
BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

Cellular function given parametric variation in the
Hodgkin and Huxley model of excitability
Hillel Oria, Eve Marderb,c,1, and Shimon Maroma,1

aFaculty of Medicine, Technion–Israel Institute of Technology, Haifa 32000, Israel; bVolen National Center for Complex Systems, Brandeis University,
Waltham, MA 02454; and cBiology Department, Brandeis University, Waltham, MA 02454

Contributed by Eve Marder, July 7, 2018 (sent for review May 21, 2018; reviewed by Alain Destexhe and Idan Segev)

How is reliable physiological function maintained in cells despite
considerable variability in the values of key parameters of mul-
tiple interacting processes that govern that function? Here, we
use the classic Hodgkin–Huxley formulation of the squid giant
axon action potential to propose a possible approach to this prob-
lem. Although the full Hodgkin–Huxley model is very sensitive
to fluctuations that independently occur in its many parameters,
the outcome is in fact determined by simple combinations of
these parameters along two physiological dimensions: structural
and kinetic (denoted S and K, respectively). Structural parame-
ters describe the properties of the cell, including its capacitance
and the densities of its ion channels. Kinetic parameters are
those that describe the opening and closing of the voltage-
dependent conductances. The impacts of parametric fluctuations
on the dynamics of the system—seemingly complex in the high-
dimensional representation of the Hodgkin–Huxley model—are
tractable when examined within the S–K plane. We demonstrate
that slow inactivation, a ubiquitous activity-dependent feature of
ionic channels, is a powerful local homeostatic control mechanism
that stabilizes excitability amid changes in structural and kinetic
parameters.

excitability | homeostasis | inactivation | dimensionality reduction

The canonical Hodgkin–Huxley mathematical model of mem-
brane excitability is embedded in a high-dimensional param-

eter space. In their original report, Hodgkin and Huxley (1)
indicate that the parameters vary substantially between different
cells, an observation that is extensively documented by electro-
physiologists who have studied excitable membranes over half
a century (2, 3). This cell-to-cell intrinsic variability—that is,
variability that cannot be attributed to measurement uncertain-
ties (2, 4)—is habitually averaged out in attempts to generalize
findings (5, 6).

There are many reasons to assume that cell-to-cell variability
is also expressed in a given cell over time (7–13). For instance:
kinetic parameters of channel gating change due to continuous
modulation and activity-dependent roaming in protein configu-
ration space; the ratio between the number of different channel
proteins in the membrane might change due to differential pro-
tein expression or turnover; the membrane capacitance and
leak conductance change during massive cell growth, movement,
or contact of the cell with biological matrices that impact on
membrane surface tension.

Randomly and independently pulled from the physiological
range indicated by Hodgkin and Huxley, many combinations of
parameters give rise to an excitable “solution” (i.e., stimulus-
driven excitable membranes that generate single action poten-
tials), but many other combinations lead to either nonexcitable
or oscillatory, pacemaking membranes (14). The solutions are
sensitive to relatively slight parametric independent variations.
This is in contrast to the biological neurons and muscles that
maintain relatively invariant patterns of activity that are seem-
ingly more robust compared with the classic Hodgkin–Huxley-
type models used to describe them. Cell-to-cell and within-cell
parametric variation challenge our understanding of establish-

ment and maintenance of excitability, as well as the methods we
use to extract parameters from voltage-clamp data and construct
suitable models (2, 15–17). This essential problem goes beyond
the regulation of excitability; it belongs to a class of open ques-
tions that concern the study of organization in biological systems
and the emergence of macroscopic functional order from a large
space of potential microscopic “disordered” configurations (18).

Attempts to account for invariant excitability given parametric
variation focus on activity-dependent, homeostatic coordination
of channel protein expression (11, 19–21). The interpretation
is corroborated by correlations between mRNA concentrations
of different ionic channel proteins (22). It is also supported by
elegant simulations showing how centralized activity-dependent
(feedback) regulation that controls protein expression may nav-
igate a cell into one of many functional solutions (11, 23).
However, channel protein densities are not the only determi-
nants of membrane excitability status. Even in the relatively
simple Hodgkin–Huxley model—a single compartment with two
voltage-dependent conductances—more than 10 parameters are
involved, possibly varying and impacting each other in a wide
range of time scales (subsecond to hours and days).

