and-over tasks. However, due to numeri-

cal problems during the simulation, six subjects were excluded from the gait analysis (Fig 1).

More details about the participants’ selection and the total number of limbs included in each

group are presented in Fig 1.

Motion analysis

An active 3D motion analysis system (Krypton, Metris) recorded the 3D position of 27 LEDs

at a sampling frequency of 100 Hz placed according to an extended Helen Hayes protocol

(consisting of 5 technical clusters and 12 anatomical landmarks). Marker data were labeled

and smoothed using a spline routine [50] in Matlab R2010b (Mathworks, inc.) with cut-off at

6Hz. A force plate (Bertec Corporation, USA) measured ground reaction forces (GRF) sam-

pled at 1000 Hz. GRF were filtered using a second order Butterworth low pass filter, with cut-

off level at 30Hz.

Gait analysis consisted of barefoot level walking along a 10 m walkway at self-selected speed

with the force plate embedded in the middle of the walkway. Subjects were required to perform

6 trials for each leg.

Step-up-and–over analysis consisted of barefoot [51] stepping onto a 20-cm-high step with

one leg (stepping leg), while stepping over with the other leg (trailing leg) making contact on

Table 1. Characteristics of the groups. Control (CO), early OA (EA) and established OA (ES).

Task Control Early OA Established OA p p

(CO-EA)

p

(CO-

ES)

p

(EA-

ES)

No. of subjects Gait 17 14 (6uni+8bi) 16

(16bi)

- - - -

Step 19 18 (8uni+19bi) 16

(16bi)

- - - -

Age, years

(age range)

Gait 64.2±9.0

(37 to 78)

63.3±7.7

(49 to 73)

67.2±6.7

(54 to 78)

0.362 0.985 0.619 0.449

Step 64.3±8.5

(37 to 78)

63.3±7.0

(49 to 73)

67.2±6.7

(54 to 78)

0.305 0.965 0.598 0.351

Body mass, kg Gait 64.0±7.9 69.7±16.6 73.3±11.9 0.103 0.494 0.102 0.809

Step 64.6±7.7 70.0±15.5 73.3±12.0 0.103 0.440 0.109 0.813

Height, m Gait 1.61±0.1 1.62±0.1 1.61±0.1 0.828 0.971 0.993 0.903

Step 1.62±0.1 1.62±0.1 1.61±0.1 0.837 0.994 0.974 0.910

KOOS pain score Gait 100±0.0 82.9±17.7 73.3±19.4 0.000 0.005 0.000 0.203

Step 100±0.0 84.4±15.4 73.4±19.4 0.000 0.004 0.000 0.075

Speed, m/s Gait 1.21±0.2 1.26±0.2 1.20±0.2 0.426 0.623 0.992 0.524

Step 0.53±0.1 0.55±0.1 0.57±0.1 0.311 0.663 0.371 0.966

Knee

Alignment in the frontal plane ˚

Gait 0.50±2.3

(24)

1.46±3.4

(15)

3.66±3.5

(13)

0.014 0.701 0.010 0.164

Step 0.45±2.5

(26)

1.14±3.2

(18)

4.03±3.5

(12)

0.004 0.831 0.003 0.034

Values are the mean ± Standard Deviation (SD). ANOVA with Gabriel post hoc test. Significant difference p < 0.05 are indicated in bold.

For the knee alignment, positive values indicate varus (adduction) alignment and negative values indicate valgus (abduction) alignment.

Uni corresponds to the number of patients with unilateral OA and bi to those with bilateral OA.

https://doi.org/10.1371/journal.pone.0187583.t001
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the other side of the step (Fig 2). The force plate was embedded in the ground under the step.

Subjects performed a total of 3 trials for each leg.

