
Frontiers in Immunology | www.frontiersin.

Edited by:
Hinrich Abken,

Regensburg Center for Interventional
Immunology (RCI), Germany

Reviewed by:
Naomi Taylor,

National Cancer Institute, National
Institutes of Health (NIH), United States

Batu Erman,
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Recent advances in cancer immunotherapy have attracted great interest due to the
natural capacity of the immune system to fight cancer. This field has been revolutionized
by the advent of chimeric antigen receptor (CAR) T cell therapy that is utilizing an antigen
recognition domain to redirect patients’ T cells to selectively attack cancer cells. CAR T
cells are designed with antigen-binding moieties fused to signaling and co-stimulatory
intracellular domains. Despite significant success in hematologic malignancies, CAR T
cells encounter many obstacles for treating solid tumors due to tumor heterogeneity,
treatment-associated toxicities, and immunosuppressive tumor microenvironment.
Although the current strategies for enhancing CAR T cell efficacy and specificity are
promising, they have their own limitations, making it necessary to develop new genetic
engineering strategies. In this article, we have proposed a novel logic gate for recognizing
tumor-associated antigens by employing intracellular JAK/STAT signaling pathway to
enhance CAR T Cells potency and specificity. Moreover, this new-generation CAR T cell is
empowered to secrete bispecific T cell engagers (BiTEs) against cancer-associated
fibroblasts (CAFs) to diminish tumor metastasis and angiogenesis and increase T
cell infiltration.

Keywords: cancer, adoptive immunotherapy, chimeric antigen receptors T cells, tumor escape and relapse, tumor
microenvironment, cancer-associated fibroblasts, on-target/off-tumor toxicity, bispecific T cell engagers (BiTEs)
INTRODUCTION

T cell-based immunotherapies have been revolutionized after the advent of chimeric antigen
receptor T cells (CARs) (1), which are constructed through transfecting T cells by CAR genes. CARs
consist of an extracellular antigen-binding moiety and intracellular T cell activating domain. The
extracellular domain, named single-chain variable fragment (ScFv), is a fusion protein made up of
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the heavy (VH) and light chains (VL) of immunoglobulins. ScFv
binds to tumor-associated antigens (TAAs). The intracellular
signaling domain (i.e., CD3z chain of T cell receptor and usually
CD28 and/or 4-1BB as co-stimulatory domain) stimulates
cytotoxic T cell activity following TAA recognition (Figure 1).

ScFv could directly recognize TAAs. Thus, CAR T cells are
able to detect tumor cells regardless of recognizing MHC
molecules that are variably down-regulated in tumor cells to
limit T cell-mediated cytotoxicity (2). Therefore, genetically
engineering T cells to express CARs results in improved
antigen-specific T cell cytotoxicity (3). This strategy combines
the MHC-independence of mABs with the killing potential of T
cells to confer tumor-specific cytotoxicity.

The remarkable success of CAR T cells in liquid malignancies
has led to the FDA’s approval of these cells to treat non-Hodgkin
lymphoma and refractory acute lymphoblastic leukemia (4).
However, CAR T cell therapy has a variety of challenges in the
treatment of solid tumors. First, a predetermined target antigen,
which is supposed to be expressed on the malignant cell surface,
could also be expressed on normal tissue cells. Therefore, the
injected CAR T cells could harm normal tissues due to this
problem, which is termed as on-target off-tumor toxicity (5).
Moreover, CAR T cells are programmed to detect a specific
antigen, whereas tumor cells express antigens heterogeneously.
Heterogeneity of tumor cell surface antigens leads to tumor
escape due to low-level expression of targeted antigens on some
tumor cells. The third well-established challenge of CAR T cell
therapy in solid tumors is the immunosuppressive effect of the
tumor microenvironment. The tumor microenvironment
includes a mixture of resident immune cells, fibroblasts, and
immunosuppressive cytokines that interferes with the infiltration
and function of CAR T cells (6).

