
Received: 28 February 2020 Revised: 5 March 2021 Accepted: 16 March 2021 Healthcare Technology Letters

DOI: 10.1049/htl2.12011

ORIGINAL RESEARCH PAPER

Down-sampling template curve to accelerate LDDMM-curve with

application to shape analysis of the corpus callosum

Weikai Huang Xiaoying Tang

Department of Electrical and Electronic
Engineering, Southern University of Science and
Technology, Shenzhen, Guangdong, China

Correspondence

Xiaoying Tang, Department of Electrical and Elec-
tronic Engineering, Southern University of Science
and Technology, Shenzhen, Guangdong, China.
Email: tangxy@sustech.edu.cn

Funding information

National Natural Science Foundation of China,
Grant/Award Number: 81501546; National Key
R&D Program of China, Grant/Award Num-
ber: 2017YFC0112404; Shenzhen Fundamen-
tal Research Program, Grant/Award Number:
JCYJ20190809120205578; High-level University
Fund, Grant/Award Number: G02236002

Abstract

Large deformation diffeomorphic metric mapping for curve (LDDMM-curve) has been
widely used in deformation based statistical shape analysis of the mid-sagittal corpus callo-
sum. A main limitation of LDDMM-curve is that it is time-consuming and computation-
ally complex. In this study, down-sampling strategies for accelerating LDDMM-curve are
investigated and tested on two large datasets, one on Alzheimer’s disease (155 Alzheimer’s
disease, 325 mild cognitive impairment and 185 healthy controls) and the other on first-
episode schizophrenia (92 first-episode schizophrenia and 106 healthy controls). For both
datasets a variety of down-sampling factors are tested in terms of registration accuracy,
registration speed, and most importantly disease-related patterns. Experimental results
revealed that down-sampling template curve by a factor of 2 can significantly reduce the
running time of LDDMM-curve without sacrificing the registration accuracy. Also, the
disease-induced patterns, or more specifically the group comparison results, were almost
identical before and after down-sampling. It is also shown that there was no need to down-
sample the target population curves but only the single template curve of the study of
interest. Comprehensive analyses were conducted.

1 INTRODUCTION

Large deformation diffeomorphic metric mapping (LDDMM)
is one of the state-of-the-art anatomical manifold matching
algorithms that has been successfully applied to characterising
localised morphometrics of different brain structures of interest
in various neurodegenerative disorders [1–4]. This general reg-
istration framework can work for manifolds of different dimen-
sions such as landmarks, curves, surfaces, and dense images.

LDDMM for curve (LDDMM-curve) [5] has been applied to
statistical shape analyses of various 2D brain regions of inter-
est (ROIs) [6, 7], such as the 2D mid-sagittal corpus callosum
(CC). The CC is the largest white matter structure in the human
brain and the largest commissural fibre bundle connecting the
two cerebral hemispheres, and thus it has been the research
object of interest in various neurodegenerative disorders such
as Alzheimer’s disease (AD) [8], Huntington’s disease [9] and
schizophrenia [10].

In LDDMM-curve based statistical shape analysis pipeline,
the LDDMM-curve registrations between a template curve and
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all target population curves are most time-consuming which
usually takes hours or even days especially when the sample
size of the population of interest is large. Therefore, accelerating
the LDDMM-curve registration process to reduce the compu-
tational cost is very important both scientifically and practically,
and thus is the problem of interest of this work. Previous stud-
ies on accelerating LDDMM has been relying on GPU-based
parallel computing [11–14]. In addition to GPU-based acceler-
ation, Wu et al. [15] proposed a new optimisation strategy to
accelerate the LDDMM registration process, but only for regis-
tering images. There have also been other types of efforts in this
respect. For example, Hernandez [16] formulated the problem
in the space of band-limited vector fields and combined with
semi-Lagrangian integration with respect to three variants of
band-limited PDE-constrained LDDMM to further boost the
computational efficiency.