We acknowledge the difference between the high-dimensional
parameter space dictated by the explicit Hodgkin–Huxley model
and the dimensionality of the physiological space within which
regulation of excitability is embedded. In other words, we ask
how many physiologically relevant dimensions are needed to
capture the dynamics of excitability and its regulation in the
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Hodgkin–Huxley formulation, as this may be very different from
the number of free parameters in the full Hodgkin–Huxley
model. From the physiologist’s perspective, the actual (hopefully
not too many) dimensions should be expressed in parameters
that can be directly extracted from standard voltage-clamp data.
The approach we take below maintains the biophysically mea-
surable parameters and is therefore different from most other
reductions previously done.

We show that—congruent with low-dimensional models of
excitability (24–28)—the phenomenon of excitability may be
reduced to two dimensions. We identify these dimensions as
cellular-level structural (denoted S) and protein-intrinsic kinetic
(denoted K) dimensions and express them as combinations
of actual Hodgkin–Huxley parameters that may be extracted
from voltage-clamp data. Structural parameters refer to mem-
brane surface area, number of different voltage-dependent con-
ductances, and ionic concentrations. Kinetic parameters are
those that describe the rate constants associated with channel
opening and closing. Reduced to the S–K space, the mani-
fold of functional solutions is simpler to understand amidst
parametric variations, enabling regulation of excitability by
one activity-dependent principle that is tightly related to a
ubiquitous physiological process: slow inactivation of ionic
channels.

Results and Discussion
Hodgkin–Huxley Model, Multiple Solutions, and Their Sensitivity to
Parametric Variations. The dispersion of parameters measured
by Hodgkin and Huxley is summarized in Fig. 1—a collage of
data and images from the original report, adapted to modern
notation. The table (Fig. 1A) indicates ranges of cellular-level
structural parameters. The term “structural” is used, as these
parameters are fully determined by physical measures that are
characteristic of the cell. These include membrane surface area,
the number of voltage-dependent conductances, and relevant
equilibrium potentials. The graphs of Fig. 1B depict protein-
level kinetic parameters, expressed as six transition rate functions
superposed with data points. The mathematical expressions of

these six rate functions—each of which describes the change
of transition rate with membrane voltage (V )—involve >10
different “hidden” parameters. Note the dispersion of points
around the fitted rate functions, depicting repeated measure-
ments in different axons.

To simplify matters, the following analysis ignores variations in
equilibrium potentials and focuses on 10 parameters: membrane
capacitance (Cm); maximal sodium, potassium, and leak conduc-
tance (ḡNa, ḡK, and ḡleak, respectively); and the six transition rates
underlying the opening and closing of “gates”—αm(v), βm(v),
αh(v), βh(v), αn(v), and βn(v)—as explained below.

We begin creating a straw man, considering marginal (i.e.,
independent) uniformly distributed variations for all 10 parame-
ters. Values of parameters are expressed in terms of their scaling
relative to the values chosen by Hodgkin and Huxley (1952).
Thus, for instance, < ḡNa > = 1.2 stands for ḡNa = 144 mS/cm2

(i.e., ×1.2 the value chosen by Hodgkin and Huxley; Fig. 1).
Transition rates are similarly scaled by multiplication. Thus, for
instance, the expression <βn(v)> = 0.75 stands for 0.75βn(v).
The shaded areas added to the graphs of Fig. 1 suggest that
such a linear scaling of transition rate functions is justified, as
it captures most of the underlying variance.

Hence, a realization of a Hodgkin–Huxley model is defined
by a list of 10 scaling parameters: <αn(v)>, <βn(v)>,
<αm(v)>, <βm(v)>, <αh(v)>, <βh(v)>, <Cm >,
< ḡleak >,< ḡK >, and< ḡNa >. Assuming independence of the 10
parameters, we randomly generated 10,000 such lists of scaling
parameters with values range [0.75, 1.25] and numerically instan-
tiated, each one of them, in a full Hodgkin–Huxley model. The
resulting behaviors may be classified as nonexcitable, excitable
(i.e., a membrane that generates one spike in response to a short
above-threshold stimulus), and oscillatory (i.e., pace-making).
Resting membrane potentials of the excitable and nonexcitable
outcomes did not differ much over the±25% deviation from the
original Hodgkin and Huxley parameters, being −64.5± 1.4 mV
and −66.2 ± 1.5 mV (respectively).

