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Abstract: Anthocyanins, as the most important chromogenic substances in flavonoids, are responsible
for the red, purple, and blue coloration of flowers. Anthocyanins are synthesized in the cytoplasmic
surface of the endoplasmic reticulum (ER) but accumulate predominantly in the vacuole, while
glutathione S-transferases (GSTs) are considered to be mainly responsible for the transport process.
Our previous studies showed that the expression of PsGSTF3 was positively correlated with antho-
cyanin content in tree peony tissues, which is a key candidate gene for anthocyanin accumulation.
Here, we successfully cloned and characterized full-length PsGSTF3 containing three exons and
two introns. Subcellular localization showed that PsGSTF3 was localized in the nucleus and ER
membrane. Functional complementation of the Arabidopsis transparent testa19 (tt19) mutant indicated
that PsGSTF3 was responsible for the transport of anthocyanins but not of proanthocyanidins (PAs).
Virus-induced gene silencing (VIGS) of PsGSTF3 not only led to a decrease in anthocyanin accumula-
tion but also caused a reduction of structural genes in the anthocyanin biosynthesis pathway (ABP)
to varying degrees. Heterologous overexpression of PsGSTF3 was found to increase the anthocyanin
accumulation in tobacco petals. Furthermore, the yeast two-hybrid (Y2H) assay showed that PsGSTF3
interacted with PsDFR, which together contributed to the coloration of petals. In conclusion, these
results demonstrate that PsGSTF3 encodes an important GST transporter of anthocyanin in tree peony
petals and provides a new perspective for the associated transport and regulatory mechanisms.
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1. Introduction

Anthocyanins, as the most important chromogenic substances in flavonoids, are a
group of water-soluble pigments responsible for the red, purple, and blue coloration of
flowers, fruits, and leaves [1]. Anthocyanins provide visual signals that affect pigmentation,
and attract pollinators and seed dispersers [2,3]. In addition, anthocyanins provide defense
and protect plants against pathogens and ultraviolet radiation damage [2,4,5]. Interestingly,
anthocyanins also play an irreplaceable role in human health due to their strong antioxidant
activities [6,7].

The anthocyanin biosynthesis pathway (ABP) is one of the most thoroughly studied
secondary metabolic pathways in plants, and is highly conserved [8]. The enzymes that cat-
alyze anthocyanin biosynthesis include CHS (chalcone synthase), CHI (chalcone isomerase),
F3H (flavanone 3-hydroxylase), F3′H (flavonoid 3′-hydroxylase), F3′5′H (flavonoid 3′,5′-
hydroxylase), DFR (dihydroflavonol 4-reductase), ANS (anthocyanin synthase), and UFGT
(UDP flavonoid glucosyltransferase). Among them, CHS, CHI, F3H, F3′H, and F3′5′H
together comprise the early ABP [8,9], while DFR, ANS, and UFGT are all considered
components of the late biosynthetic pathway [2,8,10,11]. Anthocyanin biosynthesis is regu-
lated by the MYB-bHLH-WD40 (MBW) protein complex [10], which is composed of MYB
and bHLH transcription factors (TFs) and a WD40 protein. Four R2R3-MYB transcription
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factors, PsMYB114L, PsMYB12L, PsMYB57 and PsMYB58, have been verified to upregulate
some anthocyanin structural genes and promote the accumulation of anthocyanin in tree
peony [11–13]. Another MYB, PqMYB4, is involved in the negative regulation of antho-
cyanin biosynthesis in tree peony leaves [14]. In addition, PsMYB12 interacts with bHLH
and WD40 proteins in a regulatory complex that directly activates PsCHS expression, which
is specific to petal blotches [15]. In summary, structural genes and TFs together constitute a
molecular regulatory network for ABP in plants [9].

However, anthocyanin is biosynthesized on the cytosolic surface of the endoplasmic
reticulum (ER) and then transported to the acidic vacuole for storage before ultimately pre-
senting brilliant colors [2,16]. In recent years, studies have begun to clarify some problems
in the transport of anthocyanin in plants. Two types of anthocyanin transport mechanisms
in plants have been proposed: (1) vesicle-mediated transport based on the vesicle-like
structures accumulating anthocyanin with the central vacuole [17] and (2) translocator-
mediated transport, including glutathione S-transferase (GST), adenosine triphosphate
(ATP)-binding cassette (ABC) proteins, and multidrug and toxic extrusion (MATE) trans-
porters [18–20]. Here, we focus on the GST family, which represents a ubiquitous and
complex superfamily of multifunctional dimeric enzymes [19] and catalyzes the combina-
tion GSH with toxic heterologous substances or oxidation products to promote metabolism
and regional isolation or elimination [21]. In plants, some GSTs ubiquitously participate in
the accumulation of secondary metabolites, signal transduction, and responses to biotic
and abiotic stresses [21–23]. Through multiple analyses and verifications of functions, GSTs
were found to be involved in the transport and accumulation of anthocyanin. This role
was first demonstrated in maize by its mutant Bronze-2 (Bz2, a GST-encoding gene), which
accumulates anthocyanin only in the cytoplasm [24]. Additionally, anthocyanin-related
GSTs have been found in Arabidopsis transparent testa19 (tt19) [25] and petunia AN9 [26];
these are mutants lacking GST related to anthocyanin transport, which often leads to an
anthocyanin-less phenotype with a reduced amount of pigment. Such GSTs have also
been found in fruit crops, such as MdGSTF6 in apple [27], LcGST4 in litchi [28], AcGST1 in
kiwifruit [29], PpGST1 in peach [30], and FvRAP in strawberry [31]. GSTs were confirmed
to be involved in anthocyanin sequestration in these fruits. Recently, anthocyanin-related
GSTs have also been reported in ornamental flowers. For example, in cineraria, the expres-
sion of ScGST3 was found to be directly proportional to the anthocyanin content in the
tissue [32]; in cyclamen, CkmGST3 complemented the anthocyanin-less phenotype of the
Arabidopsis tt19 mutant and restored the accumulation of anthocyanins [33]; in carnation,
introducing the DcGSTF2 gene into the epidermal cells of carnations with pale pink petals
caused the transformed cells to become deep pink [34]. A comprehensive summary is
shown in Table S1.

