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Abstract

Background: Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory airway disease often associated with
cigarette smoke (CS) exposure. The disease is increasing in global prevalence and there is no effective therapy. A major step
forward would be to understand the disease pathogenesis. The ATP-P2X7 pathway plays a dominant role in murine models
of CS induced airway inflammation, and markers of activation of this axis are upregulated in patients with COPD. This
strongly suggests that the axis could be important in the pathogenesis of COPD. The aim of this study was to perform a
detailed characterisation of the signalling pathway components involved in the CS-driven, P2X7 dependent airway
inflammation.

Methods: We used a murine model system, bioassays and a range of genetically modified mice to better understand this
complex signalling pathway.

Results: The inflammasome-associated proteins NALP3 and ASC, but not IPAF and AIM2, are required for CS-induced IL-1b/
IL-18 release, but not IL-1a. This was associated with a partial decrease in lung tissue caspase 1 activity and BALF
neutrophilia. Mice missing caspase 1/11 or caspase 11 had markedly attenuated levels of all three cytokines and
neutrophilia. Finally the mechanism by which these inflammatory proteins are involved in the CS-induced neutrophilia
appeared to be via the induction of proteins involved in neutrophil transmigration e.g. E-Selectin.

Conclusion: This data indicates a key role for the P2X7-NALP3/ASC-caspase1/11-IL-1b/IL-18 axis in CS induced airway
inflammation, highlighting this pathway as a possible therapeutic target for the treatment of COPD.
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Introduction

Chronic Obstructive Pulmonary Disease (COPD) is an airway

inflammatory disease which is increasing in prevalence and

predicted to be the third leading cause of mortality by 2020 [1].

It has a significant impact on quality of life and is a major socio-

economic burden. Despite this there is currently no therapy

available to stop the decline in lung function and disease

progression and, therefore, an urgent need to develop effective

therpaies [2,3]. Current dogma suggest that exposure to inhaled

pollutants, such as cigarette smoke (CS), drives the chronic

inflammation associated with the disease and the subsequent

pathophysiological changes in the airway and associated symptoms

[4]. Thus a medication that attenuates the airway inflammation

should slow disease pathogenesis and reduce symptoms. There-

fore, understanding the mechanism by which CS causes the airway

inflammation could highlight possible targets for drug develop-

ment.

Recently there has been growing evidence to implicate the

ATP-P2X7-inflammasome-caspase 1-IL-1/18 axis in murine

models of smoke induced airway inflammation, healthy smokers

and in patients suffering from COPD. ATP levels have been

reported to be increased in the lungs of smoke driven models and

COPD patients [5–7]. Activation of the P2X7 receptor has been

shown to be central to smoke induced airway inflammation [8,9].

Caspase 1 activity has been reported to be increased in the lungs of

the CS-driven models and of COPD patients [8,10]; IL-1/18

levels are increased in model systems and smokers/COPD patients
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[10–22]. Further, genetic analysis of susceptibility to COPD has

been associated with altered IL-1/18 genes [23–26]. The aim of

this study was to perform a detailed assessment of the signalling

post P2X7 receptor activation in a CS-driven model. Utilising

bioassays and genetically altered mice (KO) we determined the

role of the various inflammasome proteins reported to be

associated with the P2X7 receptor and IL-1/IL-18 maturation

i.e. NALP3 (or NLRP3, PYPAF1, CIAS1), AIM2, IPAF (or

NLRC4, Pycard, TMS1) and ASC [27–29]. Furthermore, the role

of caspase 1 and its reported activator caspase 11 [30–34] in the

release of mature cytokines and the role of each of the three

inflammatory IL-1 cytokines: IL-1a, IL-1b and IL-18 was also

investigated We also performed parallel experiments in an

endotoxin (LPS) model which also has a predominately neutro-

philic phenotype to determine if these signaling proteins were

required for airway neutrophilia per se or specifically after CS

challenge.