To promote effective visualization of the 10-dimensional
space, results are presented in the form of polar plots (Fig. 2):

A

B

Fig. 1. A collage of slightly modified images extracted from the 1952 original report of Hodgkin and Huxley (1). (A) The table indicates ranges of cellular-
level structural parameters. (B) The graphs depict protein-level kinetic parameters, expressed as six transition rate functions superposed with data points. The
shaded areas added to the graphs suggest that a linear scaling of transition rate functions captures most of the underlying variance: <αn(v)> = [0.85,1.15],
<βn(v)> = [0.7,1.3], <αm(v)> = [0.8,1.3], <βm(v)> = [0.7,1.35], <αh(v)> = [0.85,1.15], <βh(v)> = [0.8,1.5]. B is modified with permission from ref. 1.
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Fig. 2. Minor change in parameters significantly affects membrane excitability. Realizations (10,000) of a full Hodgkin–Huxley model; each realization is
uniquely defined by a vector of 10 parameters, expressed in terms of their scaling relative to the values chosen by Hodgkin and Huxley. Responses are
classified to three excitability statuses (different colors): excitable (2,225), nonexcitable (4,884), and oscillatory (2,891). Subsets of the results (200 for each
excitability status) are presented in polar plots (A–C): Given a list of 10 scaling parameters, the value of each parameter is depicted along its own (angular)
axis, and the entire vector is depicted as a line that connects the 10 scaling parameters. The standard Hodgkin–Huxley model would be a line passing through
1 for all scaling parameters. Mean vectors are depicted by dashed lines. The histograms in D depict Euclidean distance between vectors of scaled parameters
within each of the three excitability classes.

Given a vector of 10 scaling parameters, the value of each
parameter is depicted along its own (angular) axis, and the entire
vector is depicted as one line that connects the 10 scaling param-
eters. The standard Hodgkin–Huxley model would be a line
passing through 1 for all scaling parameters. Three separate
polar plots (Fig. 2, A–C) show that practically all three classes
of excitability status (depicted by three different colors) are dis-
tributed throughout the 10-dimensional parameter space. Mean
vectors in each of these cases are depicted by black dashed lines.
For comparison, these three mean vectors and their correspond-
ing standard deviations are plotted together in the polar plot
of Fig. 2D. The Euclidean distance between the mean vector of
excitable and the mean vectors of the other two solutions (nonex-
citable or oscillatory) is ∼0.15, similar to the SD of distances
within each of them (Fig. 2 D, Inset). In other words, assum-
ing complete independence of the parameters within the ±25%
range of parametric variation, almost any randomly chosen vec-

tor of Hodgkin–Huxley parameters, regardless of its outcome
(nonexcitable, excitable, or oscillatory), may be “pushed” to dis-
play any other excitability status by a minor manipulation of
parameters.

Lower Dimension Hodgkin–Huxley Parameter Space. We focus on
the conditions for transition between excitable and nonex-
citable statuses. Several schematic momentary current–voltage
relations of excitable membranes, during an action potential,
are plotted in Fig. 3A. Grossly speaking, the lower curve
depicts current–voltage relations sampled by voltage-clamp steps
from deeply hyperpolarized holding potential. The upper curve
depicts current–voltage relations sampled by voltage-clamp steps
from a relatively depolarized holding potential. During an action
potential, where membrane voltage is a dynamical free vari-
able, current–voltage relations slowly shift between these two
extremes due to an evolving voltage-dependent restoring force,

Ori et al. PNAS | vol. 115 | no. 35 | E8213
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Fig. 3. Theory inspired dimensionality reduction. (A) Idealized momentary current–voltage relations at different ratios of available sodium and potassium
conductances [see chapter 11 in Jack et al. (27)]. In different phases of the action potential, different momentary current–voltage relations determine the
dynamics. The black continuous line depicts the resulting current–voltage trajectory during an action potential. (A, Inset) A magnified version of the area at
threshold (indicated in the main image by a circle), about which the system is linearized. (B) Histograms of the three excitability statuses, constructed from
the data of Fig. 2 (10,000 Hodgkin–Huxley realizations), for each of the scaling parameters. Note that all parameters are freely fluctuating, simultaneously,
over ±25%.

mediated by the opening of potassium channels and inactivation
of sodium channels. The slow change in restoring force gives rise
to a current–voltage closed trajectory depicted in Fig. 3A (black
continuous line).