Peony (Paeonia suffruticosa) is among the most valued traditional ornamental flowers
in China and has a variety of colors. For a long time, flower color has been an important
ornamental characteristic for plants, and for horticulturists, color is also an important breed-
ing goal. The composition of flavonoids in petals is the basis for the formation of flower
color in peony, and purple–red flowers mainly represent anthocyanin [35]. Previous studies
have investigated the biosynthesis and transcriptional regulation of anthocyanin in tree
peony [11–13,15,36–38]; however, little is known about the mechanism underlying the
vacuolar sequestration of anthocyanin in peony petals.

In our previous study, 54 GSTs were systematically identified, through a combination
of bioinformatics approaches, from tree peony petal transcriptome databases [39]. A Phi
(F) class GST member, PsGSTF3, was speculated to be a candidate participant in antho-
cyanin transport and the promotion of pigment accumulation, exhibiting a strong positive
correlation with anthocyanin content in different tissues [39]. Here, we used different
approaches to demonstrate the functionality of PsGSTF3 as an anthocyanin transporter.
Subcellular localization demonstrated that PsGSTF3 was localized on the nucleus and ER
membrane. Overexpression of PsGSTF3 in the Arabidopsis tt19 mutant compensated for
defective anthocyanin pigmentation. Moreover, PsGSTF3 that was ectopically transformed
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into tobacco was able to deepen the colors of flowers, and silencing of PsGSTF3 affected
anthocyanin accumulation in petals of tree peony. In addition, the yeast two-hybrid (Y2H)
experiment showed that PsGSTF3 interacted with PsDFR. These results indicated that
PsGSTF3 encodes an important anthocyanin transporter that affects anthocyanin accu-
mulation in tree peony. These findings will facilitate our in-depth understanding of the
formation mechanism of tree peony flower colors.

2. Results
2.1. Cloning and Characterization Analysis of PsGSTF3

In our previous studies, PsGSTF3 was inferred to be involved in anthocyanin transport
and accumulation. The genomic DNA and cDNA of P. suffruticosa ‘Zhao fen’ were used as
templates for amplification, and sequences with lengths of 866 and 642 bp were obtained,
respectively (Figure 1A; Table S2). By comparing the genomic DNA and cDNA sequences,
we found that PsGSTF3 contains three exons and two introns (Figure 1B).
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Figure 1. Sequence and phylogenetic analysis of PsGSTF3. (A) Polymerase chain reaction (PCR)
amplification products of PsGSTF3: M—DNA marker DL2000; a—cDNA fragment; b—genomic
DNA fragment. (B) Sequence structure of PsGSTF3. (C) Phylogenetic tree analysis of glutathione
S−transferases (GSTs). The protein sequences are listed in Table S3. (D) Multiple alignment of
the deduced PsGSTF3 amino acid sequences with its homologs. The different colors represent
different identity.

PsGSTF3 belongs to the Phi subclass, which also contains some anthocyanin-related
GSTs in dicotyledons such as MdGSTF6 (Malus domestica), FvRAP (Fragaria vesca), VviGST4
(Vitis vinifera), CkmGST3 (Cyclamen persicum), PhAN9 (Petunia hybrida), DcGSTF2 (Dianthus
caryophyllus) and AtGSTF12 (Arabidopsis thaliana) [40]. In the phylogenetic tree, PsGSTF3
is clustered in the same branch with MdGSTF6, FvRAP, and VviGST4 firstly, and the
multiple sequence alignment analysis showed that PsGSTF3 has higher similarity with them
(Figure 1C,D). In summary, PsGSTF3 is a strong candidate for an anthocyanin transporter
involved in the coloration of tree peony petals.
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2.2. Subcellular Localization of PsGSTF3

Subcellular localization of PsGSTF3 was carried out using fluorescent reporter genes
(GFP). A 35S::PsGSTF3-GFP recombinant vector was constructed and introduced into
tobacco leaf epidermal cells using 35S::GFP as the negative control, and GFP fluorescence
was observed with a laser confocal microscope (ZEISS LSM880 Airyscan FAST+NLO,
Germany). Based on the observed co-localization with the marker proteins (nucleus marker-
DAPI and ER marker-mCherry), 35S::PsGSTF3-GFP fluorescence was present in both
nucleus and ER, whereas 35S::GFP fluorescence showed a diffuse distribution throughout
the whole cell (Figure 2). Thus, we speculated that the PsGSTF3 protein is located on the
nucleus and ER, and may play a role in those areas.
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Figure 2. Subcellular localization of PsGSTF3 in Nicotiana benthamiana. (A) Subcellular localization in
N. benthamiana infected with 35S::GFP and DAPI. (B) N. benthamiana infected with 35S::PsGSTF3−GFP
and DAPI. (C) N. benthamiana infected with 35S::PsGSTF3−GFP and ER−located marker labeled
with mCherry.

