
����������
�������

Citation: Oishi, T.; Koizumi, S.;

Kurozumi, K. Molecular Mechanisms

and Clinical Challenges of Glioma

Invasion. Brain Sci. 2022, 12, 291.

https://doi.org/10.3390/

brainsci12020291

Academic Editor: Takanori Ohnishi

Received: 27 January 2022

Accepted: 17 February 2022

Published: 20 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Review

Molecular Mechanisms and Clinical Challenges of
Glioma Invasion
Tomoya Oishi *, Shinichiro Koizumi and Kazuhiko Kurozumi

Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan;
coizmmd@hama-med.ac.jp (S.K.); kurozu20@hama-med.ac.jp (K.K.)
* Correspondence: toishi@hama-med.ac.jp; Tel.: +81-53-435-2281

Abstract: Glioma is the most common primary brain tumor, and its prognosis is poor. Glioma cells are
highly invasive to the brain parenchyma. It is difficult to achieve complete resection due to the nature
of the brain tissue, and tumors that invade the parenchyma often recur. The invasiveness of tumor
cells has been studied from various aspects, and the related molecular mechanisms are gradually
becoming clear. Cell adhesion factors and extracellular matrix factors have a strong influence on
glioma invasion. The molecular mechanisms that enhance the invasiveness of glioma stem cells,
which have been investigated in recent years, have also been clarified. In addition, it has been
discussed from both basic and clinical perspectives that current therapies can alter the invasiveness
of tumors, and there is a need to develop therapeutic approaches to glioma invasion in the future.
In this review, we will summarize the factors that influence the invasiveness of glioma based on
the environment of tumor cells and tissues, and describe the impact of the treatment of glioma
on invasion in terms of molecular biology, and the novel therapies for invasion that are currently
being developed.
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1. Introduction

Gliomas are primary brain tumors that arise in the brain parenchyma and have
histologically similar features to normal glial cells. Of these, glioblastoma is the most
common tumor in adults and is a biologically aggressive tumor characterized by high
cell density, pleomorphic tumors with mitosis, and either microvascular proliferation or
necrosis [1]. The extent of resection is the most important independent predictor of overall
survival (OS) and progression-free survival (PFS) [2], and an extent of resection of 78%
or higher is required to improve prognosis [3]. Although the development of assistive
technologies, such as awake surgery, intraoperative navigation, intraoperative magnetic
resonance imaging, and 5-amino levulinic acid (5-ALA), has improved the removal rate [4,5],
the prognosis for standard treatment remains unsatisfactory at approximately 15 months [2].
Tumor cells are highly infiltrative and often invade important brain regions, making it very
difficult to obtain a negative tumor margin. Even if a total resection is achieved, patients
often suffer from recurrence around the extraction cavity. Therefore, the control of invasive
lesions is one of the issues to be solved in the treatment of glioma. This article will review
the molecular mechanisms of glioma invasion, the impact of glioma treatment on invasion,
and the developing treatments for glioma invasion.

2. The Characteristics of Glioma Invasion
2.1. Cell Dynamics

Unlike metastatic brain tumors, glial-derived tumors are prone to invade the normal
brain. “Cell migration” is defined as the movement of cells from their original location to
another, whereas “cell invasion” is defined as the ability of cells to navigate through the
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extracellular matrix within a tissue or to infiltrate neighboring tissues [6]. Tumor cell inva-
sion involves four steps: (1) detachment from the primary tumor mass, (2) adhesion to the
extracellular matrix (ECM), (3) degradation of the ECM, and (4) movement and stretching
of the invading cells [7,8]. The invasion of glioma follows the nature of neural progenitor
cells [9], while glioma cells take the form of individual cells and cell clusters [7,8,10] and
infiltrate along blood vessels and nerve fibers by saltatory migration [11–13]. The migration
speed has been measured to be 51 to 100 µm/h [13–15]. Cell division is often observed at
the bifurcation of blood vessels [14].