Another potential solution is to decrease the discretised
sample points when representing anatomical manifolds of
interest. For example, in LDDMM-image, down-sampling the
images of interest to have less voxels, in LDDMM-surface,
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FIGURE 1 Block diagram of the entire pipeline

down-sampling the surfaces of interest to have less vertices,
and in LDDMM-curve, down-sampling the curves of interest
to have less points will surely reduce the computation time
of LDDMM. However, there may be potential issues. Firstly,
the registration accuracy may be affected. Secondly, the study
conclusions may be altered, especially in disease-related abnor-
mality identification and quantification. As such, it is of great
importance to investigate a proper down-sampling strategy,
which is the essential motivation of this study. Our goal is
to figure out the most appropriate down-sampling strategy
for LDDMM-curve when applied to CC, aiming at a good
balance of registration accuracy, computation time, as well as
disease-related abnormality patterns.

In this study, we take two brain disorders for example,
with one being AD and the other one being first-episode
schizophrenia (FES). Two large sets of T1-weighted magnetic
resonance images (MRIs) are employed to analyse the 2D
mid-sagittal CC curve. For AD, the sample size is 665, involv-
ing 185 matched healthy control (HC) participants, 325 mild
cognitive impairment (MCI) patients and 155 AD patients.
For FES, the sample size is 198, involving 106 matched HC
participants and 92 FES patients. A total of 4 down-sampling
rates have been investigated, being respective 2, 3, 4 and 5.
Both quantitative and qualitative analyses are performed, in
terms of computational time, registration accuracy, as well as
control-versus-disease group differences.

To conclude, the main contributions of this paper are
twofold:
∙ We propose a simple but highly effective down-sampling

strategy for LDDMM-curve acceleration.
∙ We extensively test and successfully validate the proposed

approach on two large T1-weighted structural MRI datasets
focusing on different brain diseases.

The rest of this paper is organised as follows. In Section 2,
the two T1-weighted MRI datasets, CC curve generation steps,
down-sampling strategies, LDDMM-curve framework, and sta-
tistical shape analysis and evaluations are introduced. The block
diagram of the entire pipeline is shown in Figure 1. In Section 3,
experimental results are presented. Finally, Section 4 concludes
the paper.

2 MATERIALS AND METHODS

2.1 Datasets

In this study we utilised two T1-weighted structural MRI
datasets. The first dataset was obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) study (adni.loni.usc.
edu) involving 185 HC participants (95 females and 90 males),
325 MCI patients (119 females and 206 males), and 155 AD
patients (74 females and 81 males).

Participants in the second dataset were recruited from the
First Affiliated Hospital of Shenzhen University and a total
of 198 participants were involved, including 92 FES patients
(50 females and 42 males) and 106 HCs (47 females and
59 males). Informed consents were obtained from all partici-
pants or family relatives, as approved by the Ethics Commit-
tee at the First Affiliated Hospital of Shenzhen University. All
structural MRI data were acquired from a Siemens Trio Tim 3T
scanner and were visually examined for data quality control.

2.2 CC curve generation

An initial step in this study was to extract the mid-sagittal CC
curve from each whole-brain T1-weighted 3D volume image.
Please note CC consists of the genu (anterior), body and sple-
nium (posterior) , namely gCC, bCC and sCC. We first rigidly
aligned each image to the MNI space [17] and then utilised a
validated automatic segmentation algorithm [18] to get its 3D
whole-brain segmentation in the MNI space. Each segmen-
tation result was visually inspected and manually corrected in
case of automated segmentation errors. We extracted the binary
segmentation results of gCC, sCC and bCC and combined
them to form the 3D CC segmentation and took out the 2D
mid-sagittal CC slice. In the MNI space, there are a total of
181 sagittal slices and thus the 2D mid-sagittal one refers to the
91st slice. After obtaining a 2D mid-sagittal CC slice, an edge
detection algorithm [19] was applied to identify the boundary
pixels and those pixels were arranged clockwisely to form a CC
curve. For each dataset we identified a template curve whose
area was closest to the mean area averaged across all curves in
the corresponding dataset.