Musculoskeletal model

A multi-body knee model (Fig 3) with 6 degrees of freedom for the tibiofemoral and patellofe-

moral joints was used [53]. Fourteen ligaments were represented by bundles of nonlinear elas-

tic springs. Cartilage surface contact pressures were computed using an elastic foundation

formulation [54]. The knee model was integrated into an existing lower extremity musculo-

skeletal model [55], which included 44 musculotendon units crossing the hip, knee and ankle

joints.

The lower extremity model was scaled to subject-specific segment lengths as determined in

a static calibration trial. The joint angles were computed using an inverse kinematics algo-

rithm. The concurrent optimization of muscle activations and kinematics (COMAK) algo-

rithm [31], was used to compute the secondary tibiofemoral (tibiofemoral translations and

non-sagittal rotations) and patellofemoral kinematics, muscle and ligament forces, and KCFs

by minimizing the muscle volume weighted sum of squared muscle activations plus the net

knee contact energy. Tibiofemoral cartilage contact pressures were computed using a non-lin-

ear elastic foundation model in which pressure is assumed to be a function of the depth of pen-

etration between meshes of the contacting cartilage surfaces. Depths of penetration for each

triangle in a mesh were determined at each time step using ray-casting techniques [53]. At

each triangle of the tibia plateau, the contact pressure was computed, in which cartilage was

assumed to have an elastic modulus of 10 MPa, a Poisson’s ratio of 0.45, and a uniform thick-

ness of 2 mm for each surface (i.e. 4 mm total thickness) [54]. Subsequently, an inverse dynam-

ics algorithm computed the external joint moments: KFM, KAM and KRM.

Fig 1. Flow charts of the limbs selection for gait (A) and step-up-and–over (B). The final number of the analyzed limbs are indicated in bold.

During gait, 11%, 50% and 7% of the total knees diagnosed with early OA presented K&L of 0, 1 and 2, respectively. During step-up and -over, 17%,

47% and 6% of the total knees diagnosed with early OA presented K&L of 0, 1 and 2, respectively. Numerical problems are indicated as n.p.

https://doi.org/10.1371/journal.pone.0187583.g001

Fig 2. A schematic illustrating the step-up-and-over task (adapted from Reid [52]). The stepping leg (bold) is the leg considered for further analysis.

https://doi.org/10.1371/journal.pone.0187583.g002
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Total KCFs correspond to the resultant tibiofemoral contact forces in the entire joint, while

medial and lateral KCFs correspond to contact forces in the medial and lateral compartment,

respectively. KCFs are expressed in the tibia reference frame. Calculated KCFs were normal-

ized to body weight (BW) and moments were normalized to the product of body weight and

height (BW×Ht). All data were time normalized to the stance phase (i.e. from initial contact to

toe off of the ipsilateral leg).

Data analysis

During gait, KCFs, moments and angles throughout the stance phase were averaged over the 6

trials for each leg. The peaks during the first and second half of the stance phase were deter-

mined for the total KCF, medial KCF, and lateral KCF, KFM and KRM. The minimum total,

medial and lateral KCF and KFM during the single support (SS) phase, corresponding to the

middle of the stance phase, occurring from toe-off until heel strike of the contralateral foot,

between 25% and 75% of the gait cycle, were determined. For the KAM, only the first peak

during early stance, corresponding to the highest peak during stance, was calculated. Although

two peaks in KAM have been reported for healthy subjects and patients at early stages of OA,

patients with advanced medial knee OA frequently present one peak during early stance and,

therefore, a minimum value during SS and a second peak were not always clear [17,56–59]. A

Fig 3. Multibody 12 degree of freedom knee model [53] including ligaments and an elastic foundation contact model.

https://doi.org/10.1371/journal.pone.0187583.g003
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similar trend was found in our study, in which some patients with established knee OA did

not show a distinct second peak.