Methods

Mice
All in vivo protocols were approved by Imperial College

London ethical review process committee and we strictly adhered

to the Animals (Scientific Procedures) Act 1986 UK Home Office

guidelines. Experiments were performed under a Home office

project licence (PPL 70/7212). Male C57bl/6 mice (18–24 g) were

originally obtained from Harlan UK Limited (Bicester, UK) and

bred in-house; food and water supplied ad libitum. KO mice were

back crossed at least 8 times and bred alongside the wild type

mice: ASC -/-, NALP3 -/-, IPAF -/- IL-1b -/-, IL-1a-/-, IL-18

-/-, IL-18R -/-, caspase 1/11 -/- and caspase 11 -/-. The KO

mice were donated from various laboratories: caspase 1/11 -/-

from the Swiss Immunological Mouse Repository (SwImMR); IL-

1b -/- and IL-1a -/- from Professor Yoichiro Iwakura from the

University of Tokyo, IL-18 -/- were from Jackson labs, USA; ASC

-/-, NALP3 -/-, and IPAF -/- from Professor Kate Fitzgerald (via

Professor Clare Bryant, Cambridge University), University of

Massachusetts Medical School and caspase 11 -/- from Professor

Dixit, Genentech, USA.

In vivo models
CS or LPS exposure protocols have been described previously

[8]. Briefly, mice were exposed to CS (University of Kentucky

Research Cigarettes [3R4F] without the filters, 1 hour, twice a day

for 3 days) or LPS (Escherichia coli serotype 0111:B4 from Sigma,

UK, aerosol of 1 mg/ml for 30 minutes) and the lungs lavaged 24

or 6 hours later, respectively. BALF IL-1a, IL-1b, IL-18, KC,

neutrophil and in some cases ATP levels (no increase detected in

the LPS model) were assessed as previously described [8]. Tissue

caspase 1 activity was assessed in the cytosol fraction of lung

homogenates using a specific assay [8].

Data analysis. Data are expressed as mean 6 S.E.M. of n

observations. Statistical significance was determined using either

Student’s t-test or one-way ANOVA followed by an appropriate

post-hoc test, using GraphPad Prism 5 software. A P value ,0.05

was taken as significant and all treatments were compared with the

appropriate control group.

Results

Role of the inflammasome proteins
Exposing wild type mice to 3 days of CS (giving an average total

particulate matter of 600–700 mg/M3) led to significantly

increased levels of ATP, IL-18 and neutrophilia in the BALF

(Figure 1). Mice missing functional NALP3 had significantly

reduced levels of IL-18 in the BALF and around 50% reduction

in BAL neutrophilia, whereas mice missing functional IPAF or

AIM 2 were not protected from the CS challenge (Figure 1B and

C). As expected ATP levels were not altered in these GM mice

compared to wild type mice (Figure 1A). To examine the role of

NALP3 further, we repeated that assessment and included mice

missing functional ASC, an adaptor molecule that is thought to be

required for NALP3 inflammasome activity [35]. Mice missing

functional NALP3 and ASC had reduced IL-1b levels in the BALF

and again 50% reduction in neutrophilia (Figure 2A and B).

Interestingly, the levels of IL-1a were not altered and there was

only a small reduction in lung tissue caspase 1 activity. This

suggests that IL-1a is not downstream of NALP3/ASC in this

system and not all of the tissue caspase 1 activity is dependent on

this inflammasome (Figure 2C and D). The CS-induced KC levels

were not altered in these GM mice (Figure 2E).

In contrast to the CS driven model, mice missing functional

NALP3, ASC, IPAF or AIM 2 responded normally to the LPS

challenge. The numbers of neutrophilia in the BALF or lung tissue

were not significantly different from the wild type control mice

suggesting that these proteins are not required for airway

neutrophilic inflammation per se (Figure S1).