To overcome these challenges in CAR T cell therapy, we
propose a novel design of CAR T cells. In this hypothesis, the
Frontiers in Immunology | www.frontiersin.org 2
proposed CAR T cell retains features to address the discussed
challenges. In brief, the CAR T cell contains a novel synthetic
receptor that induces the intracellular signaling pathway
followed by recognizing the tumor-associated antigen, which
leads to the expression of two different CARs. This CAR T cell
will be activated in the simultaneous presence of 2 out of 3 TAAs,
which induces a novel logic gate to activate CAR T cells against
tumor cells. Moreover, the CAR T cell will be hypothetically
empowered to secrete the anti-CAF bispecific antibodies that can
eliminate cancer-associated fibroblasts. This elimination will
reduce tumor metastasis by inhibiting angiogenesis and
enhancing T cell infiltration into the tumor microenvironment.
SUPPORTING EVIDENCE

Since on-target/off-tumor toxicity is a matter of concern, an
antigen that is not expressed within normal tissues would be an
ideal target antigen for CAR T cell therapy. However, the vast
majority of candidate antigens are also expressed on normal
tissues at lower levels. There are several creative solutions to
overcome this problem, including OFF-switch degradable CARs
linked to degron tags or ON-switch split CARs responsive to
drug, along with suicide genes and logic gates (7, 8). One of the
most studied solutions in this regard is implementing CAR T
cells that follow AND logic in recognizing target antigens (9–11).
These ‘AND gated’ CAR T cells need recognition of two targeted
antigens on the cell surface for activation and cytotoxicity (11).
Since the expression of two TAAs simultaneously on the surface
of normal cells is less probable, “AND logic” can mitigate the risk
of on-target/off-tumor toxicity. This strategy was previously
applied in CAR T cells by implementing a synthetic notch
receptor (synNotch receptor). SynNotch receptor is designed to
have ScFv domain as an extracellular domain, a transmembrane
domain, and a transcription factor as an intracellular domain.
After recognizing the first antigen by ScFv, S2 and S3 cleavage
sites primarily autoinhibited by a negative regulatory region
(NRR) are exposed. Antigen binding causes NRR conformation
change, which signals the transmembrane domain (TMD).
Subsequent to these changes, S2 and S3 sites are exposed to A
Disintegrin And Metalloproteinase (ADAM) and g-secretas.
These enzymes cleave S2 and S3 sites, and the transcription
factor is released subsequently (12, 13). Afterward, the
transcription factor binds to its specific promoter in the vector
and drives the expression of the CAR receptor against the second
antigen (14, 15). Accordingly, the presence of the second tumor-
associated antigen activates the CAR receptor and initiates
cytotoxic reactions. Therefore, the presence of two tumor-
associated antigens on the tumor cell surface is critical for
cytotoxic reactions in this design, which practically increase
specificity and decrease on-target/off-tumor toxicity (Figure 2).

The second problem in treating solid tumors by CAR T cells is
tumor cell heterogeneity. An approach to solve this problem is
using ‘OR gated’ CAR T cells, which are able to target various
antigens on different tumor cells to provide better killing
coverage (9). These T cells are designed to express two or
more CARs against different TAAs on a single cell.
FIGURE 1 | Structure of a chimeric antigen receptor (CAR). The CAR
includes extracellular binding moiety (ScFv), a transmembrane domain, and
intracellular signaling domains (i.e., usually CD3z chain of T cell receptor and
CD28 co-stimulatory domain).
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Since each of the CAR’s intracellular domains consists of both
CD3 and co-stimulatory domains, recognizing each of the TAAs
would be enough for CAR T cell activation. This strategy has
been evaluated in pre-clinical studies, where “OR gated” CAR T
cells have targeted either CD19 or CD123 TAAs to treat
lymphoma (16). Similarly, trivalent CAR T cells have been
directed to HER2, IL13Ra2, and EphA2 antigens to target
glioblastoma. This trivalent CAR T cell was able to eradicate
tumor cells in nearly all patient models (17).

Even though “AND” and “OR” strategies are promising, each
one has its limitations, highlighting the need to develop
genetically engineered control systems to overcome these
challenges. “AND gate” strategy increases the probability of
tumor escape because of reducing killing coverage. On the
other side, the OR gate approach can increase the probability
of on-target/off-tumor toxicity. To bypass this challenge, the
balance of killing coverage and safety is an important hallmark
for improving CAR T cell therapy (18, 19).