2.2. Invasion to the Corpus Callosum and Subventricular Zone

The infiltration of glioma often presents with a butterfly appearance. Invasion through
the corpus callosum is seen in 14% of cases, and gliomas presenting with invasion of the
corpus callosum are more aggressive [16,17]. In highly invasive gliomas, invasion of the
subventricular zone is also often seen. In particular, glioma stem cells (GSCs) are prone
to invade the subventricular zone [18]. Invasion of the subventricular zone has a poor
prognosis and high recurrence rate [19–21]. Involvement of the subventricular zone is
associated with a high expression of pleiotrophin (PTN), also known as a heparin-binding
growth-associated molecule, which is exerted by neural progenitor cells. PTN binds to
secreted protein acidic and rich in cysteine (SPARC)/SPARC-like protein 1 (SPARCL1) and
heat shock protein 90B (HSP90B) as the partners, activates Rho/Rho-associated protein
kinase (ROCK) signaling, and promotes cell migration [22]. In addition, there are two types
of PTNs: immobilized pleiotrophin (PTN18), which promotes migration via the cell surface
receptor, the protein tyrosine phosphatase receptor zeta (PTPRZ1), and soluble pleiotrophin
(PTN15), which is mainly involved in promoting glioblastoma proliferation [23]. PTN
is a strong binder of glycosaminoglycans (GAGs) and has been shown to interact with
a variety of receptors, including proteoglycans PTPRZ and syndecans and GAG non-
containing integrin and nucleolin [24]. These interactions depend on the sulfation density
of GAGs and activate many intracellular kinases, which are involved in cell activation and
transformation [24,25].

Glioma infiltration of the subventricular zone is also related to C-X-C motif chemokine re-
ceptor type 4 (CXCR4)/C-X-C motif chemokine ligand 12 (CXCL12 or stromal derived factor-1,
SDF-1) [26]. The CXCR4/CXCL12 axis upregulates the downstream phosphoinositide-3
kinase/serine-threonine protein kinase B/nuclear factor-kappa B (PI3K/Akt/NF-κB) path-
way and is involved in cell survival, migration, and stemness [27]. Compared to non-
invasive tumor cells, gliomas have higher expression of CXCR4 [28]. CXCL12 induces
the invadopodia formation and the expression of membrane type-2 matrix metallopro-
teinase (MT2-MMP), which degrades the surrounding ECM and is involved in glioma
invasion [29,30]. Invadopodia consist of actin-rich protrusions that facilitate the invasion of
tumor cells from the tumor cell mass to the surrounding healthy parenchyma [31]. MMPs
are enriched and secreted at the tips of invadopodia, mediating the degradation of the
ECM [32].

3. Hypoxia

One of the mechanisms of cancer cell invasion is hypoxia-driven motility, which is
enhanced in hypoxic conditions [33]. Although oxygen is essential for the maintenance
of cell life, cancer cells proliferate so rapidly that insufficient angiogenesis results in the
formation of hypoxic areas. Hypoxia-inducible factor (HIF)-1α is an important factor
in hypoxic conditions. Semenza et al. found that HIF-1α is upregulated in cancer cells
under hypoxic conditions [34]. HIF-1α is normally subjected to prolyl hydroxylation under
normal oxygen conditions, and is further degraded by proteosomes after ubiquitination
by von Hippel–Lindau. In contrast, in hypoxic conditions, HIF-1α is not hydroxylated
and is transferred to the nucleus. As a result, it binds to HIF-1β and causes various gene
expressions related to angiogenesis, migration, cell survival, and glucose metabolism [35].
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Activation of the HIF-1 pathway is a common feature in glioma, and HIF-1 regulates
target genes in activators of angiogenesis and invasion in glioma [36]. In hypoxic areas,
HIF accumulates and enhances glioblastoma invasiveness through increased delta like
non-canonical Notch ligand 1 (DLK1) expression [37]. HIF-1α stabilizes and upregulates
the Notch intracellular domain (NICD) to activate the Notch pathway, which is involved in
maintaining GSCs [38] and enhancing cell invasion [39]. Activation of the PI3K/Akt/mTOR
pathway by HIF-1α has also been reported to cause enhanced invasiveness [40]. Thus, the
HIF-1 pathway contributes significantly to the invasiveness of glioma.

4. Factors Associated with ECM

Tumor cell adhesion and degradation to the ECM, which is important for tumor cell
invasion, involves various factors at the cell surface and in the intercellular space. The
tumor microenvironment provides gliomas with invasion, proliferation, and resistance
to treatment. The extracellular matrix plays roles in scaffolding and the maintenance of
tissue homeostasis, and its degradation and changes have a major impact on cancer in-
vasion. Factors involved in ECM adhesion include integrin, brain-specific angiogenesis
inhibitor (BAI1), cysteine-rich 61/connective tissue growth factor/nephroblastoma overex-
pressed (CCN1), proteoglycans, fibronectin, laminin, cadherin, collagen, CD44, and factors
involved in degradation include protease, such as matrix metalloproteinases (MMPs), a
tissue inhibitor of MMP (TIMP) [8]. In this section, we describe MMPs, integrin, CCN1,
and proteoglycans. The ECM and cell surface factors involved in glioma invasion are
summarized in Figure 1.
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4.1. Matrix Metalloproteinases (MMPs)