Role of caspase 1 and 11
The data obtained above suggested that not all lung tissue

caspase 1 activity is associated with NALP3/ASC in this model

system. To investigate this further we used mice missing functional

caspase 1/11 or caspase 11. Both GM mouse lines were

completely protected from CS challenge as BALF neutrophilia

in challenge groups were not different to that of the unchallenged

controls (Figure 3A and B). The caspase KOs had reduced of

caspase 1 activity and IL-1b/IL-18 after CS challenge. Interest-

ingly, the levels of IL-1a were also reduced in these mice

suggesting that this cytokine was down stream of caspase

(Figure 3F). Levels of ATP and KC were not different from wild

type controls (Figure 3 G and H). Mice missing functional caspase

1/11 or caspase 11 had equivalent airway inflammation after LPS

challenge compared to the wild type control mice suggesting these

proteins are not central to airway neutrophilia per se (Figure S2).

Role of IL-1b, IL-1a and IL-18
The data above suggests that the IL-1 family of cytokines play a

key role in airway neutrophilia after CS challenge. To investigate

this further we used IL-1b, IL-1a, IL-18 and IL-18R KO mice. CS

challenge caused a significant increase in ATP, caspase 1 activity,

IL-1b, IL-1a, IL-18, KC and neutrophilia in the control wild type

mice (Figure 4). IL-1b and IL-18 levels were significantly reduced

in the corresponding KO lines (Figure 4D and E). IL-1a levels

were slightly reduced in the IL-1b KO mice. There was a round a

50% reduction in neutrophilia in mice missing IL-1b, IL-18 and

IL-18R but levels of ATP, caspase 1 activity and KC were not

altered (Figure 4G). Mice missing functional IL-1b or IL-18 did

not have altered airway neutrophilia after LPS challenge (Figure

S3).

After CS challenge the IL-1a KO mice had reduced IL-1a, IL-

1b and IL-18 in the BALF and surprisingly completely attenuated

neutrophilia (Figure S4). Levels of ATP, caspase 1 activity and KC

were not altered (Figure 4A, B and F). Unlike the other GM lines

we used in this study, we found that mice missing functional IL-1a
had significantly less neutrophil numbers in the lung tissue under

basal conditions (data from 2 separate experiments: study one 1:

Wild type – 994061392, IL-1a KO – 48046359 neutrophils/mg

of lung tissue; study one 2: Wild type – 59676804, IL-1a KO
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Figure 1. Role of the inflammasome proteins in the CS-driven model. NALP3, IPAF or AIM2 -/- mice were exposed to CS or room air (control)
twice daily for 3 consecutive days alongside wild-type controls. BALF was collected 24 hours after the last exposure for measurement of ATP (A), IL-18
(B) and neutrophil (C) levels. Data are represented as mean 6 S.E.M. for n = 8 animals in each group. Statistical significance was determined using
Mann-Whitney U test. # = P,0.05, denoting a significant difference between the smoke exposed and air exposed wild-type groups; * = P,0.05,
denoting a significant difference between the smoke exposed knock-outs and wild-types (one-way ANOVA).
doi:10.1371/journal.pone.0112829.g001