The general differential equation of the system is Cmd
2V /dt2 +

dIi/dt = 0. As pointed out by Jack et al. (27) (chapter 11), lin-
earization about the threshold potential (Fig. 3 A, Inset) leads to
an expression of dIi/dt in terms of the momentary conductance
(−gfast) at threshold and the time constant (τslow) for evolv-
ing restoring force. The condition for instability near threshold,
one of the solutions to this equation (expressed in conduc-
tance units), is−gfast >Cm/τslow. Note that these lumped entities
(−gfast, Cm, and τslow) may naturally be classified into the above
groups of structural and kinetic parameters: Cm is obviously
structural; likewise, the fast conductance (−gfast) that depends
on the relative contribution of maximal sodium conductance. In
contrast, the time scale for introduction of restoring force (τslow)
is a kinetic parameter because it depends on the actual transi-
tion rate functions governing the gating of sodium and potassium
channels.

Inspired by the above and related mathematical reductions of
excitability (24–26, 28), we turned to the data of Fig. 2 in search
for these two dimensions, expressed in terms of Hodgkin–Huxley
parameters. To this aim, we constructed count histograms of
the three excitability statuses for each of the scaling parameters
(Fig. 3B). These histograms show that the most critical determi-
nants of excitability status are the rates of opening and closure
of sodium and potassium channels (αm(v), βm(v), αn(v), and
βn(v)) and the maximal conductance of the membrane to the
two ions (ḡNa, ḡK). (Similar results are obtained using the two
“far apart” excitability statuses—nonexcitable and oscillatory—
to extract principal components; see https://www.wolframcloud.
com/objects/marom/SM.nb.) Distribution of excitability status is
significantly less sensitive to transition rates involved in sodium
conductance inactivation, as well as leak conductance. Mem-
brane capacitance seems to have some effect. A possible inter-
pretation of the histograms of Fig. 3B is that, at least as a
first approximation, −gfast may be assumed to be proportional
to a ratio of structural parameters S = < ḡNa >/(< ḡNa >+
< ḡK >), whereas τslow may be assumed to be proportional to

the ratio of kinetic parameters K = (<αn(v)>+<βm(v)>)/
(<αn(v)>+<βm(v)>+<αm(v)>+<βn(v)>).

The murky enmeshment of solutions shown in Fig. 2 (a sam-
ple of which is replotted in Fig. 4A, superposed) is significantly
clarified when the data are arranged according to the values of
S and K (Fig. 4B): The three different excitability regimes are
nicely clustered in three clouds. The oscillatory and nonexcitable
phases are well separated in the S–K plane (Fig. 4 B, Inset),
whereas the borders separating the excitable phase from these
other two are “soft” rather than sharp. The nonexcitable cloud
in the upper left corner is due to excessive sodium conductance
that stabilizes the membrane at a depolarized potential.

Note that in Fig. 4B, four parameters (two sodium inactiva-
tion rates, capacitance, and leak conductance) are not taken
into account, even though they are allowed to freely fluctuate.
And, yet, when examined in the 2D S–K space, the Hodgkin–
Huxley model reveals order that is literally impossible to detect
in the more explicit, higher dimensional representation of Fig.
4A. The effectiveness of the dimensionality reduction is further
supported in Fig. 5A, where the outcomes of multiple realiza-
tions of three different S;K pairs are shown. Each of these three
predefined S;K pairs (0.60;0.45, 0.50;0.50, and 0.40;0.55) was
realized 30 times by adjusting <αm(v)> and < ḡK > to the
other four, randomly generated, Hodgkin–Huxley parameters
(<αn(v)>, <βm(v)>, <βn(v)>, and < ḡNa >). Five of 30 are
shown for each value; the rest are comparable. Clearly, the val-
ues of the lumped S and K dimensions are better predictions of
the outcome than the individual Hodgkin–Huxley parameters.