2.3. Heterologous Expression of PsGSTF3 in the tt19 Mutant

PsGSTF3 is a homolog of AtGSTF12 that encodes an anthocyanin transporter [41].
To explore the function of PsGSTF3 in vivo, a molecular complementation experiment
was performed using Arabidopsis tt19, which is a knockout mutant of the anthocyanin
transporter GST [41]. Three independent transgenic plants (Lines 3, 6 and 7) with higher
expression levels of PsGSTF3 were screened via a reverse transcription–polymerase chain
reaction (RT–PCR) experiment from 16 positive transgenic lines (Figure S1), which were
used for subsequent analyses (Figure 3D). In the 7-day-old seedlings and adult plants, the
hypocotyl and basal regions of stems in the tt19 mutant remained green, while those of the
three transgenic lines recovered purple pigmentation just like wild type (WT) (Figure 3A,B).
Furthermore, the quantification of anthocyanin contents was consistent with the visual
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inspection, with numbers about 29, 24, and 27 times higher in Line 3, Line 6, and Line 7,
respectively, than those in tt19 (Figure 3E). However, the 35S::PsGSTF3-PHB transgenic
lines did not rescue the pale brown seed coats in tt19 (Figure 3C). This result indicated that
PsGSTF3 does not play a role in the seed coat pigmentation of the tt19 mutant and does not
participate in PA accumulation. In conclusion, based on the PsGSTF3 functional comple-
mentarity in Arabidopsis tt19, we determined that PsGSTF3 is involved in anthocyanin, but
not PA, transport in tree peony.
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Figure 3. Functional complementation of Arabidopsis transparent testa19 (tt19) mutant with PsGSTF3.
(A) Phenotypic characterization of the 7−day−old Arabidopsis wild type (WT), tt19, and transgenic
lines (35S::PsGSTF3/tt19, Lines 3, 6 and 7) grown on the Murashige and Skoog (MS) medium with
6% sucrose using a stereomicroscope (LEICA M205 FA, Germany). (B) Phenotypic characterization of
the corresponding adult plants. (C) Phenotypic characterization of Arabidopsis seed coats. White bar:
1 mm; black bar: 2 mm. (D) Expression analysis of PsGSTF3 in 35S::PsGSTF3/tt19 transgenic lines
(Lines 3, 6, and 7), as well as the WT and tt19 mutant. (E) Anthocyanin content in the WT, tt19,
transgenic lines 3, 6, and 7. Data are presented as the means (±SD) from three independent replicates.
The asterisks denote significant differences according to a one−way analysis of variance (ANOVA)
(** p < 0.01).
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2.4. Virus-Induced Gene Silencing (VIGS) of PsGSTF3 Influences Tree Peony Petal Coloration

The VIGS system was used to demonstrate whether PsGSTF3 is essential for tree peony
petal coloration. Infection solutions mixed in equal volumes with pTRV1/pTRV2-GFP and
pTRV1/pTRV2-PsGSTF3-GFP were transiently infiltrated into the unpigmented or slightly
pigmented tight buds of P. suffruticosa ‘Zhao fen’. At 7 d after infection, less pigmentation
overall was observed in the tree peony petals injected with pTRV1/pTRV2-PsGSTF3-GFP,
especially near the injection site, with no significant changes found in the petals injected
with pTRV1/pTRV2-GFP (Figure 4A). Meanwhile, GFP detection was performed on the
petals infected with pTRV1/pTRV2-GFP and pTRV1/pTRV2-PsGSTF3-GFP solutions via
a fluorescence microscope (Olympus BX51, Tokyo, Japan). We also found that the petals
treated with VIGS showed green fluorescence signals (Figure 4A).
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Figure 4. Functional analysis of the PsGSTF3 gene by TRV (tobacco rattle virus) −based
virus−induced gene silencing (VIGS). (A) Comparisons between pTRV1/pTRV2−GFP and
pTRV1/pTRV2−PsGSTF3−GFP treated groups with respect to flowers at the full opening stage;
fluorescence signals of petals were imaged by fluorescence microscope. The photograph was taken
at 7 d after infiltration. (B) Heatmap analysis of each anthocyanin component. The contents were
log-transformed and used to generate a heatmap with the TBtools software package. (C) Anthocyanin
contents of petals via two experimental treatments. CK—petals injected with pTRV1/pTRV2−GFP;
VIGS—petals injected with pTRV1/pTRV2−PsGSTF3−GFP. (D) Relative expression of PsGSTF3 and
structural genes in ABP in the petals at 7 d after infiltration. The expression in the empty−vector
(pTRV1/pTRV2−GFP) infiltrated petals was used as the calibrator (set as 1). Data are presented as the
means (±SD) from three biological replicates. The asterisks denote significant differences according
to a one−way analysis of variance (ANOVA) (* p < 0.05; ** p < 0.01).

Further, ultra-performance liquid chromatography (UPLC) was used to determine the
anthocyanin contents in the two experimental groups. The chromatograms showed that
the components of the anthocyanin were well separated, and six common anthocyanin
classes (Cyanidin, Pelargonidin, Peonidin, Petunidin, Delphinidin and Malvidin) were
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measured. In P. suffruticosa ‘Zhao fen’ petals, the Pelargonidin class had the highest content,
followed by the Peonidin class, while the contents of the Petunidin, Delphinidin, and
Malvidin classes were extremely low (Figure 4B,C). In addition, the anthocyanin content of
the petals injected with pTRV1/pTRV2-PsGSTF3-GFP was significantly lower compared
to the corresponding injection in pTRV1/pTRV2-GFP petals (Figure 4B; Table S4), which
correlated well with the reduced expression level of PsGSTF3 (Figure 4D). Interestingly,
knockdown of PsGSTF3 significantly downregulated the expression of PsGSTF3 and also
affected the expression of structural genes (except F3′H) in the ABP to varying degrees
(Figure 4D). In short, these results showed that the knockdown of PsGSTF3 can affect antho-
cyanin accumulation directly and that PsGSTF3 plays an irreplaceable role in anthocyanin
transport and accumulation in tree peony petals.

2.5. Overexpression of PsGSTF3 Increased Anthocyanin Accumulation in Tobacco

To further characterize the function of PsGSTF3, a 35S::PsGSTF3-PHB vector was
ectopically introduced into the tobacco. Six independent transgenic tobacco lines that
overexpressed PsGSTF3 were screened in a hygromycin-resistant medium and were then
cultured under the same conditions. RT–PCR analysis showed that the transformed Ps-
GSTF3 gene was detected in all transgenic lines but was nonexistent in the control group
(WT) (Figure 5A). Furthermore, the quantitative real-time polymerase chain reaction (qRT–
PCR) analysis revealed that the expression level of PsGSTF3 in transgenic plants was
significantly higher than that in the control group, especially in Line 1, 4 and 5 (Figure 5B).
Therefore, these three lines were used for further experiments.