During step-up-and-over, KCFs, joint moments and angles of the stepping leg were aver-

aged across the 3 trials throughout the stance phase for each leg. The maximal values of total

KCF, lateral KCF, KFM and KAM during the first and second half of the stance phase and the

minimum values during the SS phase were determined (minimum total KCF, minimum lateral

KCF, minimum KFM, and minimum KAM, respectively). In addition, the highest peak medial

KCF during the stance phase was compared between groups. Due to the high variation in the

individual KRM pattern observed in patients with established OA during this task, maximum

values of KRM were not calculated and only the average curve is presented.

Furthermore, at the time instant of peak medial KCF, the maximum contact pressure mag-

nitude and center of pressure (CoP) location in the medial tibial plateau were assessed and

compared between the groups. The medial-lateral and anterior-posterior locations of CoP, cal-

culated with respect to the tibia reference frame, were normalized to the tibia size and com-

pared between the groups.

Statistical analysis

One-way analysis of variance (ANOVA), performed with SPSS Inc., v17.0, evaluated whether

differences in peaks and minimum moments, KCF, contact pressures and CoP location were

significantly different (p� 0.05) between the three groups. As sample sizes were slightly differ-

ent, Gabriel post hoc test was used to assess whether the differences were significant.

The effect size (Cohen’s d) on these ANOVA tests were evaluated using G�Power 3.1.9.2

[60] based on the assumption of less than 5% Type I error. The effect size (f, from population

means) for the F-test ANOVA were considered small for f = 0.10, medium for f = 0.25 and

large for f = 0.40 with a minimum effect size (d, from standard deviations) of 0.80 considered

acceptable [61].

Results

Subject characteristics

Age, body mass, height, and speed for gait and step-up-and–over did not differ significantly

between the three groups (Table 1). Both OA groups reported significantly greater knee pain

(p< 0.001) than controls, but no difference was found between the two groups of OA patients.

Patients with established OA presented significantly higher varus alignment compared to con-

trols in both gait and step-up-and-over (p = 0.010 and p = 0.003, respectively).

Knee joint loading during gait

Only patients with established knee OA showed significantly higher peaks and higher mini-

mum total KCF during the single support phase (Fig 4), when compared to controls (p = 0.012

and p = 0.013 during both first and second peak and p< 0.0001 during SS). No significant dif-

ference in total KCF was found between early OA and control subjects.

Both patient groups presented higher peak medial KCF compared to controls (p = 0.001,

established OA and p = 0.048, early OA). Lateral compartment KCFs were higher in both OA

groups during the second part of stance compared to healthy subjects (S1 Table) but only sig-

nificantly for the established knee OA group (p = 0.009).

In Fig 5, the average contact pressure distribution on the tibial plateau at the time instant of

the first peak medial KCF are presented for the three groups. Maximum contact pressure was sig-

nificantly higher for subjects with established OA (25.78±10.82 MPa) compared to the control

Medial knee loading in early knee OA
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(15.02±3.44 MPa) and early OA (19.72±8.12 MPa) groups. In subjects with early knee OA, the

medial compartment CoP at the time instant of the first peak medial KCF was shifted from central

(as seen in the control subjects) to a significantly more posterior region, while a significantly more

postero-lateral location of the CoP was found in subjects with established OA.

No significant differences were found in peak KFM or KAM between the three groups.

During SS, patients with established knee OA presented significantly higher KFM compared

to control and early OA groups (S1 Table). First peak KRM was significantly higher in early

(p< 0.0001) and established OA (p< 0.0001) groups compared to healthy subjects. Only

established OA showed significantly higher second peak KRM (Fig 4).

At the time instant of the first peak medial KCF, the tibia was significantly more externally

rotated with higher variation for both OA groups (rotation angle means and respective stan-

dard deviations of –7.4˚±14.0˚ and –14.6˚±14.3˚, respectively, for early and established OA)

compared to the controls (rotation angle mean and respective standard deviation of +0.3˚

±5.1˚) (S1 Fig and S1 Table).

For all reported significant differences, the effect size f was large or medium to large

(f� 0.34) and d ranged from acceptable (d� 0.80) to very high (d� 0.95) (S1 Table). Only for

the second peak KRM a d lower than 0.80 was found.

