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Arabidopsis BSD2 reveals a novel redox regulation of Rubisco physiology in vivo
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ABSTRACT
Plants need light energy to drive photosynthesis, but excess energy leads to the production of
harmful reactive oxygen species (ROS), resulting in oxidative inactivation of target enzymes, includ-
ing the photosynthetic CO2-fixing enzyme, ribulose 1,5-bisphosphate carboxylase/oxygenase
(Rubisco). It has been demonstrated in vitro that oxidatively inactivated Rubisco can be reactivated
by the addition of reducing agents. Busch et al. (in The Plant Journal, doi: 10.1111/tpj.14617, 2020)
recently demonstrated that bundle-sheath defective 2 (BSD2), a stroma-targeted protein formerly
known as a late-assembly chaperone for Rubisco biosynthesis, can be responsible for such reactiva-
tion in vivo. Here, we propose a working model of the novel redox regulation in Rubisco activity.
Redox of Rubisco may be a new target for improving photosynthesis.
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Carboxylation reaction of Rubisco is renowned for its cata-
lytic inefficiency due to a slow turnover rate, a low affinity
for CO2, and competing oxygenation reaction at the same
active site.1 Therefore, Rubisco is a major target to improve
photosynthetic capacity or maximum rate of Rubisco carbox-
ylation (Vcmax) through changing its catalytic properties or
expression.2 Attempt to improve Rubisco properties was,
however, often hampered by the inability of reconstructing
functional plant Rubisco (consists of eight large and eight
small subunits: LS8:SS8). Therefore, recent success in produ-
cing functional plant Rubisco in Escherichia coli would facil-
itate improving Rubisco properties in coming years.3

Another approach to improve photosynthetic capacity or
accelerate Vcmax is to increase the Rubisco content. While
overexpression of LS resulted in up to 30% increase in
Rubisco content in rice, corresponding increase in CO2

assimilation rate (A) was not realized.4 In contrast, co-
overexpression of LS, SS, and RAF1 (an assembly chaperone
that binds and stabilizes LS2)

3 in maize led to >30% increase
in Rubisco content as well as 15% increase in maximum A,
which correlated with increased in vitro Vcmax and plant
fresh weight.5 Likewise, our transgenic Arabidopsis with
80% greater concentration of BSD2 (a small Zn-finger pro-
tein that works in the final exchange of LS8:SS8 from LS8
:BSD28)

3 (BSD2ox) resulted in 20% increase in in vivo Vcmax,
as well as 20% increase in shoot dry mass.6 However, unlike
the overexpression of RAF1,5 both the number of total
catalytic site and Rubisco content were unaffected. Instead,
apparent catalytic efficiency for Rubisco carboxylation
(in vivo Vcmax per total catalytic site) was found to be
improved by 40%, suggesting increase in the proportion of
active Rubisco.

To be catalytically active, mature Rubisco requires con-
formational repair by AAA+ chaperone Rubisco activase
(Rca), which removes inhibitory sugar phosphates (Sugar-
P) from the active site when the stromal ATP/ADP ratio
increases with photophosphorylation and thereby facili-
tates the carbamylation (solid line box in Figure 1).7

Notably, the Rca-mediated Rubisco activation is regulated
in a redox-dependent manner, partly modulated by thior-
edoxins that activate Rca by reducing cysteine residues of
the larger isoform.8 Rca plays a significant role for the
dynamic activation of Rubisco and is regarded as
a potential target for photosynthetic improvement.9–11

Intriguingly, our study demonstrated that the improve-
ment of the apparent catalytic efficiency could be attained
without mediating through the Rca, but by directly manip-
ulating the redox state of Rubisco (dash line box in Figure
1). As was annotated by the DnaJ-like Zn-finger motifs
(Figure 2a), recombinant BSD2 (rBSD2) had protein dis-
ulfide reductase (PDR) activity in vitro.6 Moreover, the
rBSD2 could reactivate Rubisco that has been oxidized
by hydrogen peroxide (H2O2), leading to the hypothesis
that BSD2 reactivates Rubisco oxidized by ROS and
thereby maintains the photosynthetic capacity. Indeed,
proteomic approaches have identified Rubisco cysteines
as primary targets for oxidants like H2O2 in vivo16 as
well as in vitro.17 Since cysteine thiol group can be easily
oxidized by molecular oxygen in alkaline conditions,18 the
oxidation of Rubisco by O2 may also occur when the
stroma pH increases due to the proton gradient across
the thylakoid membrane generated during photosynthesis.
Our hypothesis is further supported by the fact that none
of the freshly isolated Rubisco was oxidatively inactive in
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BSD2ox plants while 15% was so in control plants6 (which
could be attributable to about half of the gain in the
apparent carboxylation efficiency). While we cannot
exclude the possibility that the BSD2 affects the redox
state of Rca, those in vitro assays were independent from
the Rca.

