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Staphylococcal and streptococcal superantigens are virulence factors that cause toxic

shock by hyperinducing inflammatory cytokines. Effective T-cell activation requires

interaction between the principal costimulatory receptor CD28 and its two coligands,

B7-1 (CD80) and B7-2 (CD86). To elicit an inflammatory cytokine storm, bacterial

superantigens must bind directly into the homodimer interfaces of CD28 and B7-2.

Recent evidence revealed that by engaging CD28 and B7-2 directly at their dimer

interface, staphylococcal enterotoxin B (SEB) potently enhances intercellular synapse

formation mediated by B7-2 and CD28, resulting in T-cell hyperactivation. Here, we

addressed the question, whether diverse bacterial superantigens share the property

of triggering B7-2/CD28 receptor engagement and if so, whether they are capable

of enhancing also the interaction between B7-1 and CD28, which occurs with an

order-of-magnitude higher affinity. To this end, we compared the ability of distinct

staphylococcal and streptococcal superantigens to enhance intercellular B7-2/CD28

engagement. Each of these diverse superantigens promoted B7-2/CD28 engagement

to a comparable extent. Moreover, they were capable of triggering the intercellular

B7-1/CD28 interaction, analyzed by flow cytometry of co-cultured cell populations

transfected separately to express human CD28 or B7-1. Streptococcal mitogenic

exotoxin Z (SMEZ), the most potent superantigen known, was as sensitive as SEB,

SEA and toxic shock syndrome toxin-1 (TSST-1) to inhibition of inflammatory cytokine

induction by CD28 and B7-2 dimer interface mimetic peptides. Thus, superantigens act

not only by mediating unconventional interaction between MHC-II molecule and T-cell

receptor but especially, by strongly promoting engagement of CD28 by its B7-2 and

B7-1 coligands, a critical immune checkpoint, forcing the principal costimulatory axis

to signal excessively. Our results show that the diverse superantigens use a common

mechanism to subvert the inflammatory response, strongly enhancing B7-1/CD28 and

B7-2/CD28 costimulatory receptor engagement.
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INTRODUCTION

Bacterial superantigens are potent virulence factors secreted by
Staphylococcus aureus and Streptococcus pyogenes that induce
toxic shock by activating a cellular immune response, orders
of magnitude greater than that elicited by regular antigens,
leading to an ’inflammatory cytokine storm’. Classic work has
shown that superantigens bind directly as intact proteins to most
major histocompatibility class II (MHC-II) and T-cell receptor
(TCR) molecules outside their antigen-binding domains, linking
them while bypassing the restricted presentation of conventional
antigens which typically activate less than 1% of T cells, thereby
activating up to 20–30% of T cells (1–3). More recent work
revealed that T-cell activation by superantigens requires, in
addition, their direct binding to the principal costimulatory
receptors, CD28 (4) and its coligand, B7-2 (CD86) (5). Together,
these superantigen engagements result in a massive induction
of inflammatory cytokines that mediate toxic shock, including
interleukin-2, interferon-γ (IFN-γ) and tumor necrosis factor.

CD28 is a critical regulator of the immune response (6–8).
Expressed constitutively on T cells, CD28 is a homodimer that
interacts with its B7 coligands expressed on antigen-presenting
cells, transducing the signal essential for T cell activation (7–10).
Whereas B7-2 is expressed constitutively, CD28 coligand B7-1
(CD80) is induced gradually during the course of an immune
response (10, 11); hence, the B7-2/CD28 interaction transmits the
earliest signal induced by an antigen (12, 13).