Knee joint loading during step-up-and-over

No significant differences in KCF, either medial or lateral, were observed between the groups

(Fig 6). Due to the high variability in terms of joint angles (S2 Fig), moments and KCFs (S2

Fig 4. Averaged total, medial and lateral KCF (above) and knee moments (below) during stance phase of gait. Knee moments in the sagittal, frontal

and transversal planes are presented. The gray shaded area corresponds to the standard deviation of the control group. * indicates a significant difference

between established OA and control group. # indicates a significant difference between early OA and control group. + indicates a significant difference

between the early and established OA.

https://doi.org/10.1371/journal.pone.0187583.g004
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Table) between subjects during the step-up-and-over task, f values were small to medium and

d did not achieve the acceptable minimum. Therefore, the contact pressure data was not fur-

ther analyzed.

Fig 5. Group-averaged contact pressure distributions on the articular surfaces of medial tibial plateau at the time instant of the first peak medial

KCF. To obtain these averaged contact pressure distribution maps, the average contact pressure was calculated for every triangle of the medial tibial surface

mesh and presented on a representative surface model. Results are presented for the control group (C0, on the left), the early knee OA group (EA, in the

middle), and the established knee OA group (ES, on the right).

https://doi.org/10.1371/journal.pone.0187583.g005
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Patients with established knee OA did present significantly lower first peak KFM compared

to controls (p = 0.038) (S2 Table). No significant differences were observed in terms of KAM

between the three groups (Fig 6).

Discussion

This study investigated magnitude and location of knee loading during gait and step-up-and-

over in subjects with early and established medial knee OA. We evaluated loading differences,

both KCFs and contact pressure distributions, between patients with early OA compared to

healthy subjects and patients with established OA aiming to identify whether early changes in

knee loading are already present in these patients.

Knee joint loading during gait

Our study shows that in patients at early stages of OA, altered medial compartment knee load-

ing is found when using a musculoskeletal model which calculates compartmental joint load-

ing. An elevated overall mechanical loading during gait, assessed by the total KCF, is only

present in more advanced stages of the disease as observed in patients with established knee

OA and not in early stages. Likewise, although the maximum contact pressures were more ele-

vated in both groups of OA patients compared to controls, it was only significant in patients

with established OA. This partially confirms our first hypothesis, in which medial KCF during

gait showed to be helpful in detecting early changes in knee loading. Nevertheless, both

patients groups with knee OA showed a shifted CoP at the first peak medial KCF which, in

Fig 6. Averaged total, medial and lateral KCF (above) and knee moments (below) during stance phase of step-up-and-over. Knee moments in the

sagittal, frontal and transversal planes are presented. The gray shaded area corresponds to the standard deviation of the control group. *indicates a

significant difference between established OA and control groups.

https://doi.org/10.1371/journal.pone.0187583.g006
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combination with higher external rotation of the tibia than healthy subjects during early

stance, shows that patients with knee OA tend to load a more posterior (both groups) and lat-

eral (established OA) cartilage region of the medial tibia plateau, which is not loaded in healthy

subjects (Fig 5). This suggests that, although excessive loading is not revealed by the total KCF

in the early phase of the disease, the medial-lateral force and pressure distributions are altered.

Only when clear structural degeneration is present (KL>2), as in the established OA group,

changes in gait mechanics result in excessive total knee loading compared to healthy controls.

The abnormal transverse plane kinematics, particularly the more elevated external rotation

found in patients with OA than in controls, shifted the normal load bearing contact to regions

in the cartilage which are less predisposed for higher loads and therefore might influence the

initiation of knee OA. If the normal load bearing contact has shifted to a region less predis-

posed for higher and repetitive loading during walking, due to ligament-deficiency or -injury,

there is the potential for a degenerative pathway to be initiated [62].