Several points deserve attention in relation to the numerically
calculated S–K plane of Fig. 4B. First, the borders between the
three phases are fairly steep (note different ranges of S and
K axes). The immediate implication of this steepness is that in
its two extreme statuses (nonexcitable and oscillatory), the sys-
tem is relatively immune to variations in maximal conductances.
Stated differently, it is sufficient to use ionic channels that set
the K dimension below ∼0.45 to obtain a pacemaker that is
insensitive to fluctuations in density of channel proteins; the sys-
tem maintains its pace-making nature over factor 3 in the value
of the structural (S ) dimension. The same can be said about
nonexcitable membranes: setting the K dimension above ∼0.55

E8214 | www.pnas.org/cgi/doi/10.1073/pnas.1808552115 Ori et al.
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Fig. 4. Hodgkin–Huxley model in a 2D S–K plane. (A) Subsets of 100 realizations from each of the three excitability statuses of Fig. 2 are plotted together.
(B) Realizations (30,000) of a full Hodgkin–Huxley model, covering parametric variations over the entire range indicated by Hodgkin and Huxley (Fig. 1),
classified (different colors) to three excitability statuses: excitable (4,660), not excitable (12,271), and oscillatory (13,069). Linear regression through the
excitable status cloud (blue) is depicted by a line, the equation of which is S = 4.4K – 1.6. (B, Inset) Same plot with excitable points omitted.

to obtain a nonexcitable system that is insensitive to fluctuations
in density of channel proteins. Second, the K dimension is a ratio-
nal function of first degree, a simple combination of concrete
Hodgkin–Huxley kinetic parameters; as such it buffers the effect
of changes in individual rates. This would also be the case for
the S dimension when more than two voltage-dependent con-

ductances are involved; viewed from this angle, excitability status
becomes more robust when more conductances are involved.
Third, moving within the S–K plane has an interpretable effect
on the response shape (Fig. 5B): The integral of voltage response
during a simulated trace is sensitive to the position within the S–
K plane, revealing intermediate excitability states within phases

A

B

Fig. 5. Response features are sensitive to the values of S and K. (A) Five different instantiations for each of three S;K pairs; stimulation amplitude 14 µA.
(B) The integral of voltage response emitted during a simulated trace is sensitive to the position within the S–K plain. The integral, calculated by summing
the voltage values of all data points along the trace, relative to −65 mV, is presented in arbitrary units: B, Left, gradual change of K at S = 0.5; B, Right,
gradual change of S at K = 0.5. Point color depicts excitability class.

Ori et al. PNAS | vol. 115 | no. 35 | E8215



(e.g., lower amplitude or broader spikes). Naturally, difference
between points in the nonexcitable phase is very small, if at all.
Fourth is a seemingly technical point but of potential interest:
Given scaled Hodgkin–Huxley parameters, one can calculate the
resulting excitability status without resorting to simulation. This
means that the nonlinearity of the model does not change the
behavior actually predicted from a low-dimensional representa-
tion of the system (17). And, fifth, admittedly, our theoretically
inspired choice of the rational functions that express S and K is
one of many possible interpretations to relations between scal-
ing parameters. To further justify this choice, we submitted the
whole dataset to a linear support vector machine (SVM) algo-
rithm. The results are presented in Fig. 6, where the test set
and the probability distribution of each class are plotted as a
function of S and K. The accuracy of classifying the outcome of
a full Hodgkin–Huxley model, based on the values of S and K
is 0.89, suggests that our theoretically-inspired reduction of the
Hodgkin–Huxley model to an S–K plane is judicious.

The roots of our analysis are the same as those motivating well-
established simplifications of Hodgkin–Huxley, with S linked to
the cubic polynomial expression that provides fast positive feed-
back and K to the recovery variable that introduces slow negative
feedback. Another class of simplification involves reduction of
the multistate gating diagrams of sodium and potassium chan-
nels while maintaining spiking features (e.g., ref. 29); this class
of models may be considered as modifications to the K dimen-
sion. One might contemplate the S–K representation as allowing
those other simplified models to be seen coherently in a geomet-
ric representation, a point demanding systematic analysis that is
beyond the scope of the present study.

We opened with a question about the possibility of maintain-
ing reliable excitability in cells despite considerable variability in
the values of key underlying parameters. Below, a possible solu-
tion is offered: when changes of excitability state are considered
as dynamics within the S–K plane, slow inactivation—a ubiqui-
tous activity-dependent feature of ionic channels—may act as a
powerful local homeostatic control mechanism over a wide range
of time scales.