Notably, compared to the control group, the petal pigmentation of the transgenic to-
bacco harboring PsGSTF3 was markedly deeper (Figure 5C). To confirm whether the deeper
flower color could be attributed to the increased levels of pigment synthesized from the
anthocyanin pathway, the anthocyanins were determined qualitatively and quantitatively
via UPLC. The results showed that most components of anthocyanins were upregulated to
varying degrees in transgenic lines compared to the control group (Figure 5D), especially
the Cyanidin, Delphinidin, and Pelargonidin classes, which showed significant differences
(Figure 5E). Most notably, the extremely significant increase in the content of cyanidin-3-O-
rutinoside and pelargonine-3-O-rutinoside produced this difference (Table S5). In addition,
the expression patterns of PsGSTF3 in the three transgenic tobacco lines were analyzed
by qRT-PCR. PsGSTF3 was detected in different tissues, with the highest expression level
in the leaves, followed by petals (Figure 5F). In short, the expression of PsGSTF3 in the
transgenic tobacco was closely related to increased pigmentation in the petals.

2.6. Predicted Protein Interaction Networks

It is known that PsGSTF3 and AtGSTF12 are homologous, so we used the STRING11.0
online software (https://cn.string-db.org/, accessed on 23 December 2021) to determine
which proteins may interact with PsGSTF3 by calculating the interaction network with
AtGSTF12 as the target gene (Figure 6). Analysis of the AtGSTF12 protein interaction
networks revealed 10 proteins that interacted, or had a co-expression relationship, with
AtGSTF12; the functions and detailed information are shown in Table 1. In addition,
we found that eight of these genes played important roles in ABP. Subsequently, these
Arabidopsis sequences were employed as queries in a Basic Local Alignment Search Tool
(BLAST) search of the transcriptome database (Accession number: SRP235658) using the
BioEdit software (Version 7.0.9; Micro Focus, Newbury, UK). After the final alignment,
seven candidate sequences from tree peony were obtained, including PsMATE, PsCHS,
PsDFR, PsANS, PsUF3GT, PsUGT and Ps3AT.

https://cn.string-db.org/
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Figure 5. Functional analysis of tobacco lines overexpressing the PsGSTF3 gene. (A) Electrophero-
gram of positive PCR detection in transgenic tobacco lines. (B) The results of quantitative real-time
polymerase chain reaction (qRT−PCR) detection in transgenic tobacco lines. (C) Phenotypic charac-
terization of tobacco flowers between the control group and transgenic lines. (D) Heatmap analysis
of each anthocyanin component. The contents were log-transformed and used to generate a heatmap
with the TBtools software package. (E) Anthocyanin contents of tobacco petals via two experimental
treatments: WT—petals of the wild type; OE—petals of the transgenic lines. (F) Temporal and spatial
expression patterns of PsGSTF3 in the three transgenic tobacco lines. Data are the means (±SD)
from three biological replicates. The asterisks denote significant differences according to a one−way
analysis of variance (ANOVA) (* p < 0.05; ** p < 0.01).
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Table 1. The specific information and main functions of ten proteins in protein interaction networks.

Sr. No
Arabidopsis thaliana Paeonia suffruticosa

Genes GenBank
Accession No. Functions Assembly Name Genes

1 TT12 AT3G59030.1 Involved in the transportation of
proanthocyanidin precursors into the vacuole Unigene0083215 MATE

2 TT14 AT5G13930.1 Encodes CHS, a key enzyme involved in the
biosynthesis of flavonoids Unigene0034816 CHS

3 DFR AT5G42800.1 Catalyzes the conversion of dihydroquercetin
to leucocyanidin in ABP Unigene0008084 DFR

4 LDOX AT4G22880.1 Catalyzes the oxidation of
leucoanthocyanidins into anthocyanidins Unigene0024684 ANS

5 UF3GT AT5G54060.1 Contributes to the last few anthocyanin
biosynthetic steps Unigene0078134 UF3GT

6 AT4G14090 AT4G14090.1 Encodes an anthocyanidin
5-O-glucosyltransferase Unigene0008084 UGT

7 AT4G13780 AT4G13780.1 Its function is described as methionine-tRNA
ligase activity Unigene0007649 MetRS

8 AT5MAT AT3G29590.1 Involved in the malonylation of the
5-O-glucose residue of anthocyanin

Unigene0095892 3AT
9 AT1G03495 AT1G03495.1 Involved in the acylation of the 6” position of