MMPs are members of the zinc-dependent endoproteases family that play a role in
ECM remodeling by degrading the proteins responsible for various ECM structures. In
malignant tumors, MMPs promote invasion and metastasis behavior in the epithelial-
mesenchymal transition (EMT) [41]. MMP-2 and MMP-9 are the most well-studied and
major promoters of tumor cell invasion. The expression of MMP-2 in glioma has been
reported to be an important key molecule involved in malignancy and invasion [42,43].
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MMPs are promoted by transforming growth factor (TGF)-β, a key molecule in the EMT,
while TIMPs are suppressed by TGF-β [41,44,45]. In addition, tumor cells use aerobic
glycolysis in energy metabolism despite adequate oxygenation; excess extracellular lactate
enhances the expression of MMP-2 and integrin αvβ3 via high expression of TGF-β2,
which enhances glioma cell migration [46,47]. Heparanase (HPSE) degrades heparan
sulfate and shortens the heparan sulfate chains on Syndecan-1, which makes the core
protein susceptible to degradation by protease. Furthermore, HPSE is involved in tumor
metastasis and angiogenesis by regulating the expression of downstream effector genes
such as HGF, MMP-9, and VEGF [48].

4.2. Integrin

Integrins are cell surface proteins that are key molecules involved in cell-extracellular
matrix adhesion and cell-cell adhesion, and play a role in initiating various signaling
cascades through the binding of α and β subunits. Twenty-four heterodimers are formed
from 18 α-subunits and 8 β-subunits, and the ligand preference is determined by collagen-,
laminin-, RGD motif-binding-, and leucocyte-specific receptors. Binding of integrins to the
ECM promotes proliferation, invasion, and metastasis. Integrins enhance pathways such
as the PI3K/AKT pathway, RAS, or small GTPases and mitogen-activated protein kinase
(MAPK). In glioblastomas, αvβ3 and αvβ5 are upregulated, and αvβ3 co-localizes with
MMP-2 in tumor cells [49]. TGF-β promotes glioma cell migration via αvβ3 integrin ex-
pression [50]. Collagen accumulation and crosslinking increase ECM stiffness and integrin
clustering promotes focal adhesions and drives tumor invasion [51,52].

4.3. Cysteine-Rich 61/Connective Tissue Growth Factor/Nephroblastoma Overexpressed (CCN1)

The Cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed
(CCN) protein family is found on the ECM and cell surface and is involved in cell-matrix in-
teractions, such as cell proliferation, attachment, migration, differentiation, wound healing,
and angiogenesis. CCN1 interacts with α6β1, αvβ3, αvβ5, and αIIβ3 integrins to trigger
downstream signals such as PI3K/Akt, TGF-β, and vascular endothelial growth factor
(VEGF) signaling [53–55]. CCN1 has been reported to be overexpressed in 48 to 69% of
primary gliomas and is associated with PFS and OS [55,56]. CCN1 is secreted by differen-
tiated glioblastoma cells rather than glioma stem cells, which promotes the migration of
macrophages into the tumor and contributes to GSC-dependent tumor progression [57].

4.4. Proteoglycans

The major extracellular matrix components of the adult brain are glycosaminoglycan
hyaluronic acid, proteoglycans of the lectican family, and link proteins [44]. Proteoglycans
(PGs) are molecules consisting of a core protein and GAG side chains such as chondroitin
sulfate (CS) and heparan sulfate (HS). Chondroitin sulfate proteoglycans (CSPGs) are
critical regulators of brain tumor histopathology, and the low content of CSPGs is related
to the active invasion of glioma cells [58]. Extracellular proteoglycans can bind to matrix
proteins, trapping ligands such as growth factors [59].