Closed-Loop Control of Excitability in the S–K Plane: The Case of
Sodium Conductance Slow Inactivation. Being embedded in S–
K, the seemingly complicated and parameter-sensitive system
becomes tractable, enabling regulation by an activity-dependent
rule acting on one physiological entity. A most straightforward
regulation rule would involve inverse relations between electri-

cal activity (say, integral of membrane potential depolarizations)
and the effective or actual value of the structural dimension
(S). Many physiological processes that modulate membrane ion
channels may realize such adaptation, covering a wide range of
spatial and temporal scales (30). For instance: (i) Slow inac-
tivation of sodium conductance, which is a local modulatory
mechanism that operates over seconds to many minute time
scales (14, 31–37); (ii) calcium-dependent activation of potas-
sium conductance, a local and relatively fast time scale mech-
anism (38–40); or (iii) regulation of sodium and/or potassium
channel protein expression, an arguably global but definitely slow
time scale mechanism (22, 41). Each of these in itself natu-
rally constrains the system to hover about the excitable phase
by pushing the value of S downward when above the diagonal,
or upward when below. Other regulatory mechanisms may be
envisioned, implementing (for instance) temporal integration of
subthreshold activity by slow inactivation of potassium channels
(42, 43) or maintenance of pace-making activity by regulation of
IKf conductance (44).

Of the above-mentioned spectrum of physiological modula-
tory mechanisms, slow inactivation of sodium channels is espe-
cially interesting. While acknowledged from the early days of
membrane electrophysiology (reviewed in ref. 35), the concept
of slow inactivation of sodium channels as a means to main-
tain excitability status amidst parametric variations has remained
relatively neglected. What makes slow inactivation a powerful
regulatory mechanism is its impacts on the effective value of ḡNa,
covering a range of time scales (33–36, 45, 46). Furthermore,
inactivation is “local” in the sense that it does not require cen-
tral control; it occurs automatically as a consequence of activity.
Thus, one might picture it acting as a distributed normalizing
force in extended excitable tissues (e.g., long axons or electrically
coupled excitable cells).

To demonstrate the potential impacts of slow inactivation on
dynamics within the S–K plane, we focus on channel gating
beyond the time scale of a single action potential. Slow inacti-
vation is represented as a macroscopic system, where channels
move—in an activity-dependent manner—between two states:
available and not available (Fig. 7, Left), depicted A↔ (1−A).
The first (A) is the set of states that includes, besides the open
state itself, all of the states from which the channel may arrive to
the open state within the time scale of a single action potential—
that is, the closed states and the very first inactive states that are
treated in standard Hodgkin and Huxley formalism for the action
potential generation. In other words, a channel in A is available

excitable

oscillatory

nonexcitable

Fig. 6. Machine learning classification of excitability status. Classification of excitability statuses (data of Fig. 2) using a linear kernel SVM; 80% training
set. Each surface (oscillatory, excitable, and nonexcitable; color coded) represents the probability (z axis) of a given combination of K and S to give rise to its
corresponding excitability status. Thus, for instance, the probability (Prob.) of a point K = 0.42 and S = 0.7 to yield an oscillatory (depicted green) excitability
status is practically 1. The colored points at the top of the image are the actual data points, similar to the form of presentation used in Fig. 4B.
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Fig. 7. Slow inactivation of sodium channels stabilizes excitability in S–K plane. (Left) A schematic representation of sodium channel states, with many
slow inactivation states. (Right) Demonstration of maintenance of excitability in S–K plane given parametric variation, controlled by activity-dependent
transitions of sodium channels between available and not-available sets of states. The simulation describes a 200,000-step random walk process, beginning
at 0.5;0.5 (S;K). The gray trajectory (squiggles-like) depicts a random walk where Kn+1 = Kn± 0.01 and Sn+1 = Sn± 0.01. The blue line depicts a walk where
Kn+1 = Kn± 0.01, and Sn+1 = Sn± 0.01− (2.6− 4.4K)S + S(1− S). The slope corresponds to the fitted function of Fig. 4B.

for conducting ions within the time scale of a single action poten-
tial. In contrast, (1−A) is a large, interconnected pool of slow
inactive states (depicted Ij’s in the scheme of Fig. 7) from which
transition to the open state within the time scale of an action
potential is impossible.