the 3-O-glucose residue of anthocyanin

10 AHA10 AT1G17260.1 The plasma membrane H(+) ATPase of plants
and fungi Unigene0117747 AHA10

2.7. Interaction Detection between PsGSTF3 and Proteins That Related to Anthocyanins

To determine whether PsGSTF3 would interact with the seven screened proteins re-
lated to anthocyanins, a Y2H assay was performed. The full-length PsGSTF3 sequence
was used as the bait. Firstly, we tested whether there was an autoactivation of PsGSTF3.
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As shown in Figure S2, pGBKT7 (BD)-PsGSTF3 and the pGADT7 (AD) empty vector
grew normally on the synthetic dextrose (SD)/-Trp-Leu solid medium (without tryp-
tophan and leucine) but could not grow on the SD/-Trp-Leu-His-Ade solid medium
(without tryptophan, leucine, histidine, and adenine), indicating no autoactivation of
PsGSTF3. Subsequently, we performed interaction detection using different combina-
tions of BD-PsGSTF3 and the seven anthocyanin-related proteins that were screened
(AD-PsMATE/PsCHS/PsDFR/PsANS/PsUF3GT/PsUGT/Ps3AT). At the same time, AD-
T/BD-P53 and AD-T/BD-Lam were used as the positive and negative control, respectively.
The results showed that all different combinations grew well on the SD/-Trp-Leu solid
medium, indicating that the two plasmids were co-transformed successfully. However, only
AD-T/BD-P53 and AD-PsDFR/BD-PsGSTF3 grew normally on the SD/-Trp-Leu-His-Ade
selective solid medium, while the other co-transformed combinations did not grow on the
same medium, suggesting that PsGSTF3 interacted with PsDFR (Figure 7).
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 7. Interaction detection between PsGSTF3 and seven anthocyanin-related proteins. AD and 
BD represent empty pGADT7 and pGBKT7 vectors, respectively. SD/−Trp−Leu represents the syn-
thetic dextrose (SD) medium lacking tryptophan and leucine. SD/−Trp−Leu−His−Ade represents the 
SD medium lacking tryptophan, leucine, histidine, and adenine. The GAL4 activation domain ex-
pressed by AD−T and BD−P53 was used as a positive control. AD−T and BD−Lam were used as the 
negative control. 

3. Discussion 
Flower color is one of the most important aesthetic traits of ornamental plants, as well 

as the most important breeding goal of horticulturists. Anthocyanins not only contribute 
to the red–purple coloration of horticultural plant organs but also are vital to human 
health and the bioactive substances in plant life. Therefore, research on the regulation of 
anthocyanin synthesis and transport has far-reaching significance. 

Although the structural genes and regulatory genes of anthocyanin biosynthesis in 
tree peonies have been extensively studied, there are few works on anthocyanin transport 

Figure 7. Interaction detection between PsGSTF3 and seven anthocyanin-related proteins. AD and BD
represent empty pGADT7 and pGBKT7 vectors, respectively. SD/−Trp−Leu represents the synthetic
dextrose (SD) medium lacking tryptophan and leucine. SD/−Trp−Leu−His−Ade represents the SD
medium lacking tryptophan, leucine, histidine, and adenine. The GAL4 activation domain expressed
by AD−T and BD−P53 was used as a positive control. AD−T and BD−Lam were used as the
negative control.

3. Discussion

Flower color is one of the most important aesthetic traits of ornamental plants, as well
as the most important breeding goal of horticulturists. Anthocyanins not only contribute
to the red–purple coloration of horticultural plant organs but also are vital to human
health and the bioactive substances in plant life. Therefore, research on the regulation of
anthocyanin synthesis and transport has far-reaching significance.
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Although the structural genes and regulatory genes of anthocyanin biosynthesis in tree
peonies have been extensively studied, there are few works on anthocyanin transport after
synthesis. To date, the mechanisms underlying the intracellular transport of anthocyanins
have been partially elucidated. The delivery of anthocyanins from synthesis to accumu-
lation requires a vesicle trafficking-mediated model [19,42,43] or a transporter-mediated
(e.g., MATE, ABC, and GST) model [18–20]. GSTs represent a ubiquitous and complex
superfamily of multifunctional dimeric enzymes involved in the key metabolic steps of
many eukaryotes [19].

The involvement of GSTs in the trafficking and accumulation of anthocyanins was
confirmed in maize, Arabidopsis, and petunia, as the loss-of-function mutants in these plants
cannot accumulate anthocyanins [26,44,45]. Moreover, the transcription abundance of
GSTs is reportedly correlated with fruit pigmentation in some horticultural crops, such
as apple [27], lychee [28], peach [30], grape [46], and strawberry [31]. In recent years,
related studies have also been published on ornamental plants, including camellia [47],
cineraria [32,42], carnation [34], cyclamen [33], lily [43], and poinsettia [44] (Table S1).
Fortunately, in our previous research, we screened a GST (PsGSTF3) gene regarded as a
candidate participant in anthocyanin transport and the promotion of pigment accumulation.
In this study, we successfully cloned the PsGSTF3 gene from the petals of P. suffruticosa
‘Zhao fen’ that had full-length genomic DNA and cDNA of 866 bp and 642 bp, respectively,
and contained three exons and two introns (Figure 1A,B). According to relevant statistics,
among the various GST subclasses, intron–exon organization is well categorized and
shows similar gene structures, such that most members belonging to the Phi subclass
are composed of three exons and two introns [45,48–51]. Unsurprisingly, PsGSTF3 was
completely suitable for the structural characteristics of the Phi subclass, which may be
related to the potential functions of PsGSTF3 gene.

Subcellular localization analysis can provide important clues for understanding pro-
tein functions. In Arabidopsis, TT19-GFP is localized not only in the cytoplasm and nuclei,
but also on the tonoplast [41]. In contrast, maize Bz2 was confirmed to loosely bind to
membranes [52], but it remains unclear with which organelle membrane Bz2 is associ-
ated. In this study, PsGSTF3 was localized on the nucleus and ER membrane (Figure 2).
It is well known that anthocyanins are synthesized on the cytosolic surface of the ER
and then transported into the vacuole for storage. Sun (2012) [41] reported that cyanidin
might be the primary target to which TT19 binds around the cytoplasmic surface of the
ER in Arabidopsis. The TT19-bound flavonoids were further modified by glycosylation
and acylation. Then, the acylated anthocyanins were released from TT19 and taken up
by tonoplast-localized transporters and ultimately sequestered into the vacuole [53,54].
The flavonoid transport mechanisms in plants are diverse and redundant to adapt to
changing environmental conditions [55]. Thus, we hypothesized that PsGSTF3 may be
a component of the metabolon on the ER and bind to anthocyanins covalently to form a
conjugate for labelling anthocyanins, thereby enabling anthocyanins to be identified and
transported accurately.