Figure 2. Role of the NALP3 inflammasome in CS-driven model. NALP3 or ASC -/- mice were exposed to CS or room air (control) twice daily
for 3 consecutive days alongside wild-type controls. BALF and lung tissue was collected 24 hours after the last exposure for measurement of IL-1b (A),
neutrophil (B), IL-1a (C), caspase 1 activity (D) and KC (E) levels. Data are represented as mean 6 S.E.M. for n = 8 animals in each group. Statistical
significance was determined using Mann-Whitney U test. # = P,0.05, denoting a significant difference between the smoke exposed and air exposed
wild-type groups; * = P,0.05, denoting a significant difference between the smoke exposed knock-outs and wild-types (one-way ANOVA).
doi:10.1371/journal.pone.0112829.g002
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Figure 3. Role of the caspase 1 and 11 in CS-driven model. Caspase 1/11 or caspase 11 -/- mice were exposed to CS or room air (control) twice
daily for 3 consecutive days alongside wild-type controls. BALF and lung tissue was collected 24 hours after the last exposure for measurement of
neutrophilia (A – caspase 1/11 -/-, B – caspase 11-/-). Figures C to H depicts the levels of caspase 1 activity (C), IL-1b (D), IL-18 (E), IL-1a (F), ATP (G) and
KC (H). Data are represented as mean 6 S.E.M. for n = 8 animals in each group. Statistical significance was determined using Mann-Whitney U test. #
= P,0.05, denoting a significant difference between the smoke exposed and air exposed wild-type groups; * = P,0.05, denoting a significant
difference between the smoke exposed knock-outs and wild-types.
doi:10.1371/journal.pone.0112829.g003
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– 39086213 neutrophils/mg of lung tissue). We suggest that this

phenotypic change observed in this GM line is likely to complicate

data interpretation in the disease models. It would seem likely that

some of the BALF neutrophilia and perhaps cytokines could be

influenced by tissue levels. Indeed, the IL-1a KO mice had

reduced neutrophilia after LPS challenge (data not shown).

Figure 4. Role of the IL-1 family cytokines in CS-driven model. IL-1b, IL-18 or IL-18R -/- mice were exposed to CS or room air (control) twice
daily for 3 consecutive days alongside wild-type controls. BALF and lung tissue was collected 24 hours after the last exposure for measurement of
ATP (A), caspase 1 activity (B), IL-1a (C), IL-1b (D), IL-18 (E), KC (F) and neutrophil (G) levels. Data are represented as mean 6 S.E.M. for n = 8 animals in
each group. Statistical significance was determined using Mann-Whitney U test. # = P,0.05, denoting a significant difference between the smoke
exposed and air exposed wild-type groups; * = P,0.05, denoting a significant difference between the smoke exposed knock-outs and wild-types
(one-way ANOVA).
doi:10.1371/journal.pone.0112829.g004
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Role of IL-1a, IL-1b and IL-18 on neutrophil
transmigration

Lastly we asked how these cytokines could be involved in the

BALF neutrophilia we observe after CS challenge. These cytokines

are not thought to be direct chemoattractants but involved in the

expression of transmigration proteins such as E-selectin [36–38].

CS caused a significant increase in E-selectin protein levels in CS

exposed lung tissue (Figure 5). These levels were partially reduced

in mice missing IL-1b, IL-18 or IL-18 (the GM lines that had 50%

reduction in CS-induced neutrophilia) and completely attenuated

levels in the caspase 1/11 KO mice (the GM line that had

complete attenuation of neutrophilia and a reduction in IL-1a, IL-

1b or IL-18) (Figure 5). Together this data suggest a causative link

between levels of the IL-1 family cytokines, expression of

transmigration proteins and the level of neutrophilia.

Discussion

COPD is a chronic inflammatory airway disease with no

effective therapy [2,3]. Current dogma suggests that in a majority

of patients CS exposure is the causative agent which initiates the

inflammatory response leading to disease pathogenesis. Therefore,

reducing the inflammation should lead to a decline in disease

progression and possibly a reduction in symptoms. Currently

significant research focus and pharmaceutical company direction

is geared towards the discovery of effective anti-inflammatory

therapeutic targets given the minimal efficacy of existing

treatments [4]. One approach to elucidate novel targets is to

examine the mechanism by which CS exposure causes airway

inflammation. Previously we, and others, have shown that ATP

activation of the P2X7 receptor plays a key role in acute and

chronic murine models of CS-induced airway inflammation/

emphysema [8,9]. The aim of this study was to investigate the post

P2X7 receptor signalling pathway.