2.3 Down-sampling CC curves

In this study, the range of the down-sampling factors was set to
be 2 to 5. In addition, because LDDMM-curve was performed
between a template curve and each target curve, we also anal-
ysed the difference between two down-sampling schemes, with
one being down-sampling both the template curve and all tar-
get curves and the other one being down-sampling the template
curve only.

2.4 LDDMM-curve and statistical shape
analysis

For both datasets, each target curve was first rigidly aligned
(rotation and translation) to the template curve to reduce
the computation cost of subsequent LDDMM-curve and to
improve its registration accuracy. After that, LDDMM-curve
was used to get a diffeomorphic transformation mapping the
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template curve to the rigidly aligned target curve. LDDMM-
curve makes use of a dynamic flow of diffeomorphisms 𝜙v

t in
the ambient space Rd to build a correspondence between the
template and the target [5]. The dynamic flow 𝜙v

t is param-
eterised by a time-dependent velocity vector field, vt ∶ Rd →

Rd for t ∈ [0, 1], via the ordinary differential equation:
𝜕𝜙v

t

𝜕t
=

vt (𝜙v
t ) [5].

We have 𝜙v
0(x ) = x and the consequent diffeomorphism is

𝜙v
1 at the end time t = 1. Assume the template curve is C and

the target curve is S , the goal of LDDMM-curve is to optimise
vt so that the associated diffeomorphism 𝜙v

1 can accurately map
curve C to curve S . The energy function in LDDMM-curve is

JC ,S ((vt )t∈[0,1] ) ≐ 𝛾 ∫
0

1
‖vt‖2

V dt + E (𝜙v
1 ⋅C , S ). (1)

The first term in the energy function is a regularisation term
guaranteeing the smoothness of the deformation field. The
space V is a reproducing kernel Hilbert space which is also a
space of smooth vector fields to guarantee that the transforma-
tions are diffeomorphic. The second term is a matching func-
tion that quantifies the distance between the deformed template
curve 𝜙v

1 ⋅C and the target curve S . More details regarding the
LDDMM-curve algorithm can be found in its original publica-
tion [5].

After obtaining the diffeomorphic transformation from
LDDMM-curve, at each point of the template curve we com-
puted the Jacobian matrix D𝜙v

t
and obtained a “deformation

marker” J = det(D𝜙v
t
) (the determinant of the Jacobian matrix

D𝜙v
t
). The value of the deformation marker J corresponds to

the localised shape variation of each point on the template
curve. Specifically, a value of J larger than 1 represents outward-
deformation of the target curve relative to the template curve at
a local point, otherwise inward-deformation. This deformation
marker was then used in our statistical comparisons.

For each target curve s, Jk(s) represents the deformation
marker at point k of the template curve. The statistical analy-
sis was conducted using the following linear model

Jk(s) = 𝛽k,0 + 𝛽k,1𝛾(s) +
∑
cov

𝛼covXcov(s) + 𝜀k(s). (2)

In this model 𝛾(s) is a binary group variable; 𝛾(s) equals to 1
when the target curve s belongs to one group and 0 when the
target curve s belongs to the other group. Xcov(s) denotes the
covariate information and we covaried for age, gender, and total
intracranial volume in this study. 𝜀k(s) represents a Gaussian
noise variable. For each point k on the template curve, we tested
the null hypothesis that 𝛽k,1 = 0. We used Fisher’s method of
randomisation and permutation tests to quantify the statistical
significance of the difference between two groups under com-
parison and the p-values were corrected for multiple compar-
isons by controlling the family-wise error rate (FWER) at a level
of p ≤ 0.05. In the process of permutation tests, we generated
10,000 uniformly distributed random permutations by employ-
ing Monte Carlo simulations. We used −𝛽k,1 to denote the

degree of group difference, so that a positive value represents
atrophy in the second group relative to the first group whereas
a negative value represents expansion.