In regards to the external joint moments during gait, only peak KRMs were significantly

different between patients with early knee OA and healthy subjects. Patients with established

OA showed higher midstance KFM, but no differences in peak KAM or KFM compared to the

other two groups, confirming our previous study [23]. First peak KRM was higher in patients

with knee OA than in healthy subjects. For patients with established OA, the excessive rotation

moments persisted during late stance. Although KRM has received much less attention in the

literature than KAM or KFM, and less consistence has been found between studies assessing

patients with knee OA [19,25,26,63,64], our findings confirm the study of Gok et al. [25] and

Wilson et al. [26], who found higher rotation moments in patients with knee OA compared to

healthy subjects.

Comparing to previous literature, similar patterns of joint moments were observed in the

present study [16,19,23,25,26,63,64]. In terms of magnitudes, studies show more differences in

knee joint moments between each other, depending on the group of participants and techniques

used to calculate knee moments. Magnitudes of peak KFM as well as moments in the other two

planes of movement in healthy subjects and subjects with OA were in general comparable to

those presented by Gok et al. [25] and Kumar et al. [16]. Significant differences in peak KAM

have been previously reported [65–69] and are in contrast with the present study. Previous stud-

ies have used more simplified knee models, presenting less degrees of freedom and calculated

knee kinematics using the transepicondylar axis (TEA), therefore not accounting for load-

dependency effects on knee angle calculations. More simplified knee models can induce differ-

ences in the calculated kinematics and, ultimately, in KAM compared to more complex knee

models. Firstly, large errors in the calculation of the secondary kinematics (varus-valgus angle)

are expected when using TEA to calculate knee angles [70–74]. Secondly, by tracking the sec-

ondary kinematics, models do not take load-dependency effects into account [54,74–77] that

may be relevant especially in patients with knee OA [74] as they normally present more joint

instability [78]. Indeed, in a previous study [74], the effect of the knee axis on the calculated

KAM was assessed, which underlined the sensitivity of KAM to knee axis definition. The cur-

rent knee model includes six degrees of freedom in the tibiofemoral and six in the patellofe-

moral joints and accounts for load-dependent effects in the moment calculation that may

explain the differences in angles and moments compared to previous studies.

The present study provides important insight into the altered medial loading magnitude

and medial pressure location which were found to be already present in patients at early stages

of medial knee OA, but was not revealed by the total KCF. With progression of structural

degeneration, alterations in gait mechanics led to elevated overall joint loading, affecting both

the medial and lateral compartment. Therefore, medial KCF rather than KAM or total KCF

during gait provides the most helpful marker for early OA.
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Knee joint loading during step-up-and-over

High variations in movement strategies between subjects, particularly in those having knee

OA, were observed during step-up-and-over. Due to these high variations, the effect size was

low. Consequently, step-up-and-over does not generate large differences in kinematics and

loading patterns, which might be due to the difficulty of standardizing the movement execu-

tion. As a more demanding task, step-up-and-over seems to motivate subjects, particularly

those with knee OA, to search more for alternative movement strategies to deal with and,

therefore, generating elevated variations.

In contrast to our second hypothesis, no significant differences were observed in knee load-

ing between patients with early knee OA and healthy subjects during step-up-and-over. How-

ever, most patients with established knee OA presented a different timing of the highest peak

medial KCF compared with the other two groups. This difference in the loading pattern

observed in patients with established OA needs further analysis.

Interestingly, during step-up-and-over, no significant differences in peak KAM were found

between early OA and healthy subjects, or even between established OA and controls, although

the high variation in the data indicates larger subject numbers may be necessary to effectively

study this task. Nevertheless, patients with established knee OA showed reduced first peak

KFM compared to the control group and also to the early knee OA group during the upward

propulsive phase (step ascent). This finding is in line with previous studies in stair negotiation

[21,22,36,79], in which patients with established knee OA also presented altered movement

strategies in the sagittal plane.