The function of GST in anthocyanin transport was successively verified via the applica-
tion of various mutants and functional complementation. It is well known that in the maize
Bz2 (encoding a GST) deletion mutant, anthocyanins can only be detected in the cytosol
without being transported into the vacuole [24]. The phenotype of a carnation anthocyanin
mutant (fl3, encoding an anthocyanin-related GST) was restored after the heterologous
expression of maize Bz2 and petunia PhAN9 [56]. Interestingly, this study also revealed
that a GST member can simultaneously participate in the vacuole sequestration of different
flavonoid substances in certain plants. Overexpression of AtGSTF12 (Arabidopsis thaliana),
VviGST4 (Vitis vinifera), AcGST1 (Actinidia chinensis), and RsGST1 (Raphanus sativus) in the
Arabidopsis tt19 mutant can restore both the anthocyanin-deficient phenotype in plants and
the PA-deficient phenotype in seed coats [27,31,48,57] (Figure 3). However, in this study,
PsGSTF3 had the ability to functionally complement the anthocyanin-deficient phenotype
of the Arabidopsis tt19 mutant but not the PA-deficient phenotype in the seed coat, which
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was consistent with the results for MdGSTF6 (Malus domestica), PpGST1 (Prunus persica),
GhGSTF12 (Gossypium hirsutum), An9 (Petunia hybrida), LcGST4 (Litchi chinensis), RAP (Fra-
garia ananassa), etc. [28–30,32,33]. In summary, these results indicate that PsGSTF3 plays an
extremely important role in the transport of anthocyanins in tree peony petals.

To clarify the role of PsGSTF3 in the anthocyanin transport of tree peony, the VIGS
technique was used to specifically silence the PsGSTF3 gene in the petals of P. suffruticosa
‘Zhao fen’ and to detect and record the phenotypes of the petals in the blooming period.
The VIGS system, which involves TRV1 and TRV2, is an effective tool for use in the
functional characterization of genes in vivo [58]. To date, there are few reports on the
application of the VIGS system in the field of ornamental plant flower color, including
Rosa rugosa [59] and Gerbera jamesonii [60]. In this study, we used perennial tree peony
grown naturally in the field as the experimental material for the first time to explore the
key genes that may be involved in anthocyanin transport and obtained preliminary results
for gene-silencing efficiency. Compared to the control group, the established optimal VIGS
system group resulted in a significant decrease of anthocyanin content in the petals of
P. suffruticosa ‘Zhao fen’, which was consistent with the significant down-regulation of
endogenous PsGSTF3 transcription abundance (Figure 4). Interestingly, most genes encod-
ing anthocyanin biosynthesis enzymes also showed lower expression in pTRV1/pTRV2-
PsGSTF3-GFP treatment (Figure 4C), which was similar to the results for VIGS infection
experiment in peach fruits [30]. However, these results were different from those in apple
fruits and cineraria leaves, which only caused a significant decrease in the transcriptional
levels of silenced gene, whereas the relative expression of other structural genes remained
basically unchanged [27,42]. In addition, to further confirm the function of the PsGSTF3
gene in anthocyanin transport, PsGSTF3 was first transformed into tobacco, which en-
hanced the flower coloration of the transgenic tobacco plant (Figure 5). Coincidentally, in
the results of anthocyanin content in tree peony and tobacco petals, we found that dif-
ferent kinds of anthocyanins changed to some extent between the treatment and control
groups (Figures 4B and 5), indicating that PsGSTF3 did not specifically bind to a certain
anthocyanin. In Arabidopsis, the in vitro assays showed that the purified recombinant TT19
increased the water solubility of cyanidin (Cya) and cyanidin-3-O-glycoside (C3G) [41];
in cineraria, ScGST3 increased the water solubility of C3G and delphinidin-3-O-glucosid
(D3G) [42]; and in kiwi, AcGST1 increased the water solubility of cyanidin-3-O-galactoside
(C3Gal) and cyanidin-3-O-xylo-galactoside (C3XG) [29]. In short, these previous research
results also indirectly supported our hypotheses.

Undoubtedly, anthocyanin accumulation is coordinately regulated by both biosyn-
thesis and transport. To the best of our knowledge, no publications have yet explored
whether there are interactions between structural genes in ABP and anthocyanin trans-
porters. Y2H is an experimental technique that analyzes the interactions of two proteins
from the expression product based on the genetic analysis of yeast. In this study, we used
the homology of PsGSTF3 and AtGSTF12 to construct a protein interaction network to
screen for suspicious genes (Figure 6; Table 1). The Y2H assay proved that PsGSTF3 inter-
acted with PsDFR (Figure 7). Qi demonstrated that PsMYB1 could transcriptionally activate
the expression of PsDFR by directly binding to their promoters [61]. Coincidentally, MYBs
bound to the promoter were confirmed to activate the transcription of GSTs in many
species [27,30]. Therefore, we suspect that an MYB transcription factor can simultaneously
regulate anthocyanin synthesis and transport genes. However, determining whether such a
regulatory relationship exists in tree peony requires more in-depth research, which provides
a direction for our next study.

Flower color has always been an important trait in ornamental horticultural plants,
and tree peony is no exception. The synthetic pathway of anthocyanin has been well
studied, but anthocyanin transport is also an indispensable step in the process of antho-
cyanin’s delivery into the vacuole for storage. Therefore, an in-depth understanding of
anthocyanin transport is important for elucidating the mechanism underlying tree peony
petal coloration. In this study, we used a variety of biological experimental methods to
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demonstrate that PsGSTF3 encodes an important GST transporter of anthocyanin in tree
peony petals. Additionally, PsGSTF3 interacted with PsDFR, thereby enabling both to play
a role together in tree peony petal coloration. Unfortunately, how PsGSTF3 is regulated
remains unclear in tree peony and also provides us with new ideas for future research.
In short, anthocyanin accumulation is a complicated process affected by many factors,
including the different genetic backgrounds of cultivars. Our study provides a basis for
further investigations on the molecular mechanisms of anthocyanin transport in tree peony.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The peony cultivar ‘Zhao fen’ was grown at the tree peony experimental site of Yuquan
mountain in Beijing, China. The petals were collected in spring. The petals were quickly
frozen in liquid nitrogen and stored at −80 ◦C.