2.5 Evaluations

To assess the computational performance of the down-sampling
strategy, for each down-sampling factor, we divided the total
registration time by the number of target curves as the aver-
age computational time (seconds per target curve). And we used
the Dice score [20] between the target curve and the deformed
template curve after LDDMM-curve to quantify the registra-
tion accuracy. A larger Dice score indicates a higher registra-
tion accuracy.

For the purpose of evaluating the effect of down-sampling
exerted to the group shape comparison results, we up-sampled
the group difference results by the corresponding factor to
ensure the number of curve points after up-sampling is the same
as that of the original results. An overall error was used to quan-
tify the difference between the two results

Overall error =

∑n

i=1
||r (i ) − r1(i )||2∑n

i=1(||r (i )|| + ||r1(i )||)2
. (3)

In this error expression r = original result, r1 = result obtained
after down-sampling curves which was then up-sampled, n =

the total vertex number. The overall error value ranged
in [0, 1].

3 RESULTS

3.1 Registration performance

In this study, for both datasets, we analysed LDDMM-curve’s
registration performance in terms of running time and registra-
tion accuracy for each of the down-sampling factors from 2 to
5 as listed in Tables 1 and 2. The p-values obtained from paired
Student’s t-tests on the Dice score are also provided. Obviously,
for the same down-sampling factor, down-sampling template
curves only is similar to down-sampling both template and
target curves in terms of computational time. However, the reg-
istration accuracy is higher when only down-sampling the tem-
plate curves. Across all four down-sampling factors, for both
datasets, 2 is the best balancing computational efficiency and
registration accuracy. Clearly, the registration accuracy decreases
significantly when down-sampling the template curve by each
of the other three factors, with a p-value being smaller than 0.05.

3.2 Localised shape difference

To evaluate the influence of down-sampling exerted to control-
versus-disease shape group comparison results, we compared
the localised shape difference results after down-sampling with
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TABLE 1 Registration performance results obtained on the first dataset

Down-sampling factor

Running time

(s/target curve) Dice score Dice p-value

Original 18.5 0.89 /

2(template and target) 4.57 0.893 0.005

2(only template) 4.72 0.895 0.074

3(template and target) 2.19 0.887 3.43e-12

3(only template) 2.29 0.891 3.57e-5

4(template and target) 1.36 0.886 4.55e-14

4(only template) 1.54 0.889 8.07e-9

5(template and target) 1.03 0.876 1.94e-39

5(only template) 1.20 0.884 3.35e-13

Bold typesetting indicates no significance from Student’s t-test.

TABLE 2 Registration performance results obtained on the second
dataset

Down-sampling factor

Running time

(s/target curve) Dice score Dice p-value

Original 16.45 0.926 /

2(template and target) 4.52 0.922 0.020

2(only template) 4.57 0.923 0.110

3(template and target) 2.34 0.919 4.13e-4

3(only template) 2.44 0.922 0.023

4(template and target) 1.41 0.917 1.60e-6

4(only template) 1.52 0.920 0.089

5(template and target) 1.04 0.910 8.41e-18

5(only template) 1.27 0.917 1.02e-5

Bold typesetting indicates no significance from Student’s t-test.

the original results, the overall error results of which are dis-
played in Table 3. Clearly, down-sampling template curves
only by a factor of 2 also yields the best result in terms of
localised control-versus-disease shape group difference results,
for both datasets.

Figures 2 and 3 respectively demonstrate the localised shape
difference results obtained from the first and the second dataset;
specifically, the original localised shape comparison results and
the corresponding results obtained from down-sampling the
template curves by a factor of 2. In those two figures, the points
highlighted denote the ones whose localised shape characteris-
tics differed significantly (after FWER correction) between the
two groups under comparison, and the colour bar represents
the degree of atrophy in the disease group relative to the con-
trol group. Obviously, the location and degree of atrophy of the
results obtained from down-sampling the template curves by a
factor of 2 are quite close and almost identical to that of the orig-
inal results. The p-values obtained from the shape group com-
parison are also very similar before and after down-sampling.
Specifically, before and after down-sampling, the p-values are
0.0001 and 0.0002 for HC versus AD, 0.0018 and 0.0031 for
HC versus MCI, and 0.0123 and 0.0145 for HC versus FES.