The lectical subfamily of CSPG includes aggrecan, syndecan, neurocan, versican, and
brevican. Syndecan-1, a transmembrane HS proteoglycan, is particularly upregulated in
glioblastoma and is activated in an NFκB-dependent manner. Syndecan-1 interacts with
HPSE and enhances growth factor signaling to promote the growth of glioma cells [60–62].
Moreover, brevican, a member of the lectican family of CSPG is upregulated in glio mas
and its expression induces glioma invasion, which is especially enriched in the glioma
stem cell (GSC) niche [63]. The HPSE is an endo-β-D-glucuronidase that degrades the
heparan sulfate side chain of HSPG. It is an important regulator of ECM remodeling and
is involved in the growth and invasion of glioma [64]. HPSE upregulates extracellular
signal-regulated kinase (ERK) and AKT pathways to increase glioma cell proliferation and
worsen prognosis [64,65].
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5. Glioma Stem Cells (GCS)

Glioma stem cells (GSCs), also called glioma-initiating cells, are cellular subpopula-
tions that, like normal stem cells, are capable of self-renewal and differentiation to produce
secondary tumors. A heterogeneity is created by cells that have a tendency to differentiate
from the GSC at the top of the hierarchy [66]. Among them, GSCs are responsible for
the distinctive feature of glioma invasion [67]. GSCs are characterized by the presence of
CD133, CD44, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) as sur-
face markers [68]. The factors involved in the invasion of glioma stem cells are summarized
in Figure 2.
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The expression of delta-like canonical Notch ligand (DLL)-1, Notch1, nestin, and Sox2
is upregulated in GSCs compared to conventional cell lines [69]. In particular, Notch is a
signal that functions in cell fate determination during tissue construction, and is involved
in the maintenance and regulation of neural stem cells and progenitor cells differentiation
during central nervous system development [70]. In white-matter GSCs, Notch-induced
transcription factor Sox9 upregulates Sox2 and attenuates Notch1 promoter methylation
to enhance Notch1 expression. This positive feedback loop increases invasiveness and
worsens the prognosis [71]. Notch1 also activates the PI3K/Akt pathway and stimu-
lates β-catenin and NF-κB signaling to promote the migratory and invasive properties
of glioma [69,72,73]. In addition, Notch1 signaling upregulates CXCR4 expression and
activates the CXCL12/CXCR4 autocrine/paracrine loop to enhance GSC survival and
invasiveness [69,74]. Thus, signaling through increased Notch expression in glioblastoma,
especially in GSCs, is thought to be highly relevant to tumor invasion, and Notch inhibitors
are being developed [70,75].

CD44 is a transmembrane glycoprotein that mediates cell-cell or cell-matrix interac-
tions with hyaluronic acid (HA) as the main ligand, and is strongly involved in tumor
progression, apoptosis evasion, multidrug resistance, and cell invasion. CD44-mediated
signaling has been implicated in MMP-mediated matrix degradation, tumor growth, and
tumor invasion [76]. HA is a major component of white matter, a frequent route of
glioma invasion, and increases the invasiveness of glioblastoma in a dose-dependent
manner [77,78]. CD44 binding with HA stimulates a number of signaling pathways, such
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as PI3K/Akt/mTOR, Ras, focal adhesion kinase (FAK), and ERK signaling, and induces
MMP-9 expression [79,80]. Receptors for HA-mediated cell motility (RHAMM), CD44, and
osteopontin, which is a ligand for CD44, are involved in HA-mediated migration, invasion,
proliferation, radiation therapy, and chemotherapy resistance [80,81]. Tumor-associated
mesenchymal stem cells interact with glioblastoma and increase invasiveness by remodel-
ing the ECM. Tumor-associated mesenchymal stem cells increase HA levels in the ECM by
upregulating HA synthase-2 (HAS2) expression [82].

6. Epithelial-Mesenchymal Transition (EMT)

Cell invasion requires a reduction in the adhesive connections that maintain cell-
to-cell adhesion. The EMT is a reversible change found in cells of epithelial origin, and
mesenchymal phenotype changes are associated with increased cell motility and resistance
to apoptosis [83]. In general, the EMT produces cell detachment from the basement
membrane and the formation of a mass of mesenchymal cells at sites away from the origin.
EMTs are classified into three subtypes according to the biological setting. Type 1 EMT
is associated with embryogenesis and gives rise to the mesoderm and endoderm and to
mobile neural crest cells. Type 2 EMT is a program that begins as part of a tissue repairment
that normally generates fibroblasts and other related cells in order to reconstruct tissues
following trauma and inflammatory injury. Unlike these subtypes, type 3 EMT occurs in
neoplastic cells. Carcinoma cells undergoing a type 3 EMT may invade and metastasize [83].
The term proneural–mesenchymal transition is also used for glioma, as well as EMTs
for other aggressive cancers [84]. The EMT is an important driver of invasiveness and
recurrence of glioblastoma, with cellular reprogramming causing cytoskeletal remodeling
and loss of adhesion molecules [85]. The main executors of the EMT are EMT-activated
transcription factors (EMT-TF), such as SNAIL, TWIST, and ZEB family [86]. SNAIL induces
MMP-9 expression triggered by TGF-β [87]. Notch signaling is required for the conversion
of hypoxic stimuli into the EMT [39].