In this study we found that CS induced ATP activation of the

P2X7 receptor appears to trigger the formation of the NALP3/

ASC inflammasome and recruitment of caspase 1. This leads to

maturation of pro-IL-1b/IL-18 and accounts for some of the CS

induced airway neutrophilia. Interestingly, the NALP3 inflamma-

some was not essential for IL-1a release; this cytokine, however,

did appear to be under the control of caspase 1/11. Further, CS-

induced neutrophilia was completely attenuated in mice missing

functional caspase 1/11 or just caspase 11. This suggested that the

neutrophilia observed in this model is driven via a combination of

signals from IL-1b/IL-18 and IL-1a. Indeed, mice missing IL-1b
or IL-18 had partially reduced levels of CS-induced neutrophilia.

Furthermore, the reason why IL-1b/IL-18 and IL-1a were

required for neutrophilia seemed to be associated with production

of proteins involved in cell transmigration into the airway lumen

i.e. E-selectin. A schematic diagram illustrating the proposed

signalling cascade following CS-induced activation of the P2X7

channel in the lung is shown in Figure 6.

Initial studies were aimed at exploring the role of the various

inflammasome proteins in the production of the three IL-1

Figure 5. Role of the IL-1b and IL-18 in CS-driven model. IL-1b,
IL-18, IL-18R or caspase 1/11 -/- mice were exposed to CS or room air
(control) twice daily for 3 consecutive days alongside wild-type controls.
Lung tissue was collected 24 hours after the last exposure for
measurement of E-selectin levels. Data are represented as mean 6
S.E.M. for n = 8 animals in each group. Statistical significance was
determined using Mann-Whitney U test. # = P,0.05, denoting a
significant difference between the smoke exposed and air exposed
wild-type groups; * = P,0.05, denoting a significant difference
between the smoke exposed knock-outs and wild-types (one-way
ANOVA).
doi:10.1371/journal.pone.0112829.g005

Figure 6. Schematic representation of the signalling cascade
following CS-induced activation of the P2X7 channel in the
lung (Drawn by Dr E Dubuis). We hypothesise that CS exposure
leads to the release of extracellular ATP which activates P2X7 receptor,
and this in turn triggers a signalling cascade involving the assembly of
the NALP3/ASC inflammasome and recruitment of (pro)-caspase 1. Pro-
Caspase 1 either auto-processes itself to the mature, active form or is
cleaved by caspase 11. This functional inflammasome is essential for the
release of mature, active IL-1b/IL-18, but not IL-1a which stimulates
some of the production of proteins involved in the transmigration of
neutrophils, like E-selectin. Another component of the P2X7 receptor
signalling cascade triggers the caspase 1 and/or caspase 11 dependent
release of IL-1a. This cytokine also induces the production of proteins
involved in the recruitment of a portion of the neutrophils observed in
this model system. Interrupting steps involved in both signalling
pathways i.e. at the P2X7 receptor or via caspase 1/11 leads to a
complete block of transmigration protein production and neutrophilia.
doi:10.1371/journal.pone.0112829.g006
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cytokines [27–29]. Data showed that NALP3, and its essential co-

factor ASC, were required for the release of IL-1b and IL-18 into

the BALF. This was associated with approximately 50% reduction

in BALF neutrophilia, suggesting that these two cytokines are

responsible for approximately half of the cellular recruitment.