TABLE 3 The overall error obtained from comparing the localised shape
difference result under each down-sampling factor and that of the original
result on the first and second datasets

HC vs. Disease group

Down-sampling factor MCI AD FES

2(template and target) 3.12% 4.83% 4.28%

2(only template) 3.15% 1.23% 3.95%

3(template and target) 4.77% 2.15% 4.94%

3(only template) 4.70% 7.45% 4.70%

4(template and target) 9.26% 11.04% 5.54%

4(only template) 6.43% 7.08% 7.91%

5(template and target) 37.48% 7.00% 7.36%

5(only template) 7.24% 10.94% 8.00%

Bold typesetting suggests the best result.

FIGURE 2 The localised shape analysis results of the first dataset. A
demonstrates the original results, B demonstrates results after down-sampling
the template curve by a factor of 2 and C demonstrates up-sampled results of
B. The CC sub-region definitions are illustrated at the bottom panel. The color
bar denotes the degree of atrophy in the patient group relative to the control
group

4 CONCLUSIONS

In this study, we comprehensively investigated a curve down-
sampling strategy to accelerate the LDDMM-curve registration
process. Existing acceleration strategies for LDDMM mainly
rely on GPU based parallel computing [11–14]. The primary
advantage of the proposed down-sampling method is that it
is very easy to implement whereas GPU based parallel com-
puting requires environment configuration which can be quite
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FIGURE 3 The localised shape analysis results of the second dataset. A
demonstrates the original results, B demonstrates results after down-sampling
the template curve by a factor of 2 and C demonstrates up-sampled results of
B. The CC sub-region definitions are illustrated at the bottom panel. The color
bar denotes the degree of atrophy in the patient group relative to the control
group

complex and is also very expensive. A potential downside of
down-sampling is that it may impair the registration accuracy
and may also affect disease-induced abnormality patterns, espe-
cially in localised shape analyses.

To find a suitable down-sampling factor, for both datasets
we analysed four different down-sampling factors and for
each down-sampling factor we compared the results after
down-sampling and the original results. When we increased
the down-sampling factor, the running time decreased but the
registration accuracy also decreased, and the error in terms of
the localised shape group difference also increased. Jointly con-
sidering the computational efficiency, the registration accuracy,
and the control-versus-disease pattern, down-sampling by a
factor of 2 worked the best. Also, it is worth being pointed out
that there is no need to down-sample both the template curve
and the target curves but only the template curve. In other
words, down-sampling the single template curve by a factor
of 2 can significantly improve the computational efficiency
of LDDMM-curve without sacrificing any of the registration
accuracy nor the disease-related abnormality pattern. This
method can be also extended to other applications, such as
LDDMM-curve based facial expression recognition [21] and
LDDMM-curve based mitochondrial motion analysis [22].

According to our experimental results, we can draw a conclu-
sion that down-sampling the single template curve by a factor

of 2 can accelerate LDDMM-curve by about four times without
sacrificing the accuracy nor the disease pattern. There are still
limitations in this current study. For example, compared with
GPU-based parallel computing methods [11–14], our accelera-
tion approach is limited by the down-sampling factor. And the
effectiveness of the proposed pipeline with respect to mani-
folds of other dimensions, such as surfaces and dense images,
is not established. Future research directions include two com-
ponents: (1) Combining the proposed down-sampling strategy
with GPU-based parallel computing may further enhance the
computational efficiency, and is a research direction that is wor-
thy of pursuing. (2) To enlarge the application scope of our pro-
posed strategy, validation experiments on manifolds of higher
dimensions including surfaces and images are needed. That will
also be one of our future research plans.
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