The third problem of CAR T cell therapy for solid tumors is
the immune-suppressive tumor microenvironment that one of
its immunosuppressive and anti-infiltrative components is
cancer-associated fibroblast (CAF). CAFs are stromal cells
affecting tumor cells and their microenvironment in a pro-
tumorigenic manner. The activity of CAFs results in a more
aggressive tumor formation, progression, and metastasis (20).
Thus, killing these cells would be promising in enhancing CAR T
cell therapy efficacy. It is also worth noting that fibroblast
activation protein-a (FAP) is highly overexpressed on cancer-
associated fibroblasts, and it has been shown that targeting
cancer-associated fibroblasts by anti-FAP CAR T cells inhibits
tumor growth and augments host immunity against tumor (21).

In addition to developing anti-FAP CARs, there are several
other methods of directing T cells toward target cells, among
which antibody-derived molecules are growing rapidly. In this
regard, Bispecific T cell Engagers (BiTEs) which were first
approved by the FDA for the treatment of refractory acute
lymphoblastic leukemia in 2014 (22), can facilitate the T cell
Frontiers in Immunology | www.frontiersin.org 3
and target cell interaction (23). BiTEs are a class of bispecific
antibodies that could be constructed by attaching two ScFv
domains by a linker. In adoptive cancer immunotherapy, these
agents are constructed to be directed against the CD3 complex on
the T cell’s surface and an antigen on the target cell. BiTEs redirect
the cytotoxic activity of T cells against the target cells in a non-
MHC-dependent fashion (24). Likewise, studies have revealed that
employing BiTEs to target CAFs could be effective. Accordingly,
injected anti-FAP BiTE and its infiltration to tumor
microenvironment increase the intra-tumoral accumulation of
T cells and cause cytotoxicity in cancer-associated fibroblasts
(25). Since it has been shown that CAR T cells could
successfully secrete BiTEs (26), producing anti-FAP BiTEs by
CAR T cells locally in the tumor microenvironment would be
on the horizon, which will be discussed later in this paper.
HYPOTHESIS

An AND logic gate could be designed using internal T cell signaling
pathways. For this purpose, JAK2/STAT4 signaling could behijacked
for the expression of our CAR genes. To put this in practice, a novel
chimeric ScFv/IL-12Rb2 receptor is proposed, which has an
extracellular ScFv domain against the first antigen and the
intracellular domain of b2 subunit of the human IL-12 receptor
(Figure 3). The intracellular domain activates JAK2/STAT4 as a part
of the IL-12 natural signaling pathway in T cells (29). By inserting a
STAT4 responsive promoter in the vector, it would be possible to
induce the expression of CAR genes and other genes of interest by
putting them downstream of the mentioned promoter (Figure 3).

In this design, two different CAR genes are inserted downstream
of the STAT responsive promoter. Therefore, the two different CAR
receptors would be co-expressed after the activation of STAT4 and
binding to its promoter (Figure3). Since eachof the expressedCARs
has CD3 and CD28 intracellular domains, each one of them can
activate theCARTcell in response to the recognitionof their specific
antigen (TAA2 and TAA3) (Figure 3).
A B

FIGURE 2 | Synnotch receptor CAR T cells: Synnotch receptors are designed to pursue the AND logic gate to mitigate on-target/off-tumor toxicity. (A) These
receptors release a synthetic chimeric transcription factor (GAL4-VP64) after recognizing tumor-associated antigen 1 (TAA1). (B) The transcription factor binds to the
GAL4 responsive promoter and induces the expression of CAR against TAA2.
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This order in CAR expression enables CAR T cells to initiate
cytotoxic reactions when the TAA1 (which is recognized by ScFv/
IL-12Rb2 receptor) is expressed simultaneously with the TAA2
(which is recognized by CAR1) or TAA3 (which is recognized by
CAR2) on the tumor cell surface. In other words, this gate is a novel
3-input/1-output logic gate in CAR T cell therapy that the inputs are
TAAs, and the output is cytotoxicity. The CAR T cell could only
show cytotoxicity in response to specific TAA profiles (shown in
Table 1 and Figure 4).