Interestingly, the levels of IL-1a were not altered in these GM

mice and caspase 1 activity was only reduced by around 50%. This

suggested that IL-1a and a portion of the caspase 1 activity in this

model system are under the control of a different signalling

mechanism. This difference in control of IL-1a and IL-1b in

smoke systems has been reported by others [20]. To explore this

further we employed mice missing functional caspase 1 or caspase

11. Recently it has been established that due to the way they were

originally engineered, the caspase 1 KO mice are also deficient in

caspase 11 [32]. Whilst caspase 11 is not thought to process pro-

IL-1b directly, it has been reported to cleave pro-caspase 1 into the

mature, active form and it has also been linked to the release of IL-

1a [30–34]. In these studies, the levels of neutrophilia in mice

missing caspase 1/11 or just caspase 11 after CS challenge were

similar to that of the air challenged control. This suggested that

they play an essential role in the CS-induced ATP-P2X7

signalling. Indeed, further investigation showed that the attenua-

tion of neutrophilia was associated with a reduction in lung tissue

caspase 1 activity, IL-1b/IL-18 and importantly IL-1a. This is

further evidence that in this model IL-1b/IL-18 release is via

NALP3/ASC activation of caspase 1, whereas IL-1a release is via

an as yet under known signal between the P2X7 receptor and

caspase 11. Furthermore it suggests that blockade of IL-1b/IL-18

and IL-1a is required for complete suppression of CS-induced

neutrophilia. Interestingly, other groups have suggested that mice

missing caspase 1 (it is not clear if these mice are the specific

caspase 1 or dual KOs) do not have reduced neutrophilia [18,20]

and others have reported that a caspase 1 inhibitor does reduce CS

induced airway inflammation [39]. It is not clear why this

discrepancy exists.

To investigate this further, we performed CS challenge in mice

missing IL-1b, IL-18, IL-18R and IL-1a. The data showed that

the respective cytokines were missing in the appropriate gene

deleted mice and that the IL-1b KO mice had a small reduction in

IL-1a too. The IL-1b, IL-18 or IL-18R KOs had around 50%

reduction in BALF neutrophilia, which was very reminiscent of the

profile seen in the NALP3/ASC KO mice (that had reduction in

both IL-1b and IL-18). This suggests that perhaps IL-1b and IL-18

are essential for this portion of the neutrophilia and that a

reduction in either would have a functional effect. Indeed,

similarly others have published similar levels of inhibition when

they targeted either IL-1b or IL-18 [10,16,20,39–43]. Further-

more, when either IL-1b and IL-18 is over expressed it leads to

emphysema/COPD [44–46]. Further evidence that IL-1b and IL-

18 are essential comes from the data demonstrating that CS

challenge increased total E-selectin levels and mice missing IL-1b,

IL-18 or IL-18R exhibited an inhibition profile similar to the

neutrophilia. This data also suggests that, as hypothesised, the role

of these cytokines in this model system is in the upregulation of

proteins involved in neutrophil transmigration into the airway

lumen [36–38]. Indeed, further evidence for this comes from the

data from the mice missing caspase 1/11, which had reduced

levels of IL-1b/IL-18 and IL-1a. The levels of E-selectin, like the

neutrophilia, in these mice were completely attenuated. This again

would suggest that IL-1a plays a dominant role in CS-induced

neutrophilia. To examine this we profiled IL-1a KO mice and

found a dramatic reduction in neutrophilia which was associated

with attenuation of the IL-1a signal, and some reduction in IL-1b
and IL-18. This role of IL-1a has been suggested before [16,20],

however we were intrigued by the magnitude of the inhibition as

based on the other data obtained we would have expected a 50%

reduction in these mice. A reason for this larger effect on

neutrophilia could be due the phenotype of the mice under basal

conditions. In two separate experiments we noted that the mice

missing IL-1a had significantly less neutrophils in the lung tissue.

We speculate that that some of the inhibition observed in the CS

model, and the LPS model, could be due to the fact there are less

neutrophils in the nearby tissue to migrate into the airway lumen

and as such we suggest this data is interpreted with caution.

In these studies we could detect an increase in BALF ATP and

KC levels after CS challenge but the mechanisms involved are not

known [7,8]. However, what is clear from these studies is that both

these mediators are not controlled by the signalling downstream of

the P2X7 receptor and are independent of neutrophilia. Further-

more, in the LPS studies the numbers of neutrophils were not

altered in any of the GM lines employed suggesting that the

reduction in neutrophilia seen in the CS model is not a generic

effect on airway neutrophilia.