TGF-β is a major key molecule that induces the EMT via various transcription fac-
tors [88]. TGF-β is an important cytokine that maintains homeostasis, and the TGF-β
pathway acts as an oncogenic factor to induce angiogenesis, immunosuppression, cell
invasion, and proliferation in tumor progression, including glioblastoma [89,90]. TGF-β1
activates a variety of downstream signaling pathways, including PI3K, Smads, and MAPK,
which are key players of the TGF-β-induced EMT [83,86]. Proteolytic degradation by
MMPs plays a central role in the EMT process, and the EMT-related pathway is one of the
regulatory mechanisms for MMP expression. In oral squamous cell carcinoma, TGF-β1
facilitates MT1-MMP-mediated MMP-9 activation and stimulates invasion of the tumor in
collaboration with MT1-MMP and MMP-2 [91]. Elevated TGF-β activity is associated with
poor prognosis in glioma patients [89,92]. In addition, TGF-β is also involved in tumor
initiation and recurrence via CD44 and inhibitors of DNA-binding protein (Id)-1 [93].

7. Effect of Glioma Therapy on Tumor Invasion

As mentioned above, various molecular signaling pathways are intricately involved
in the invasion of glioma cells. In the current treatment of glioma, the preclinical impact on
glioma invasion is being studied.

7.1. Radiation Therapy

The standard of care for glioma is postoperative chemotherapy and radiation therapy.
Radiation therapy is the main treatment modality for glioma lesions that cannot be safely
resected. Whether or not the post-radiation microenvironment enhances invasiveness is
inconclusive. It has been reported that radiotherapy coupled with temozolomide (TMZ)
treatment has an additional effect of inhibiting the proliferation and migration of glioma
spheroids [94]. It is thought that the radiation-induced tumor bed effect reduces blood
flow, pH, and hypoxia, making the environment unsuitable for tumor cell survival [95,96].
However, it has been pointed out that radiation increases the invasiveness and motility of
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glioma [97,98]. Tsuji et al. reported that the secretion of CXCL12, VEGF-A, TGF-β1, and
TNFα is enhanced in the brain after irradiation, and that the microenvironment in the brain
in the chronic phase after irradiation is suitable for tumor cell growth and invasion [99]. In
experiments using cell lines, various changes have been observed in invasiveness caused by
radiation [100,101]. Radiation-induced damage of the tumor microenvironment may create
a tumor-susceptive niche that promotes the proliferation and invasion of the residual glioma
cells [102]. In a model experiment, multiple radiations altered glycosylated components (PG
and GAG) in normal brain tissue, reduced CSPG expression and CS in normal brain tissue,
and promoted residual glioma cell adhesion and proliferation [103]. In molecular biology,
radiation has been reported to activate MMP-2 and MMP-9 through p53, resulting in
increased invasiveness [104,105]. It was also suggested that radiation increases the activity
of MMP-2 and MMP-9 through the expression of integrin αvβ3 [106]. PI3K-mediated
activation of the Rho signaling pathway is associated with radiation-induced invasion [98].
HIF-1α is also an important molecule that contributes to radiation-induced enhancement of
invasiveness. It has been reported that irradiation stabilizes HIF-1α by destabilizing prolyl
hydroxylases (PHD)-2 and protein von Hippel-Lindau (pVHL) [107]. Ionizing radiation
enhances the invasive capacity of GSCs through stabilization of HIF-1α and activation of
junction-mediated protein [108].

However, although radiation therapy may change the tumor microenvironment to in-
crease the invasiveness of tumors, radiation is still an important modality for the treatment
of tumors. It has been reported that high linear energy transfer (LET) irradiation, such as
alpha and carbon radiation, suppresses migration, and future development of radiotherapy
is expected [109,110].

7.2. Temozolomide (TMZ)

TMZ is an alkylating oral anticancer drug that has been used in conjunction with
postoperative radiation therapy as the standard treatment for glioma [2]. It is one of few
anticancer drugs that can pass through the blood-brain barrier (BBB) and is the mainstay of
postoperative chemoradiotherapy in the current treatment of glioma. It is unclear whether
TMZ enhances the invasion of glioma. MMP-2 secretion and invadopodia formation is
enhanced by radiation and TMZ therapy [111,112]. There are reports that the expression of
CXCR4 and VEGF and the activity of MMP-2 and MMP-9 were reduced by TMZ [113,114].