As shown in Table 1, in the presence of the TAA1, two CARs
will be expressed against TAA2 and TAA3. Therefore, the TAA1
and TAA2 positive antigen profile or TAA1 and TAA3 positive
antigen profile will initiate the cytotoxicity response. Thus, this
CAR T cell would be specific to tumor cells due to recognizing
two TAA simultaneously and would have better killing coverage
than conventional ‘AND gated’ CAR T cells (Figure 4).

Besides, it is hypothesized that with the insertion of anti-FAP
BiTE gene downstream of STAT4 responsive promoter, FAP
antigen could be locally targeted on CAFs surface in the tumor
microenvironment. This design enables our CAR T cells to secrete
BiTEs in addition to the CAR expression in response to the STAT
activation. BiTEs potently activate T cells without an apparent need
for co-stimulatory domains (i.e., cd28.4-1bb) and can lead to a
complete target cell (i.e., fibroblast) elimination (23). Therefore,
targeting FAP-positive cancer-associated fibroblasts with anti-FAP
BiTEs secreted from CAR T cells would be within the realm of
possibility (Figure 5). Moreover, one of the advantages of the
secreted BiTEs is that they can engage naive T cells with cancer-
associated fibroblasts as well as CAR T cells.
Frontiers in Immunology | www.frontiersin.org 4
EVALUATION OF THE HYPOTHESIS

This study aims to design a new CAR T cell therapy strategy
for increasing specificity, reducing tumor escape, and
modulating tumor microenvironment for solid malignancies. The
design consists of three receptors and a Bi-specific T cell
Engager (BiTE).

Preparation, Expansion, and Transduction
of CAR T Cells
After negative selection, primary CD4+ and CD8+ T cells will be
isolated from donor blood. Lentivirus will be produced through
transfecting human embryonic kidney (HEK) cells with the
transgene expression vector and packaging plasmids (30). The
detailed processes of pre-transduction expansion, T cell
FIGURE 3 | SCFV/IL-12Rb2 receptor induces CAR genes expression. The hypothetically designed cells express ScFv/IL-12Rb2 receptor constitutively before
injection. The ScFv/IL-12Rb2 receptor consists of an extracellular domain against tumor-associated antigen 1 and the intracellular domain of b2 subunit of the human
IL-12 receptor. After injection and TAA1 recognition by ScFv/IL-12Rb2 receptor, JAK2 activates and creates a docking site for STAT4 attachment to ScFv/IL-12Rb2
receptor endodomain. This attachment will activate the JAK2/STAT4 signaling pathway and STAT4 mediated gene expression after TAA1 recognition (27, 28). Based
on our design, two different CAR receptors and anti-FAP BiTE genes are downstream of STAT4 responsive promoter; therefore, these genes will be expressed in
consequence of TAA1 presence. Since a 2A ribosomal skip sequence separates these genes, they will be expressed simultaneously after STAT4 binding to the
promoter. After CAR 1 and CAR 2 expression, they could recognize TAA2 and TAA3, respectively, and subsequently activate the CAR T cell.
TABLE 1 | Eight possible TAA profiles of three antigens and expected CAR T
cell responses toward them.

TAA1
(recognized
by ScFv/IL-

12RB2)

TAA2
(recognized by CAR1)

TAA3
(recognized
by CAR2)

Response
(cytotoxicity)

1 + + + +
2 + + - +
3 + - + +
4 + - - -
5 - + + -
6 - + - -
7 - - + -
8 - - - -
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transduction, and post-transduction expansion are based on the
previous study (31).

In Vitro Studies
Synthetic Receptor Expression and Function Assay
The Expression of ScFv/IL-12Rb2 at mRNA and protein level could
be measured via RT PCR and western blot, respectively. TAA1
Frontiers in Immunology | www.frontiersin.org 5
positive cell lines will stimulate synthetic receptors expressed on the
primary T cells surface. STAT4 phosphorylation and AKT
phosphorylation, which are downstream of IL-12Rb activation,
could be measured via intracellular flow cytometry. Likewise, IFN
gamma production could bemeasured via the ELISA technique (32).