Therefore, we examined the redox status of Rubisco LS
in wild type Arabidopsis with non-reducing SDS-PAGE.
The LS in the leaf extract was fragmented mostly to
a reduced form of 50 kDa monomers, and much less to
an oxidized form of 100 kDa dimers (lane 2 in Figure 2b).
Incubation of the same leaf extracts with DTT reduced the
dimers to the monomers (lane 1 in Figure 2b) whereas
incubation with CuCl2 oxidized the dimers to the mono-
mers (lane 3–5 in Figure 2b), indicating the reversible
response to the redox change. Progressive oxidation of
Rubisco cysteines using disulfide/thiol mixtures at different
ratios has shown that the carboxylation activity decreases as
the redox potential decreases.19,20 Based on their redox-
dependent Rubisco inactivation profie,19,20 the 15%-loss in
Rubisco activity by oxidation6 corresponds to much milder
oxidative conditions than proteolytic sensitization, suggest-
ing that the inactivation would not have been involved in
significant conformational changes. Similarity in the redox-
activity relationships among eukaryotic green-like Rubisco
suggests that the critical cysteines are universally
conserved.20 Importantly, none of single substitutions of

these conserved cysteines with serine in Chlamydomonas
Rubisco eliminates the sensitivity of catalytic activity to
disulfide exchange, strongly suggesting the highly redun-
dant contribution of cysteine residues in oxidative
inactivation.20

Interestingly, glutathione (GSH) was more effective reduc-
tant for the PDR activity of rBSD2 than NADPH and NADH
(i.e., reductants present in vivo) and its efficiency is compar-
able to DTT.6 Glutathione and ascorbate are very abundant in
the chloroplast stroma ranging between 0.5–3.5 and
20–300 mM, respectively, thereby constituting a pool of
redox buffers against ROS.21,22 While direct regulation of
Rubisco activity by the chloroplastic glutathione pool is hin-
dered by kinetic barriers impeding access to the critical resi-
dues, GSH would drive the reactivation with the aid of smaller
intermediary thiol/disulfide exchangers.23 In contrast to the
light-dependent ferredoxin- or NADP-thioredoxin systems,
the glutathione pool would be a stable source of reducing
power when photosynthetic electron transport is diminished
under stressful conditions.21 It has been frequently noted that
oxidation of Rubisco is physiologically relevant to senescence
or stress scenarios, which are known to trigger a fast catabo-
lism of Rubisco.19,20 The reactivation of Rubisco by BSD2
might be therefore important for alleviating senescence or
stress scenarios. Now, the regulation of Rubisco activation is
extended to a new dimension – redox, which would also open
new avenue for improving photosynthesis.

Figure 1. Redox regulation of Rubisco activity in chloroplast. Light energy absorbed by photosystem (PS) I and PSII on the thylakoid induce electron transport that
generates primary reductants NADPH, while splitting of water evolves oxygen in the lumen. Thioredoxins (TRX) also accept reducing power from the electron
transport chain, which in the reduced form are used for activating Calvin-cycle enzymes as well as Rubisco activase (Rca) in the stroma. The reduced Rca (Rcared) then
facilitates Rubisco to become active through carbamylation (solid line box). In the presence of oxygen, excess light energy can also lead to the production of harmful
reactive oxygen species (ROS) which would oxidize Rubisco, causing from the reversible inactivation to proteolysis. Reduced BSD2 (BSD2red) could reactivate the
oxidized Rubisco (dashed line box). GSH: reduced glutathione, GSSG: oxidized glutathione, Fd: ferredoxin, FNR: ferredoxin-NADP reductase, FTR: ferredoxin-TRX
reductase, RuBP: Ribulose-1,5-bisphosphate.
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