Induction of inflammatory cytokine gene expression
in human peripheral blood mononuclear cells (PBMC)
by superantigen toxins depends on a 12 amino acid β-
strand(8)/hinge/α-helix(4) toxin domain, remote from the
MHC-II and TCR binding sites, that shows overall spatial
conservation among diverse superantigens (14). A peptide
mimetic of the β-strand(8)/hinge/α-helix(4) domain in the
prominent superantigen, staphylococcal enterotoxin (SE) B,
proved to be an effective antagonist not only of SEB but also
of SEA, streptococcal pyrogenic exotoxin A (SPEA) and toxic
shock syndrome toxin-1 (TSST-1), capable of attenuating
the induction of inflammatory cytokines by these toxins in
human peripheral blood mononuclear cells (PBMC) and
of protecting mice from lethal challenge by each of these
superantigen toxins (14–16). This finding led subsequently to
the discoveries of CD28 (4) and its coligand B7-2 (5) as novel
superantigen receptors to which the superantigen must bind
in order to induce an inflammatory cytokine storm. Through
their conserved β-strand(8)/hinge/α-helix(4) domain, essential
for superantigen action (4, 14–16), superantigens engage CD28
directly at its homodimer interface (4). Moreover, using its
β-strand(8)/hinge/α-helix(4) domain, the superantigen binds
not only to the homodimer interface of CD28 but also to the
crystallographic dimer interface of its coligand, B7-2 (5). This

Abbreviations: SE, staphylococcal enterotoxin; SPEA, streptococcal pyrogenic

exotoxin A; SMEZ, streptococcal mitogenic exotoxin Z; TSST-1, toxic shock

syndrome toxin-1;MHC-II, major histocompatibility class II; TCR, T-cell receptor;

IFN-γ, interferon-γ; PBMC, peripheral blood mononuclear cells; APC, antigen-

presenting cell; KD, dissociation constant.

dual binding is critical for the induction of toxicity (4, 5).
Inhibiting access of a superantigen to CD28, with short peptide
mimetics of the β-strand(8)/hinge/α-helix(4) superantigen
domain or of the CD28 homodimer interface, suffices to
attenuate pro-inflammatory signaling by superantigens in
human PBMC and protects mice from lethal superantigen
challenge (4, 14, 17). Short peptide mimetics of the B7-2 dimer
interface bind diverse superantigens, prevent binding of SEB
to cell-surface B7-2 or CD28, inhibit superantigen-mediated
induction of interleukin-2, IFN-γ and tumor necrosis factor in
human PBMC, and are effective in vivo, protecting mice from
lethal SEB challenge (5, 18).

A molecular mechanism for how this dual binding achieves
signaling for T-cell hyperactivation was provided by study of SEB
(5). Although in both CD28 and B7-2, the dimer interfaces (6, 19)
are remote from the domains where these two costimulatory
receptors engage one another, by binding into both dimer
interfaces, SEB potently enhances the interaction between B7-2
and CD28 (5). Thus, SEB directly facilitates the interaction of
B7-2 with CD28 to form the costimulatory axis (5).

Here, we asked whether the ability of SEB to trigger B7-
2/CD28 receptor engagement represents a general property of
the bacterial superantigen toxin family. Moreover, given that the
B7-1 coligand binds CD28 with an order of magnitude higher

FIGURE 1 | Conservation of the β-strand(8)/hinge/α-helix(4) domain in the

bacterial superantigen family. (A) Amino acid sequences of the

β-strand(8)/hinge/α-helix(4) domain (residues 145-156 in SEA) in

representative streptococcal superantigens (top) and staphylococcal

superantigens (bottom). Names of superantigens studied here are highlighted

in blue. (B,C) The β-strand(8)/hinge/α-helix(4) domain shows high structural

conservation among diverse superantigens (14). In cartoon structure of SEA

[5fk9.pdb; (25)], the β-strand(8)/hinge/α-helix(4) domain is depicted in red,

residues contacting the TCR (25) are in blue, and residues contacting the

MHC-II (26) in orange (B). Degree of amino acid sequence conservation

among superantigens is mapped onto the SEA structure using Consurf (C).

Frontiers in Immunology | www.frontiersin.org 2 April 2019 | Volume 10 | Article 942

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Popugailo et al. Superantigens Trigger B7/CD28 Costimulatory Engagement

FIGURE 2 | Staphylococcal and streptococcal superantigens trigger intercellular CD28/B7-2 synapse formation. (A–E) HEK293T cells transfected in triplicate to

express CD28/GFP fusion protein (green label) were incubated with HEK293T cells transfected to express B7-2/Cherry fusion protein (red label), in absence (blue

bars) or presence of the indicated superantigen at concentrations shown (red orange bars). As negative control served B7-2C/Cherry, which lacks the ability to bind

CD28 (cyan bars). Intercellular CD28/B7-2-dependent synapse formation was scored using flow cytometry to quantitate per cent doubly labeled cells (error bars,

SEM; n = 3). Comparisons were made using one-tailed unpaired Student’s t-test; *p < 0.05, **p < 0.005, ****p < 0.0001.

affinity than does B7-2 (20), we asked whether superantigens
might be capable of enhancing even the interaction between B7-1
and CD28.