As the STAT4 signaling pathway plays an important role in
cell survival through Bcl-2, Bcl-XL, and MCL1 anti-apoptotic
FIGURE 4 | A novel gate for CAR T cells activation encountering different TAA profiles (four out of eight are shown). (A) In the absence of TAA1, there is no initiation of JAK/
STAT pathway, no expression of CAR1 and CAR2, and accordingly no activation of CAR T cell. This condition could be representative of antigen profiles 5 to 8 in Table 1.
(B) Recognition of TAA1 in the absence of TAA2 or TAA3 leads to internal pathway activation and CAR receptor expression, but the CAR T cells could not be activated
without recognizing TAA2 or TAA3. This condition is representative of antigen profile 4 in Table 1. (C) According to our proposed novel logic gate, the simultaneous presence
of TAA1 and TAA2 leads to the activation of the JAK/STAT pathway due to recognition of TAA1 and induction of cytotoxic reactions due to recognition of TAA2. This
condition was represented in the second antigen profile in Table 1. (D) Concurrent presence of TAA1 and TAA3 and recognition of them by the CAR T cell leads to JAK/
STAT activation and cytotoxic response. This condition is representative of the third antigen profile in Table 1. It can be easily concluded that the concurrent presence of all
three antigens could lead to a cytotoxic response by activating CAR1 and CAR2, and this was represented in the first antigen profile in Table 1.
FIGURE 5 | BiTEs role in the tumor microenvironment: Bispecific T cell engagers (BiTEs) are fusion proteins consisting of two ScFvs linked together. One of the
ScFvs binds to the T cells CD3 marker and the other to an antigen on the targeted cell. Thus, they can establish a link between T cells and target cells in an MHC-
independent manner. In our design, CAR T cells secrete BiTEs against FAP antigen on cancer-associated fibroblasts (CAFs); therefore, CAR T cells can be
redirected against tumor-suppressive microenvironment by killing cancer-associated fibroblasts. This redirection could be favorable for cancer therapy because of
reducing tumor progression and metastasis, and angiogenesis.
June 2021 | Volume 12 | Article 638639
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proteins, the expression of the mentioned anti-apoptotic proteins
in the cells at mRNA and protein level could be measured before
and after synthetic receptor activation via RT PCR and western
blot, respectively (33).

CAR1 and CAR2 Gene Expression and
Function Assay
Expression of CAR1 and CAR2 could be measured at mRNA and
protein level via RT-PCR and flow cytometry (15), respectively.
MTT and Chromium-51 cytotoxicity assays should be
implemented to evaluate CAR1 and CAR2 cytotoxicity (33).

Anti-FAP BiTE Cytotoxicity Against FAP+ Cell Lines
BiTE gene expression could be measured at mRNA and protein
level via RT-PCR and western blot (26). To obtain CAFs
expressing FAP antigen, they should be isolated from the
tumor microenvironment (34). To measure the BiTE induced
cytotoxicity against CAFs, the fibroblasts could be labeled with
chromium-51 and exposed to BiTEs.

In Vivo Studies
CAR T Cell Injection Effects on Tumor
The genetically identical mouse tumor models will be formed to
analyze the in vivo effects of CAR T cells on the tumor. Mice will
be inoculated with 105 tumor cells that express eight different
antigen profiles mentioned in Table 1. The cells would be
inoculated subcutaneously, and tumor volume will be
measured using a caliper (34). After seven days, 105 CAR T
cells will be injected into the animal models. Tumor growth will
be controlled post-inoculation every five days for 70 days.
Besides, serum cytokine levels (e.g., IFN-g) will be measured by
the ELISA technique.

BiTE Production Effects on CAFs
Mice will be inoculated with 105 TAA1 positive tumor cells and
FAP positive CAFs. After seven days, 105 CAR T cells would be
injected into animal models. Since antigens 2 and 3 are absent in
the used cell line, CAR1 and CAR2 will not be activated.
Therefore, it is expected that the probable reduction in tumor
size would be resultant of the release of BiTE from CAR T cells.
Inoculated mice without CAR T cell injection could be used as the
control group. Tumor growth would be controlled post-
inoculation every five days for 70 days. Then, mice would be
anesthetized, and the tumor would be removed from the mice, and
tumor weight, VEGF, matrix metalloproteinase, and TGF b would
be measured in tumor lysate by the ELISA technique in both
groups. Since the fibroblasts are a producer of these cytokines in
the tumor microenvironment, it is expected that these factors
would be reduced in the test group as a result offibroblasts killing.
DISCUSSION