7.3. Anti-VEGF Therapy

VEGF is a stimulator of angiogenesis that is frequently expressed in glioblastoma; it
is commonly attributed to the autocrine and paracrine production of VEGF-A. Inhibiting
VEGF signaling suppresses the tumor growth of glioma xenografts in model mice [115,116].
Anti-VEGF antibody is a monoclonal antibody to VEGF and has a certain effect on the
tumor control of primary or relapsed glioblastoma [117–119]. Although it improved PFS in
primary and recurrent glioblastoma, it was not effective in improving OS.

There is some preclinical evidence that antiangiogenic therapies promote glioma cell in-
vasiveness. Anti-VEGF therapy induces a vascular gradient, which, in turn, induces tumor
hypoxia, macrophage infiltration, mesenchymal transition, stem cell marker expression,
and increased invasiveness [120]. It has been reported that hypoxia induced by anti-VEGF
enhances angiogenesis, tumor survival, invasion, and resistance to therapy. Keunen et al.
reported that, in a rat-patient-derived xenograft model, bevacizumab treatment resulted
in a decrease in tumor volume and tumor blood flow, but a 68% increase in infiltrating
cells, which was associated with the enhanced expression of HIF-1 and activation of the
PI3K pathway and Wnt-signaling pathway [121]. Shimizu et al. also reported that be-
vacizumab upregulates δ-catenin in glioma cells and increases invasiveness [116]. It has
been reported that suppression of VEGF increased CD44 expression and that GSCs became
invasive [122]. Administration of bevacizumab causes the dose-dependent accumulation
of collagen, MMP-2, and MMP-9, which play important roles in the adhesion process of
tumor cell invasion and degradation of the cellular matrix [123]. Although invasiveness is
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perhaps enhanced by anti-VEGF therapy, the prognosis is not necessarily poor [118,119,124].
Combination with drugs that suppress invasion, such as γ-secretase inhibitor, has been
used in an attempt to mitigate the bevacizumab-induced invasive effect [125].

7.4. Glucocorticoid

Glioma is often associated with prominent cerebral edema, which can cause mass effect
and elevated intracranial pressure, affecting the prognosis [126]. Glioblastoma-induced
cerebral edema has been conventionally treated with dexamethasone (DEX). Glioblastoma-
induced brain edema is associated with vasogenic edema due to extravasation by disruption
of the BBB, and DEX improves edema by increasing the expression of tight junction genes
that regulate the endothelial permeability of the BBB [127]. The effect of DEX on the invasive
properties of glioma is not well understood. Luedi et al. reported that DEX increases inva-
sion, proliferation, and angiogenesis in GSCs, and that patients with a high DEX-regulated
gene signature derived from DEX-treated GSCs showed worse prognosis [128]. It has also
been reported that glucocorticoid receptor-β interacts with β-catenin and is involved in
proliferation and migration [129]. DEX also affects the tumor microenvironment. The
combination of TMZ and DEX affects proteoglycan structure and composition in normal
brain tissue, resulting in worsened brain ECM, which is favorable for the progression of
residual glioma cells; a high DEX dose results in downregulation of the transcription of
PG-coding genes, whereas a high DEX dose and TMZ predominantly affects the polysac-
charide GAG chains of the molecules [130]. In contrast, DEX inhibits migration via the
suppression of glucocorticoid receptor-dependent ERK1/2 MAPK pathway and MMP-2
secretion [131,132]. Guan et al. reported that DEX inhibits cell proliferation and promotes
migration and invasion by upregulating aquaporin-1 (AQP1) in C6 cells [133].

8. Treatment of Invasive Glioma and Its Future Development

The suppression of glioma invasion is one of the therapeutic approaches in gliomas
that spread invasively to the brain and offer limited resection. However, treatments that
inhibit invasion are still being studied at present. In this section, we will discuss treatments
for invasion that are undergoing clinical trials and therapeutic development.

8.1. Tumor-Treating Fields (TTF)

Tumor-treating fields (TTF) is a non-invasive treatment that uses electrode pads on the
scalp to deliver a weak, sustained 100 to 300 kHz mid-frequency current to brain tumors.
TTF works by selectively inhibiting the mitosis of brain tumor cells and can prolong
survival by 4.9 months [134]. In addition to inhibiting cell proliferation, TTF has also been
reported to inhibit EMT, endothelial cell angiogenesis, and migration by downregulating
PI3K/Akt/NF-κB pathways [135].