MATERIALS AND METHODS

Superantigens
SPEA was from Toxin Technology (Sarasota, FL). Chromosomal
DNA isolated from S. aureus COL, from SEA- and TSST-1-
producing strains of S. aureus, and from a SMEZ-producing
strain of Streptococcus pyogenes was used to clone SEB, SEA,
TSST-1 and SMEZ genes, respectively, into pHTT7K (21) and
express them in E. coli as the mature proteins with an N-terminal
His6-tag (4, 5). Inserts were verified by DNA sequencing. Total
protein was loaded onto a His·Bind column (Novagen) and
eluted stepwise with imidazole. Recombinant proteins recovered
after dialysis were >98% pure on SDS-PAGE and >98%
homogeneous as monomer upon analytical gel filtration through
a 1 × 30 cm Superdex 75 column calibrated with molecular
weight standards (GE Healthcare-Amersham Pharmacia) from

which protein was eluted at a flow rate of 1 ml/min. Recombinant
SEB was lethal to mice.

CD28 and B7 Expression Vectors
Vectors expressing cell-surface CD28, CD28 fused C-terminally
to GFP, cell-surface B7-2 and B7-2 or B7-2C fused C-terminally
to Cherry have been described (4, 5). Vector expressing B7-1 was
generated by cDNA synthesis of human CD80 (NM_005191.3)
from total human PBMC RNA using Verso RT-PCR kit
(ABgene). CD80 cDNA was generated using KOD polymerase
(Novagen) with phosphorylated PCR primers 5′-GACGTCGAC
ATG GGC CAC ACA CGG AGG and 5′-CAC GCG GCC GCT
TAT ACA GGG CGT ACA CTT TC CC. The PCR product was
inserted into pEGFP-N3 DNA (Clontech) that had been digested
with SalII and NotI and lacked the GFP region, using Fast-Link
DNA Ligation Kit (Epicenter). Vector expressing B7-1 fused C-
terminally to Cherry was generated from B7-1 cDNA vector
template with phosphorylated PCR primers 5′-TAC TCG AGA
TGG GCC ACA CAC GGA GG and 5′-GTC CGC GGT ACA
GGGCGTACACTT TCCCT TC, deleting the B7-1 termination
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FIGURE 3 | SMEZ triggers B7-2/CD28 synapse formation: contour plots. Contour plots are shown for a representative experiment in Figure 2E, upon incubation of

cells expressing CD28/GFP with cells expressing B7-2/Cherry (A–D) or B7-2C/Cherry (E). Incubation was done in the presence of the indicated concentrations of

SMEZ from 0 to 1µg/ml; per cent doubly labeled cells is shown in upper righthand corner of each panel.

codon. Upon digestion with XhoI and SacII, the PCR product was
inserted into pmCherry-N1 DNA (Clontech).

B7/CD28 Interaction
To assay the effect of superantigens on intercellular B7-
2/CD28 synapse formation by flow cytometry, vectors expressing
CD28/GFP and B7-2/Cherry fusion proteins were used that
leave the extracellular ligand binding domains intact. HEK-293T
cells, separately transfected with>75% efficiency using Turbofect
Transfection Reagent (Thermo Scientific) and 6 µg of expression
vector DNA per 5ml of cells at a density of 105/ml to express
CD28/GFP (green) and B7-2/Cherry or B7-2C/Cherry (red),
were co-incubated for 3 h at room temperature at a concentration
of 105 cells/ml each. Synapse formation between cell populations
was analyzed by flow cytometry (Eclipse Flow Cytometry System,
Sony), scoring the percentage of events positive for green and
red using FlowJo vX.0.6 software. Contour plots were generated
using FlowJo vX.0.6 software. Synapse formation between cells
expressing CD28/GFP and B7-1/Cherry was assayed likewise.