The investigation of novel immunotherapeutic approaches has
led to the development of CAR T cell therapy. However, CAR T
cell-based therapies encounter different challenges. As
mentioned above, challenges in CAR T cell therapy against
Frontiers in Immunology | www.frontiersin.org 6
solid tumors are due to the heterogenic expression of antigens
on tumor cells surface and the probability of inadvertent
targeting of non-tumoral cells. Furthermore, tumor cells can
govern micro-environmental cells to alter the microenvironment
and increase their survival against the host immune system.
Here, we suggest a novel strategy to overcome these challenges in
solid tumor treatments by CAR T cell therapy. Despite the
previous studies that solely applied “AND” and “OR” logic
gates in CAR T cell therapy, we think the combination of these
two strategies is a more promising candidate for CAR T cell
therapy of solid tumors. However, each of these gates can be
rationally utilized based on the antigenic profile of the target
tumor. AND gate is best suitable for the condition in which the
target tumor expresses two non-specific antigens on a large
proportion of tumor cells. Therefore, the non-specificity of the
target antigens is fairly compensated by AND gate. On the other
hand, OR gate is best suitable for the condition in which the
target tumor expresses two specific antigens on a low proportion
of tumor cells. Hence, the OR gate overcomes the challenge of
proportionally low expression of the target antigens.
Alternatively, the proposed dual logic gate here would be
applicable for the condition in which the tumor highly
expresses one non-specific antigen (TAA1) along with two
other antigens that can even be non-specific and slightly
expressed (TAA2 and TAA3).

As described above, the Synnotch system utilized a synthetic
chimeric transcription factor and its responsive promoter to
initiate the CAR gene expression (31). In contrast, we proposed
the JAK2/STAT4 pathway to express two CAR receptors.
Superior to Synnotch, there are no potentially immunogenic
elements (GAL4-VP64) to express CARs (18). Besides, the
designed T cells might be potentiated through activation of the
IL-12 downstream signaling pathway. IL-12 receptors
are composed of two subunits—IL-12Rb1 and IL-12Rb2. The
IL-12Rb1 is the shared receptor chain of the IL-12 and IL-23
receptor signaling complexes. IL-12Rb1 activates TYK2 and
STAT3, whereas IL-12Rb2 activates JAK2/STAT4 signaling
pathway (35). JAK2 is the first component of the JAK2/PI3K/
AKT/mTOR cell survival signaling cascade that plays a pivotal
role in T cell proliferation, survival, and protein synthesis (36,
37). Moreover, STAT4 induces the production of inflammatory
cytokines such as IL-12 and IFN-g, which strengthen T helper 1
and attenuate T helper 2 cell responses in the immune system.
Since T helper 1 phenotype is correlated with inflammatory
cytokine production such as IL-12 and IFNg (which are helpful
in cancer therapy), it would be favorable to intensify this
phenotype. Also, the survival of T cells will be enhanced
because of the proposed IL-12/STAT4 cascade. It is well
known that IL-12/STAT4 signaling increases anti-apoptotic
gene expression and decreases the expression of pro-apoptotic
genes in T cells (38) (Figure 6). A study showed that using
engineered NK92 cells to specifically release IL-12 at tumor sites
has been demonstrated to increase the antitumor effects of CAR
T cells. The study suggests antigen-directed IL-12 expression in
the tumor microenvironment as a safe approach to enhance the
clinical outcome of CAR-T cell therapy (40). Besides, STAT4 acts
as a transcription factor for a core subset of genes and interacts
June 2021 | Volume 12 | Article 638639
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with over 4000 genes through distinct binding motifs (41).
Therefore, it seems that this transcription factor and its
selected responsive promoter would be robust enough to drive
CAR gene expression.