In conclusion, this data suggests that airway neutrophilia

induced by exposure to CS is via the maturation and release of

IL-1b/IL-18 and IL-1a. The release of IL-1b/IL-18 is dependent

on the NALP3/ASC inflammasome and caspase 1/11 activity,

whereas IL-1a appears to involve caspase 1/11 independently of

IPAF, AIM2 and NALP3 (for schematic see Figure 6). Whilst these

observations were made in an acute CS-driven model, which

predominantly involves neutrophilia and not macrophages

(believed to be central to the pathogenesis of COPD, [47–49],

we suggest that these data represents an important step in

understanding the mechanism by which CS exposure leads to

airway inflammation and starts to highlight possible new

therapeutic avenues for the treatment of COPD.

Supporting Information

Figure S1 Role of the inflammasome proteins in LPS-driven

model. ASC, NALP3, IPAF or AIM2 -/- mice were exposed to

aerosolised LPS (1 mg/ml) or vehicle (saline) for 30 minutes

alongside wild-type controls. BALF and lung tissue were collected

6 hours after the exposure for measurement of neutrophilia (BALF

- A; tissue - B). Data are represented as mean 6 S.E.M. for n = 8

animals in each group. Statistical significance was determined

using Mann-Whitney U test. # = P,0.05, denoting a significant

difference between the smoke exposed and air exposed wild-type

groups; * = P,0.05, denoting a significant difference between the

LPS exposed knock-outs and wild-types (one-way ANOVA).

(EPS)

Figure S2 Role of caspase 1 and 11 in LPS-driven model.

Caspase 1/11 or caspase 11 -/- mice were exposed to aerosolised

LPS (1 mg/ml) or vehicle (saline) for 30 minutes alongside wild-

type controls. BALF and lung tissue were collected 6 hours after

the exposure for measurement of neutrophilia (BALF – A and C;

tissue – B and D). Data are represented as mean 6 S.E.M. for

n = 8 animals in each group. Statistical significance was deter-

mined using Mann-Whitney U test. # = P,0.05, denoting a

significant difference between the smoke exposed and air exposed

wild-type groups; * = P,0.05, denoting a significant difference

between the LPS exposed knock-outs and wild-types.

(EPS)

Figure S3 Role of IL-1 family cytokines in LPS-driven model.

IL-1b or IL-18 mice were exposed to aerosolised LPS (1 mg/ml)

or vehicle (saline) for 30 minutes alongside wild-type controls.

BALF and lung tissue were collected 6 hours after the exposure for

Role of Inflammasome in Smoke Associated Disease

PLOS ONE | www.plosone.org 7 November 2014 | Volume 9 | Issue 11 | e112829



measurement of neutrophilia (BALF – A; tissue – B). Data are

represented as mean 6 S.E.M. for n = 8 animals in each group.

Statistical significance was determined using Mann-Whitney U

test. # = P,0.05, denoting a significant difference between the

smoke exposed and air exposed wild-type groups; * = P,0.05,

denoting a significant difference between the LPS exposed knock-

outs and wild-types (one-way ANOVA).

(EPS)

Figure S4 Role of the IL-1a in CS-driven model. IL-1a -/- mice

were exposed to CS or room air (control) twice daily for 3

consecutive days alongside wild-type controls. BALF and lung

tissue was collected 24 hours after the last exposure for

measurement of ATP (A), caspase 1 activity (B), IL-1a (C), IL-

1b (D), IL-18 (E), KC (F) and neutrophil (G) levels. Data are

represented as mean 6 S.E.M. for n = 8 animals in each group.

Statistical significance was determined using Mann-Whitney U

test. # = P,0.05, denoting a significant difference between the

smoke exposed and air exposed wild-type groups; * = P,0.05,

denoting a significant difference between the smoke exposed

knock-outs and wild-types.

(EPS)
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