8.2. Molecular Target Drugs

As our knowledge of the invasion of various cancers increases, therapies that target
the molecular mechanisms that lead to cancer invasion are being developed. The major
therapeutic agents that are currently in development are summarized in Table 1.

MMP inhibitor: Degradation of the ECM has been well observed in tumor tissues,
and MMPs have been considered a good target for tumor invasion. However, the selectivity,
low bioavailability, and low metabolic profile of broad-spectrum MMP inhibitors limited
the efficacy of MMP inhibitors and did not justify continuation of the clinical trial [136].
MMP inhibitors were expected to have an effect on the invasiveness of tumor cells, but
clinical trials for gliomas to date have not shown positive results. In a mouse model of
colorectal carcinoma, AB0041 and AB0046, which are monoclonal anti-MMP-9 antibodies,
were found to inhibit tumor growth and metastasis [137]. Since bevacizumab increases the
expression of MMP-9 [138], anti-MMP-9 therapy may be effective against bevacizumab-
induced resistance and invasiveness. Clinical trials of GS5745, a monoclonal antibody of
MMP-9, are in progress.
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Integrin inhibitor: Cilengitide was one of the earliest integrin antagonists to enter
clinical trials [139]. In a rat model, bevacizumab treatment caused tumor cells to invade the
brain parenchyma along with blood vessels, but cilengitide administration suppressed the
invasion of tumor borders, suggesting the involvement of integrin in bevacizumab-induced
glioma invasion [140]. The phase 2 study of cilengitide showed prolongation of median OS
by adding cilengitide to standard treatment, and development was expected [141]; however,
phase 3 studies such as CENTRIC failed to show OS prolongation [142] and development
was discontinued. The addition of cilengitide to oncolytic virus therapy has been shown
to enhance antitumor effects, and cilengitide may undergo re-evaluation as virus therapy
develops [143].

Notch inhibitor: The expression of Notch is increased in GSCs, and Notch inhibition
by γ-secretase inhibitor has been attempted. γ-secretase cleaves Notch to form the NICD,
which translocates to the nucleus. γ-secretase inhibitors can inhibit Notch signaling. Jin et al.
showed that MRK-003, an inhibitor of Notch and Akt phosphorylation, suppresses invasion
but not mitosis when combined with MK-2206, an Akt phosphorylation inhibitor [144]. The
Notch pathway blockade by γ-secretase inhibitor inhibited tumor growth and neurosphere
formation in culture, and also prolonged survival in xenograft mice [145]. However, in
a phase 2 study, RO4929097, a γ-secretase inhibitor, was evaluated for 6 month PFS and
neurosphere formation in patients with recurrent glioblastoma, but failed to demonstrate
efficacy [146]. Although no effective treatment for GSCs has been established yet, their
treatment may remain an attractive strategy.

TGF-β inhibitor: TGF-β inhibitor has been reported to have inhibitory effects on the
metastasis of breast, colon, pancreatic, and gastric cancers [147–150]. LY2109761, a TGF-β
receptor inhibitor, not only enhanced the effects of radiotherapy but also inhibited cell
migration via the SMAD4 signaling pathway [150]. In glioblastoma treatment, Zhang et al.
reported that LY2109761 suppressed migration in vitro, and LY2109761 added to RT + TMZ
significantly inhibited tumor growth in model mice [151]. Since it is not an invasive model,
however, the inhibition of invasion in vivo was inconclusive. A phase 2b study of AP-12009
(trabedersen), a phosphorothioate antisense oligodeoxynucleotide, a specific target for the
mRNA of TGFβ2, showed safety against chemotherapy in recurrent high-grade glioma
and significant improvement in the 14-month tumor control rate in anaplastic astrocytoma.
However, the phase 3 study, SAPPHIRE, was discontinued due to a lack of patients [152].
Compared with chemoradiotherapy, galunisertib, a TGF-β receptor inhibitor, had a higher
disease control rate but shorter PFS and no difference in efficacy [153].