In the last part of our hypothesized strategy in treating solid
tumors, the secretion of BiTEs from CAR T cells is proposed to
alter the tumor microenvironment to enhance our system efficacy.
Since fibroblasts can be governed by tumor cells and form CAFs,
these cells have been chosen as the target for secreted BiTEs. CAFs
affect tumor cells through paracrine signaling; they secrete
CXCL12 (42), TGFbs (42), FGFs (43), periostin (POSTN) (44),
and TN-C (45). These growth factors and cytokines increase
tumor progression and metastasis and enhance tumor cell
resistance to therapy. Furthermore, CAFs secrete matrix
metalloproteinases (MMPs), a group of enzymes responsible for
the extracellular matrix (ECM) degradation, and accordingly,
tumor invasion and metastasis (46). In addition to remodeling
the ECM byMMPs, CAFs secrete VEGF, FGF, and IL6 to remodel
the tumor vasculature (47) and induce angiogenesis that is pivotal
for tumor growth and metastasis (48). The other impact of CAFs
on the tumor microenvironment is modulating pro-tumorigenic
inflammation by secreting IL-1, IL-6, TNFa, TGFbs, SDF-1, and
MCP-1 (47, 49). Hence, directing BiTEs towards CAFs would
interfere with the impacts mentioned above. Finally, this targeting
induces inflammation in the tumor microenvironment and
probably could cause indirect killing of tumor cells (9).
However, one of the concerns associated with the BiTEs is the
off-target toxicity due to the engaging of native T cells’ CD3
antigen and FAP on non-tumor fibroblasts. Nevertheless, antigen-
directed BiTE secretion locally in the tumor microenvironment
using oncolytic viruses was demonstrated to cause minimized off-
target toxicity (50). Besides, producing BiTE-secreting CAR T cells
which secrete BiTEs locally have already been tested. In the study,
antigens that entailed the risk of off-target toxicity in the case of
Frontiers in Immunology | www.frontiersin.org 7
systemic administration (i.e., EGFR) were successfully targeted
locally in the tumor microenvironment (26). Therefore, the local
secretion of BiTEs from CAR T cells in the proposed systemmight
as well reduce the chance of potential off-target effects.

It is also worth noting that the interaction of CARs and TCRs
might be concerning. However, they are less likely to share the
same immunological synapses due to a number of reasons (51,
52). First, the immunological synapse of TCR is systematic (i.e.,
“bull’s eye” structure), whereas CAR immunological synapse is
disorganized. Indeed, fewer interactions are needed for the
formation of CAR immunological synapse, which results in
higher affinity and shorter time for the formation of a
functioning synapse. Second, TCR antigen recognition is MHC
dependent while CAR antigen recognition is not. Third, studies
have revealed that the signaling machinery downstream to the
CAR is significantly different from TCR, despite common
proteins in both pathways. Hence, knocking out the TCR on
CAR T cells is not only unnecessary, but also it might have an
intruding effect on the longevity of the anti-tumor response (53).

To the best of our knowledge, no studies have used
intracellular pathways to induce CAR expression in a TAA-
dependent manner. Likewise, the hypothesized logic gate for
recognizing TAAs and anti-FAP BiTEs secreted from CAR T
Cells is proposed for the first time. Based on CAR T cell therapy’s
promising results, it is critical to investigate the hypothesized
strategy in future studies.
LIMITATIONS

Some limitations may interfere with our design’s efficacy. Most
importantly, using an internal signaling pathway and its
constitutive activation in T cells might interfere with the CARs
expression. Despite the mentioned advantages of JAK/STAT
FIGURE 6 | STAT4 activation and the expression of its downstream genes in the genome: TAA1 recognition by ScFv/IL-12Rb receptor leads to STAT4 activation.
Activated STAT4 binds to its conventional promoters in the T cell genome. This binding automatically expresses favorable genes in addition to expressing the
inserted vector genes. STAT 4 conventional genes include IFN-g and Tbx21 (T-bet), which induces TH1 phenotype and cytotoxicity in T cells (39). This expression
could potentiate T cells’ proliferation and survival and attenuate inflammatory processes in the tumor area. JAK2 also activates PI3K/AKT/mTOR cell survival signaling
pathway, which plays a pivotal role in T cell proliferation, survival, and protein synthesis.
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signaling activation, this signaling is a common pathway among
various cytokines that all could interfere with the desired gene
expression (36). However, choosing IL-12Rb2/JAK2/STAT4
signaling pathway in the design has the advantage of theoretically
low inadvertent activation by the other cytokines. It has been shown
that STAT4 is activated as a part of IL-12 and IL-23 pathways (35).
Whereas other STAT family transcription factors are involved in
many cytokine pathways, and this could disturb the considered
“AND” gate by inappropriate CAR antigens expression (36).
Although, it seems that IL-12-induced STAT4 activation may be
concerning as IL-12 itself could cause inadvertent expression of
CAR receptors. On the plus side, IL-12 is expected to be present in
inflammatory regions such as the tumor microenvironment (27,
54). Therefore, IL-12 mediated CAR expression could be desirable,
and it could be considered another tumor-specific condition to
express CAR receptors. Further experiments have to be done to
assess the risk of probable “on-target off-tumor toxicity” in the
presence of various doses of IL-12 in extracellular fluid.