Induction of IFN-γ Expression
Human PBMC were separated on Ficoll Paque (Amersham),
washed twice with 50ml of RPMI 1640 medium, resuspended at
4× 106 cells/ml and cultured in this medium supplemented with
2% fetal calf serum, 2mM glutamine, 10mM MEM nonspecific
amino acids, 100mMNa-pyruvate, 10mMHepes pH 7.2, 50µM

2-mercaptoethanol, 100 U/ml penicillin, 100µg/ml streptomycin
and 5µg/ml nystatin. SMEZ was added to 10 ng/ml. Secreted
IFN-γ was quantitated in triplicate with Quantikine ELISA kit
(R&D Systems).

Evolutionary Conservation of Superantigen
Protein Sequences
Schematic models of protein structure were created in PyMol
(www.pymol.org). To estimate the evolutionary conservation
of amino acid positions in superantigen and superantigen-like
protein molecules, based on phylogenetic relationships between
homologous sequences, the ConSurf server was used [(22,
23); http://consurf.tau.ac.il/2016/]; amino acid sequences were
analyzed using BLAST and multiple sequence alignment was
performed using CLUSTALW.

RESULTS

A β-Strand(8)/Hinge/α-Helix(4) Domain Is
Conserved in Sequence and Structure
Among Staphylococcal and
Streptococcal Superantigens
A dodecapeptide sequence within SEA, TNKKNVTVQELD,
shows strong conservation among a broad range of
staphylococcal and streptococcal superantigens (Figure 1A). We
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FIGURE 4 | CD28 and B7-2 dimer interface mimetic peptides antagonize the

ability of SMEZ to induce IFN-γ in human PBMC. PBMC were induced with

SMEZ (10 ng/ml), in the absence or presence of 10µg/ml B7-2 dimer interface

mimetic peptide pB2-7 or CD28 dimer interface mimetic peptide p2TA.

Secreted IFN-γ is presented as means ± SEM; n = 3.

originally reported that in SEB, this sequence folds into a short β-
strand(8)/hinge/α-helix(4) domain that is far removed from the
domains that bind the classical superantigen receptors, MHC-II
molecule and TCR, and indeed is located on the opposite side
of the superantigen protein molecule (14). Overall folding of
this domain, highlighted in Figure 1B for SEA, is conserved
among SEA, SEB, SPEA and even TSST-1 which shares only 6%
sequence homology with SEB (14). Indeed, when we compared
the amino acid sequences of all the bacterial superantigens in a
protein data base to that of SEA, the β-strand(8)/hinge/α-helix(4)
domain was seated within the longest sequence showing high
conservation (Figure 1C).

Diverse Superantigens Promote B7-2/CD28
Costimulatory Receptor Engagement
Here, we examined whether the ability of SEB to promote
B7-2/CD28 receptor engagement is shared by other bacterial
superantigens. In order to study this specific interaction, we
needed to devise a method that monitors the formation of
the intercellular synapse between a cell expressing B7-2 on its
surface and a cell that expresses CD28 on its surface. Notably,
synapses formed between the antigen-presenting cell and the
T cell involve not only the MHC-II/TCR interaction and the
B7/CD28 interaction but also interaction between numerous
additional costimulatory ligand pairs whose expression not
only would confound measurement of intercellular synapse
formation resulting specifically from B7-2/CD28 engagement
but also could change as a result of exposure of the cells to a

superantigen, affecting thereby synapse strength. To measure the
B7-2/CD28 interaction in the absence of confounding ligand-
receptor interactions, we used flow cytometry to quantitate
formation of intercellular synapses mediated by CD28 and B7-2,
each expressed in its native state on the membrane of transfected
HEK293 cells (5). This allowed for selective monitoring of B7-
2/CD28 synapse formation, in the absence of any MHC-II
molecule or TCR.