Before sowing in the Murashige and Skoog (MS) solid medium, the Arabidopsis tt19
mutant and tobacco seeds were disinfected by soaking in 70% ethanol for 2 min, soaking
with 7% NaClO for 10 min, and then rinsing with aseptic water five times. Plant seedlings
were grown in a controlled-environment room with the following conditions: 16 h light/8 h
night photoperiod at 23 ◦C (Arabidopsis) and 25 ◦C (tobacco), with 60% relative humidity.

4.2. DNA and RNA Extraction, and Reverse Transcription

We conducted genomic DNA and total RNA extraction using a Plant Genomic DNA
Kit (Tiangen, Beijing, China) and EASY Spin Plant RNA Extraction Kit (Aidlab, Beijing,
China), respectively. The integrity and concentration of the genomic DNA and total RNA
were verified using 1.0% agarose gel electrophoresis and a 2100 Bioanalyzer (Agilent Tech-
nologies, Palo Alto, CA, USA). Additionally, first-strand cDNA synthesis was performed
using a cDNA reverse transcription kit (Transgen, Beijing, China), and the total RNA (1 µg)
was studied using oligo (dT) primers according to the manufacturer′s instructions.

4.3. Gene Cloning and Sequence Analysis

The cDNA and DNA of P. suffruticosa ‘Zhao fen’ petals were used as the PCR templates.
Then, the PCR product was cloned into the pMD19-T (Takara, Beijing, China) and confirmed
by sequencing. The specific primer information is listed in Table S6. To explore the
evolutionary relationships, a total of eight anthocyanin-related GST amino acid sequences
(Table S3) were aligned through ClustalW, and a phylogenetic tree was constructed using
the neighbor-joining (NJ) method in MEGA-X (version X, Mega Limited, Auckland, New
Zealand), with 1000 bootstrap replications used to assess tree topology and reliability.
Sequence homology and alignment were carried out with DNAMAN software (Version 7;
Lynnon Biosoft, San Ramon, CA, USA).

4.4. Subcellular Localization Analyses

The coding sequence (CDS) of PsGSTF3 without stop codons was cloned into PHG
vectors (modified from PHB vector) to construct the 35S::PsGSTF3-GFP recombinant vector
using a seamless cloning kit (Novoprotein, Suzhou, China). Then, the fusion constructs and
negative control 35S::GFP vector were transformed into the Agrobacterium strain GV3101.
Additionally, the ER-mCherry [62] was used to locate the fluorescent proteins in the ER, and
then the 35S::PsGSTF3-GFP or 35S::GFP vector (1:1, v/v) was infiltrated into N. benthamiana
leaves. The fluorescence signal was observed by laser confocal microscopy (Zeiss LSM 880
Meta, Jena, Germany). The excitation and emission wavelengths were 405 nm and 410–484
nm for blue fluorescence (DAPI), 488 nm and 500–540 nm for green fluorescence (EGFP),
and 594 nm and 599–651 nm for red fluorescence (mCherry), respectively. The primers and
restriction sites are listed in Table S7.
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4.5. Overexpression of PsGSTF3 in The Arabidopsis tt19 Mutant

The full CDS of PsGSTF3 was connected to the PHB vector by seamless cloning, and
the A. strain GV3101 line containing 35S: PsGSTF3-PHB was introduced into the A. thaliana
mutant tt19 using the floral dipmethod [57]. The primers and restriction sites are listed
in Table S7. T1 generation transgenic seeds were grown and screened on the MS medium
containing 30 mg/L hygromycin B and 6% (w/v) sucrose. Seeds of the T3 generation were
collected for follow-up experiments to confirm the results. The untransformed WT (Col-0)
and tt19 were used as the control.

4.6. Virus-Induced Gene Silencing of PsGSTF3 in Peony

A 272 bp fragment of PsGSTF3 (251–522 bp) was amplified and cloned into the pTRV2-
GFP vector (modified from pTRV2 vector) to construct the pTRV2-PsGSTF3-GFP recom-
binant vector. The primers are listed in Table S7. Then, the pTRV1, pTRV2-GFP, and
pTRV2-PsGSTF3-GFP plasmids were transformed into the A. strain GV3101, which was
cultured in the LB medium (100 mg/L kanamycin; 25 mg/L rifampicin; 200 µM AS; 10 mM
MES) at 28 ◦C for 12–16 h until an OD600 = 1.8 was reached. After centrifugation, the thallus
was resuspended until reaching OD600 = 1.0 in an infiltration buffer containing 10 mM
MES, 100 µM AS, and 10 mM MgCl2. Finally, pTRV1 was mixed with pTRV2-GFP and
pTRV2-PsGSTF3-GFP in equal volumes respectively, and the mixed bacterial solution was
allowed to stand for 4 h at room temperature in the dark [63–68]. To improve the infection
efficiency, 0.01% Silwet L-77 was added to the infection liquid.

The perennial P. suffruticosa ‘Zhao fen’ that grows naturally in the field was used as
the experimental material. The experimental treatment time was in mid-April. At this
time, most buds of ‘Zhaofen’ were in the S1 (unpigmented tight bud) to S2 (slightly
pigmented bud just before anthesis) periods of development. The injection experiment
was carried out in the afternoon (15:00–17:00) with good weather conditions. The buds
that met all the requirements were selected, and about 3 mL of infection solution was
injected into the buds (internal and external) and pedicels. The infiltrated flower buds
were given shaded treatment for 24 h and then allowed to grow normally in a natural state.
After 7–10 days, photographs were taken, petals were collected for subsequent experiments,
and the fluorescence signals of petals were imaged by a fluorescence microscope (Olympus
BX51, Tokyo, Japan).