Despite these concerns, there are solutions to reduce the risk of
this inadvertent expression of CAR receptors and the potential off-
target effects. In addition to local infusion, suicide genes could be
inserted into the vector. As a result, CART cell-mediated cytotoxicity
could be blocked whenever the treatment is finished or off-target
effects are detected. Another solution is to decrease the STAT4
promoter’s affinity to STAT4, which aims to ascertain that high levels
of STAT4 are needed to express CAR receptors. Another rationale
strategy can be using synthetic biology tools such as ribozymes,
riboregulators, and tetracycline-responsive promoters to generate
drug-inducible CAR T cells. Besides, Cre expression or release
downstream of synthetic receptor activation could be considered.
Adding LoxP sites flanked to the CAR genes and STAT-responsive
promoter can strengthen the AND gate and hinder IL-12-induced T
cell activation. However, if Cre-mediated CAR expression in a
STAT-independent manner is considered the gate, it would result
in a continuous CAR expression after TAA1 recognition that
increases the probability of off-target effects (55, 56).

Furthermore, assessing two kinetics is important to determine
the efficacy of the proposed gate. First, the time course of T cell
activation upon stimulation with a dual-antigen (e.g., TAA1 and
TAA2) tumor cell line is important to determine the half-life for
T cell activation. This half-life was reported to be approximately
13 hours in the synNotch system consisted of 6 hours for CAR
expression and 6 hours for subsequent T cell activation (31). In
another study with the objective of CAR-mediated STAT
activation, the time interval needed for STAT3 and STAT5
phosphorylation by IL-2Rb was determined to be 2 hours.
Therefore, on the premise that IL-12 Rb2 functions similarly,
and T cell activation subsequent to CAR expression would take 6
Frontiers in Immunology | www.frontiersin.org 8
hours as in the synNotch system, the half-life for T cell activation
in the proposed system is anticipated to be 8 hours plus the time
needed for STAT4 mediated CAR expression.

The second important kinetic in this regard is the decay
kinetic of synthetic receptor-induced CAR expression. The
importance of this kinetic is due to the concern which was also
aroused in the synNotch/CAR T cells termed as “priming” of
CAR T cells. CAR T cells may engage with TAA1, which signals
the expression of the CARs against other TAAs. These “primed”
T cells could migrate to the other parts of the body and kill single
antigen bystander tissues, which could disrupt the “AND” logic
gate. However, previous studies have not shown on-target off-
tumor toxicity due to the “priming” effect of synNotch/CARs in
in-vivo models. This lack of toxicity could result from the
kinetics of removal of CAR receptors from the cells’ surface.
Indeed, CAR expression decay occurred in 8 hours, which was
faster than the time needed for T cells to migrate out of the
priming tumor and cause inadvertent cytotoxicity in a different
immunological synapse (14). Since the proposed CAR expression
mechanism here has not been studied yet, this system’s
expression and removal kinetics is not confidently predictable
and have to be evaluated in future experiments.
CONCLUSIONS

Expressing CARs and secreting BiTEs by the suggested novel
logic gate using the IL-12 natural signaling pathway could boost
cancer treatment by CAR T cells due to increasing specificity,
decreasing tumor escape, and increasing CAR T cells
survival and cytotoxic potency as well as modulating the
tumor microenvironment.
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