PI3K inhibitor: Tumor metastasis and invasion are enhanced by activating the PI3K/
Akt pathway through regulating the expression of MMP [154]. In glioblastoma, the PI3K
pathway is activated by changes in epidermal growth factor receptor (EGFR) amplifi-
cation and phosphatase and tensin homolog (PTEN) mutation; and PTEN changes are
a poor prognostic factor in glioblastoma [155]. It has been reported that a number of
inhibitory agents of PI3K were preclinically effective in inhibiting cell proliferation and
invasion [156–159]. The PI3K inhibitor PX-866 was well tolerated in a phase 1 trial, but
failed to meet its predefined efficacy endpoint in a phase 2 trial in patients with recurrent
glioblastoma [160]. A phase 1 study of voxtalisib, the PI3K/mTOR inhibitor, plus TMZ
with or without radiotherapy, in patients with high-grade gliomas demonstrated favorable
safety; however, no conclusion could be drawn regarding the efficacy because of the small
number of patients and short follow-up [161]. Buparlisib, on oral pan-PI3K inhibitor, has
high penetration across the BBB. A phase 2 study of buparlisib in recurrent glioblastoma
patients showed minimal efficacy. The lack of tumor response was explained by incomplete
PI3K inhibition in the tumor tissue [162].
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Table 1. Molecular-targeted drugs and clinical trials related to glioma invasion.

Inhibitor Target Molecule Clinical Trial Phase Reference

MMP inhibitor AG3340 (prinomastat) MMP Phase 2 NCT00004200
GS5745
(andecaliximab) MMP-9 Phase 1, ongoing NCT03631836

Integrin inhibitor cilengitide integrin Phase 3 Stupp et al. (2014) [142]
Notch inhibitor RO4929097 γ-secretase inhibitor Phase 2 Peereboom et al. (2021) [146]
TGF-β inhibitor AP-12009 (trabedersen) TGF-β2 Phase 3 Bogdahn et al. (2011) [152]

LY2157299
(galunisertib) TGF-β receptor I Phase 1b/2a Wick et al. (2020) [153]

PI3K inhibitor PX-866 PI3K Phase 2 Pitz et al. (2015) [160]
XL-765, SAR245409
(voxtalisib) PI3K/mTOR Phase 1 Wen et al. (2015) [161]

NVP-BKM120
(buparlisib) PI3K Phase 2 Wen et al. (2019) [162]

8.3. Stem Cell Therapy

In recent years, research has been conducted on therapies using stem cells for drug
delivery. Neural stem cells, mesenchymal stem cells, and induced pluripotent stem cells
all accumulate in tumors [163,164]. Radioisotope transporters, tumor lytic viruses, suicide
genes, immunomodulatory agents, anti-angiogenic factors apoptosis-inducing agents, etc.,
are placed on the stem cells, injected locally or intravenously, and accumulate in the tumor
to produce a therapeutic effect [165–168].

In suicide gene therapy, tumor cells expressing genes such as herpes simplex virus
thymidine kinase (HSV-TK) and cytosine deaminase (CD) can metabolize the prodrugs,
resulting in apoptosis [169]. In phase 3 clinical trial using fibroblasts with suicide genes
incorporated, the significant improvement in PFS, median survival and survival rate was
not observed, suggesting that the low diffusibility of suicide genes is a problem [170].
Therefore, the use of stem cells, which have a high ability to accumulate in tumors, as a
vehicle for the delivery of suicide genes to glioma cells infiltrating the brain parenchyma, is
being attempted for therapeutic development [165,171].

8.4. Viral Therapy

Antitumor therapy using oncolytic viruses (viral therapy) is a field derived from gene
therapy. Proliferative viruses selectively proliferate in the tumor cells and exhibit antitumor
effects through tumor lysis and inducing tumor immunity. It has been reported that the
oncolytic virus has antitumor effects in mouse models of invasive tumors using GSCs
due to its extensive distribution and infectivity [67]. Microenvironmental changes such as
increased tumor vascular permeability and elevated expression of inflammatory cytokine
genes induced by viral administration induce the resistance to viral therapy [172]. Therefore,
there has been an attempt to modify the microenvironment and enhance the antitumor
effects of viral therapy [143,173,174]. It is also known that tumor lytic virus activates
Notch signaling in non-infected cells, and it has been reported that the combination of
oncolytic virus and Notch inhibitor suppressed the cell proliferation of non-infected cells
and enhanced the effect of tumor lytic virus [175]. In the future, viral therapy will continue
to evolve with various studies and improvements in the approach to invasive lesions.

9. Conclusions

The high invasiveness of gliomas is due to a complex combination of factors, including
hypoxia, ECM, cancer stem cells, EMT, etc. The impact of glioma treatment on invasiveness
is not yet fully understood, and further research is needed in this area. Establishing a
treatment for glioma invasion will be one of the main topics of therapeutic development in
the future.
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