Limitations of this study

These results have to be interpreted in view of some methodological limitations, as inherent to

the model used [54]. Firstly, we used a single generic knee model that was scaled to represent

the anthropometry of the subjects instead of considering the subject-specific articular geome-

tries, including those of the tibia plateau. Our model does not account for OA induced changes

in the articular geometry, such as thickness and mechanical properties of the cartilage, or

changes in the muscle and ligament properties. Consequently, the reported differences in KCF

and contact pressures only result from altered kinematic and kinetic behavior. Bone deformi-

ties, ligament laxity or changes in cartilage induced by joint degeneration were not taken into

account and they might produce an effect on contact pressures [80]. However, the effect of

having a 2-mm constant cartilage thickness instead of a variable thickness on tibiofemoral

contact pressure during gait has been previously assessed and showed limited effect on the

observed peak contact pressure (about 4%) [80]. Secondly, although the secondary tibiofe-

moral kinematics and patellofemoral kinematics were calculated as a function of muscle and

ligament forces, and cartilage contact and only knee flexion was tracked in the gait simulation,

the method may still present some sensitivity to soft tissue artifacts. Thirdly, although the vali-

dation of the model has shown a good agreement between the calculated and experimental

kinematics and contact forces in healthy subjects and patients following total knee replacement

[54], this validation cannot easily be extended to an OA population. The presence of increased

co-contraction, bone deformities or changes in cartilage mechanical properties, and the poten-

tial presence of ligament laxity induced by joint degeneration were not evaluated. Therefore,

this model might present specific limitations when used in patients with knee OA, especially

those known to present increased co-contraction (KL�2) resulting in an underestimation of

the joint loading [81,82]. Compared to previous literature in subjects with instrumented pros-

thesis [63,64], the magnitude of KCF in healthy subjects and those with OA seen in the present

study were higher for both walking and step-up-and-over. Our controls exhibited an averaged
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peak total resultant KCF of 3.16 BW and 4.94 BW (walking and step-up, respectively), while

our patients with knee OA exhibited a peak KCF of 3.91 BW and 4.49 BW, respectively.

Reported values in instrumented knee studies range from 2.20 to 2.8 BW for walking and from

2.50 BW to 3.5 BW for stair negotiation [63,64,83–86]. However, KCF measured from instru-

mented prostheses cannot be expected to be similar to those estimated in healthy and patients

with OA, as the surgical procedure involves articular surface replacement, changes in the bone

structure, and re-alignment of the mechanical knee axis [87] that dramatically change the gait

pattern [88]. In other computational studies [16,23,89], also higher KCFs were observed in

healthy and patients with OA. Healthy subjects exhibited a peak total resultant KCF range

from 3.00 to 4.35 BW [16,23,89,90], and patients with severe knee OA range from 4.0 to 4.5

BW during walking [16,23,89]. Finally, only females participated in the study and, therefore,

no conclusions can be drawn for male patients affected with OA.

Conclusions

Altered knee joint loading and pressure location during gait were found to be already present

in early OA, as confirmed in the elevated medial KCFs and a shift in the center of pressure.

Our findings indicate that medial KCF predicted by a novel musculoskeletal simulation rou-

tine provides a more helpful metric than the KAM used by previous researchers to identify

early knee OA development prior to the onset of radiographic evidences. This reinforces the

importance of considering the muscle and ligament forces when assessing knee loading rather

than only the external knee adduction moment. Consequently, KCF might be used as feedback

signal during gait retraining sessions aiming at controlling knee loading in patients with knee

osteoarthritis. Excessive medial KCF seems to be already present in early stages of OA.

As more muscular demanding, step-up-and-over resulted in higher total knee contact force

compared to walking in controls, and caused patients to present a large variability in their

movement execution, possibly aiming to reduce knee loading. Therefore, step-up-and-over

was not the best task to induce higher loading in order to discriminate loading profiles

between patients with early knee OA from healthy subjects.
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