4.7. Tobacco Stable Transformation

The A. strain GV3101 line containing 35S: PsGSTF3-PHB was introduced into the
tobacco using the leaf disc transformation method [69]. Firstly, the cultivation and infec-
tion treatment of sterile tobacco seedlings were performed using a previously described
protocol [69], and the wild-type tobacco was used as a negative control. After infection, the
leaves were consecutively carried out differentiation culture and rooting culture on the MS
medium supplemented with relevant hormones (different concentrations of IBA and NAA)
and antibiotics (hygromycin). Finally, the well-growing plantlets were transplanted into
small flowerpots containing the substrate to maintain the original growth environment.

4.8. Gene Expression Analysis

The qRT-PCR experiment was performed using a SYBR Premix Ex TaqTM II Kit
(TaKaRa, Beijing, China) on a LightCycler 480 system (Roche Applied Science, Penzberg,
Germany). The experimental procedures were conducted in accordance with the manu-
facturer’s instructions and previous reports [61]. The PP2A gene was used as a reference
gene for tree peony [70], and Actin was used for Arabidopsis and tobacco. The 2−∆∆CT

method [51] was used for analysis and visualization of the qRT-PCR data generated by
multiple technical replicates. The specific primer information is listed in Table S8.
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4.9. Ultra-Performance Liquid Chromatography (UPLC) Analysis of Anthocyanin

Anthocyanin contents were detected by MetWare (http://www.metware.cn/, accessed
on 23 December 2021) based on the AB Sciex QTRAP 6500 LC-MS/MS platform. The specific
steps were as follows:

Sample preparation and extraction: Approximately 50 mg of tissue was transformed
into a powder using liquid nitrogen, which was weighed and extracted with 0.5 mL
methanol/water/hydrochloric acid (500:500:1, v/v/v). Then, the extract was vortexed for
5 min, exposed to ultrasound for 5 min, and centrifuged at 12,000 g under 4 ◦C for 3 min.
Next, the residue was re-extracted by repeating the above steps again under the same
conditions. The supernatants were collected, and filtrated through a membrane filter
(0.22 µm, Anpel) before LC-MS/MS analysis.

UPLC Conditions: The sample extracts were analyzed using an UPLC-ESI-MS/MS
system (UPLC, ExionLC™ AD; MS, Applied Biosystems 6500 Triple Quadrupole). The ana-
lytical conditions were as follows: UPLC—column, WatersACQUITY BEH C18 (1.7 µm,
2.1 mm × 100 mm); solvent system, water (0.1% formic acid)—methanol (0.1% formic acid);
gradient program, 95:5 v/v at 0 min, 50:50 v/v at 6 min, 5:95 v/v at 12 min, hold for 2 min,
95:5 v/v at 14 min; hold for 2 min; flow rate, 0.35 mL/min; temperature, 40 ◦C; injection
volume, 2 µL.

Qualitative and quantitative analysis: The MWDB (metware database) database was
built based on standards and used to perform qualitative analysis on the mass spectrometry
data. Quantification was accomplished using multiple reaction monitoring (MRM) analysis
under triple quadrupole mass spectrometry. After obtaining the mass spectrometry analysis
data from different samples, the chromatographic peaks of all targets were integrated, and
quantitative analysis was performed using the standard curve.

4.10. Protein Interaction Network Prediction

According to the homologous relationship between PsGSTF3 and AtGSTF12, we
used the STRING 11.0 version software (https://string-db.org/, accessed on 23 December
2021) [71] to predict the proteins that may interact with PsGSTF3. The minimum required
interaction score was set to medium confidence (0.400), and the maximum number of
interactors was set to none/query proteins only.

4.11. Yeast Two-Hybrid Assay

The matchmaker GAL4 two-hybrid system was used for the Y2H assays. The CDS
sequences of PsGSTF3 and seven suspicious proteins (PsMATE, PsCHS, PsDFR, PsANS,
PsUF3GT, PsUGT, and Ps3AT) were screened out via the protein interaction network and
ligated to the pGBKT7 and pGADT7 vectors via homologous recombination technology.
The primers are listed in Table S6. These recombinant vectors were confirmed by sequencing
and co-transformed into AH109 yeast cells. Finally, the SD/-Trp-Leu medium was used to
select transformed positive clones, and then the SD/-Trp-Leu-His-Ade + X-α-gal medium
was used to select positive interacting clones.

4.12. Statistical Analysis

We performed statistical analyses with SPSS Statistics for Windows (Version 17.0; SPSS
Inc., Chicago, IL, USA). All data represented the average and standard errors of three
biological replicates. One-way analysis of variance (ANOVA) was used to evaluate the
statistical significance of differences among means using the SPSS software. Single asterisks
indicate significant differences at the levels of p < 0.05.

5. Conclusions

In this study, PsGSTF3 from P. suffruticosa was successfully cloned and characterized.
Our results showed that PsGSTF3 contained GST-conserved domains and conformed to
the typical gene structure characteristics of the Phi subfamily. At the same time, PsGSTF3
was located on the nucleus and the ER membrane. PsGSTF3 was found to have the ability
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to functionally complement the anthocyanin-deficient phenotype of the Arabidopsis tt19
mutant but not the PA-deficient phenotype in the seed coat. The VIGS of PsGSTF3 in
tree peony petals can directly lead to a decrease in anthocyanin accumulation, while
the heterologous overexpression of PsGSTF3 can increase anthocyanin accumulation in
tobacco petals. Additionally, the Y2H assay showed that PsGSTF3 interacted with PsDFR,
which together contribute to the coloration of petals. In summary, PsGSTF3 played an
irreplaceable role in the anthocyanin transport of tree peony.
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