As seen in Figures 2A–C, staphylococcal superantigen toxins
SEA as well as TSST-1 showed an ability similar to that
of SEB to enhance B7-2/CD28 synapse formation. Moreover,
streptococcal superantigens SPEA and streptococcal mitogenic
exotoxin Z (SMEZ) exhibited a comparable ability to promote
B7-2/CD28 engagement (Figures 2D,E). Representative contour
plots underlying the quantitative bar graphs of Figure 2 are
illustrated for SMEZ in Figure 3. B7-, a splice variant of B7-2 that
lost the ability to bind CD28 (27), failed to support significant
synapse formation, demonstrating specificity of the interaction.
Thus, each of these diverse superantigens shows a similar ability
to promote B7-2/CD28 engagement.

Independent evidence supporting a common mode of toxin
action is furnished by the similar sensitivity of SEB, SEA and
TSST-1 to inhibition by CD28- and B7-2-derived homodimer
interface mimetic peptides (4, 5). As shown in Figure 4, despite
its high toxicity, even SMEZ-induced expression of IFN-γ
in human PBMC was attenuated to a closely comparable
extent as for the other toxins by either CD28 dimer interface
mimetic peptide p2TA (4) or B7-2 dimer interface mimetic
peptide pB2-7 (5).

Diverse Superantigens Promote B7-1/CD28
Costimulatory Receptor Engagement
Whereas the coligand B7-2 exhibits a low affinity for CD28
(KD, 20µM), the second CD28 coligand, B7-1, binds CD28 far
more strongly (KD, 5µM) (20). We next examined whether
superantigens can enhance also the B7-1/CD28 interaction. This
is indeed the case. As seen in Figure 5, SEB, SEA as well as
SMEZ each enhanced intercellular B7-1/CD28 synapse formation
and did so to a similar extent. Corresponding contour plots are
illustrated for SEB in Figure 6.

DISCUSSION

Our results show that the ability of diverse staphylococcal and
streptococcal superantigens to bind directly to CD28 (4) and to
B7-2 (5) is matched by a general ability to promote B7-2/CD28
engagement underlying formation of the primary costimulatory
axis mandatory for T-cell activation. Indeed, these superantigens
promote not only the between B7-2 and CD28 which occurs
with low affinity but also the interaction between B7-1 and
CD28 which occurs with far higher affinity. This property of
the superantigen toxins can explain not only why they elicit
an inflammatory cytokine storm resulting in lethality and toxic
shock but also why homodimer interface mimetic peptides
derived from CD28 or from B7-2 attenuate their ability to induce
inflammatory cytokines (4, 5), illustrated here also for SMEZ.
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FIGURE 5 | Staphylococcal and streptococcal superantigens trigger CD28/B7-1 synapse formation. (A–C) HEK293T cells transfected in triplicate to express

CD28/GFP fusion protein (green label) were incubated with HEK293T cells transfected to express B7-1/Cherry fusion protein (red label), in absence (blue bars) or

presence of the indicated superantigen at concentrations shown (red orange bars). As negative control served B7-2C/Cherry, which lacks the ability to bind CD28

(cyan bars). Intercellular CD28/B7-1-dependent synapse formation was scored using flow cytometry to quantitate per cent doubly labeled cells (error bars, SEM; n =

3). Comparisons were made using one-tailed unpaired Student’s t-test; **p <0.005, ***p < 0.001, ****p < 0.0001.

FIGURE 6 | SEB triggers B7-1/CD28 synapse formation: contour plots. Contour plots are shown for a representative experiment in Figure 5A, upon incubation of

cells expressing CD28/GFP with cells expressing B7-1/Cherry (A–D) or B7-2C/Cherry (E). Incubation was done in the presence of the indicated concentrations of

SEB from 0 to 1µg/ml; per cent doubly labeled cells is shown in upper righthand corner of each panel.

Diverse superantigens differ significantly in terms of their mode
of interaction with the α- and β-chains of the MHC-II molecule:
SEB, TSST-1 and SPEA bind only to the α-chain and SMEZ binds
exclusively to the β-chain, whereas SEA engages both α- and β-
chains (28, 29). Despite these pronounced differences in binding
to MHC-II molecule, and a 40-fold difference in terms of toxicity
between SEB and SMEZ (30), each of the superantigens we
examined showed a very similar ability to promote B7-2/CD28

engagement. Moreover, this property extends to the ability of
staphylococcal as well as streptococcal superantigens to enhance
B7-1/CD28 engagement. Flow cytometry will not distinguish
a synapse formed through a single intercellular B7/CD28 pair
from one supported by multiple coreceptor pairs, yet each of
the superantigens we tested showed a pronounced stimulatory
effect on B7/CD28-mediated intercellular synapse formation,
observed already at low toxin concentrations. We conclude that
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FIGURE 7 | Superantigen binds directly into the homodimer interfaces of CD28 and B7-2, triggering B7-2/CD28 engagement that induces an inflammatory cytokine

storm. Schematic diagram showing the interaction of a superantigen, SMEZ, with CD28 on the T cell and B7-2 on the antigen-presenting cell (APC). For clarity, the

second monomer in the CD28 homodimer and engagement by SMEZ of TCR and MHC-II molecule were omitted. (A) Formation of the B7-2/CD28 costimulatory axis

enables expression of inflammatory cytokines. (B) Two superantigen molecules bind, through their accessible β-strand(8)/hinge/α-helix(4) domain (magenta), B7-2 and

CD28 at their homodimer interfaces within the extracellular domains. Binding of the superantigen potently enhances B7-2/CD28 engagement and inflammatory

signaling.

superantigens share the property of potently enhancing B7/CD28
costimulatory axis formation, critical for T-cell activation.

Thus, as initially demonstrated for SEB (5), bacterial
superantigens uniquely facilitate not one but two molecular
interactions that contribute to formation of the immunological
synapse between antigen-presenting cell and T cell: interaction
of MHC-II with TCR, acting as intermolecular bridge, and
interaction of B7-2 as well as B7-1 with CD28 as shown here,
forcing the principal costimulatory axis to signal excessively.
As shown previously, SEB, SEA as well as TSST-1 each bind
to CD28 at its homodimer interface (4) and SEB, TSST-1 as
well as SMEZ each engage B7-2 at its crystallographic dimer
interface (5), rendering their pro-inflammatory action sensitive
to homodimer interface mimetic peptides (18). Data with a CD28
dimer interface mimetic peptide extend this property to SMEZ
(Figure 4). Moreover, mice are protected from lethal challenge

with SEB, SEA, SPEA as well as TSST-1 by a peptide mimetic of
the conserved β-strand(8)/hinge/α-helix(4) superantigen domain
(14–16) that superantigens use to bind directly to the dimer
interfaces of CD28 (4) and B7-2 (5). The β-strand(8)/hinge/α-
helix(4) superantigen domain does not interact with the MHC-II
molecule (Figure 1B) (4, 14). Thus, it is not surprising that a
peptide mimetic of this domain failed to block binding of SEB
to MHC-II molecules (24) or, when applied in an excessively
high dose far beyond the optimal range (14), to protect MHC-II
transgenic mice from repeated challenges with SEB (24).

The present results reveal a common mechanism utilized
by a wide range of diverse superantigens, that is, to strongly
enhance formation of the B7/CD28 costimulatory axis. This
general mechanism of superantigen action is illustrated
schematically in Figure 7 for the case of B7-2/CD28 engagement.
Induction of inflammatory cytokines requires interaction
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between the antigen-presenting cell and the T cell, mediated
by engagement of B7-2 by CD28 at binding sites well
removed from their homodimer interfaces (Figure 7A). In
the presence of a superantigen, illustrated here for SMEZ,
direct binding of the superantigen to the CD28 and B7-
2 dimer interfaces potentiates the B7-2/CD28 interaction,
resulting in the induction of a harmful inflammatory cytokine
storm (Figure 7B).

The folded homodimer interface of CD28 is highly composite,
with regions both upstream and downstream from the compact
B7 binding domain contributing dimer interface contacts (4,
19). The folded homodimer interface of B7-2 is also highly
composite, as is its folded CD28 binding domain (5, 6). It
is thus not surprising that allosteric effects can and do occur
within these compact β-barrels. Mutating K118/K120 in the
CD28 dimer interface (4, 19) enhanced the avidity of B7-1

binding (31). We have shown that engagement of the CD28
and B7 dimer interfaces by diverse superantigens strongly
enhances intercellular synapse formation mediated by these
costimulatory receptors.
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