Recent structural analyses suggest that the large space of slow
inactive states (1−A) might reflect the many distorted versions
of the functional protein under conditions where the organiza-
tion, otherwise enforced by hyperpolarized membrane potential,
is compromised upon extensive depolarizing activity (31). The-
ory and experiments (14, 30, 34, 45, 47–49) show that, in such a
scheme, the multiplicity of slow inactive states entails a power-
law scaling of recovery from (1−A) to A as a function of time
spent in (1−A). This implies a potential to become dormant in
an activity-dependent manner for a duration ranging from tens
of milliseconds to many minutes and possibly hours. Thus, unlike
standard Hodgkin–Huxley gates, the rate of recovery from slow
inactivation does not have a uniquely defined characteristic time
scale. Rather, the time scale is determined by the distribution of
channels in the space of inactive states, which, in turn, is dictated
by the history of activation. The kinetics of A↔ (1−A) may be
qualitatively described by an adaptive rate model (30, 50–53),
a logistic-like function of the form: Ȧ=−f (γ)A+ g(A)(1−A),
where f is a function of some general activity measure γ, and
g(A) is a monotonically increasing function of the system state
A. The model gives rise to a wide range of time scales of recov-
ery from inactivation and assures, when simplified, a nonzero
stable point at (1− γ), on the edge between excitable and
nonexcitable (50).

Mapping the above picture to the terms used in the present
work, it is instructive to think of A as < ḡNa > (i.e., a scaling
parameter of maximal sodium conductance). In the original
Hodgkin and Huxley formalism, ḡNa is a structural constant that

sets limits on the instantaneous (at the scale of milliseconds)
input–output relations of the membrane. But when long-term
effects are sought, < ḡNa > might be treated as a dynamic vari-
able that modulates residence in a reservoir of slow-inactivation
configurations, pulling channels away from the system as a func-
tion of activity. Note that where < ḡK > is constant and where
< ḡNa > = A, the adaptive rate model qualitatively captures the
dynamics of < ḡNa >/(< ḡNa > + < ḡK >). Indeed, Fig. 7, Right
demonstrates that application of a simple adaptive rate model
Ṡ =−f (K )S + f (S)(1−S), where f (γ) is substituted by f (K ),
reveals the potential of sodium conductance slow inactivation to
maintain excitability amid parametric variations. Slow inactiva-
tion restrains the system to a diagonal in the S–K plane: The blue
line depicts a case where the kinetic dimension (K ) walks ran-
domly while Ṡ follows an adaptive rate formalism; a gray line that
connects between points (looks like squiggles) depicts the path of
excitability status in a control condition, where both the kinetic
dimension (K ) and the structural dimension (S ) walk randomly.

Concluding Remarks. In an era marked by capacity to collect data
at ever-increasing resolution, it is important to identify proper
scales in analyses of cellular phenomena, scales that matter to
the system (54), scales where the phenomenon of interest is low-
dimensional, regulatable by simple physiological processes and
explainable in simple physiological terms. What makes mem-
brane excitability—a fundamental physiological phenomenon—
particularly attractive to study in this context is the existence
of a relatively sound theory in general, its application in the
Hodgkin–Huxley formalism in particular, and its amenability
to experimental manipulations at both microscopic (channel
protein) and macroscopic (membrane potential) levels.

Practically all of the homeostatic-based models of excitability
regulation used in the past have kept kinetics constant and only
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looked at channel densities (11, 19, 21). The present study sug-
gests that when the problem is examined in a lower dimension,
a simple control rule that relies on slow inactivation—a ubiqui-
tous protein intrinsic process—can deal with fluctuations in both
structural and kinetic parameters. This homeostatic mechanism
is local, independent of protein synthesis, and operates over a
wide range of time scales (milliseconds to many minutes).

We speculate that activity dependence of protein kinetics at
relatively slow time scales, entailed by multiplicity of protein
states, is a general “automatic” and local means for stabilization
of cellular function.

Materials and Methods
All of the simulations and analyses were performed within the Mathe-
matica (Wolfram Research, Inc.) environment. The Mathematica notebook

is available at https://www.wolframcloud.com/objects/marom/SM.nb. Data
of Figs. 2–5 were generated using Hodgkin–Huxley equations, scaled to
6 ◦C, as they appear in the original manuscript (1952). The duration of
each simulation epoch was 90 ms, including an initial 50-ms relaxation
phase. Stimulus (7 µA, 1 ms) was delivered 70 ms into the epoch. A sorting
algorithm for excitability status (excitable, nonexcitable, or oscillatory) was
constructed, which is based on the time and the number of spikes follow-
ing the relaxation phase; spike detection threshold was set to 50 mV above
resting potential. The sorting algorithm was validated by eye-inspection of
multiple sets of 300 sorted epochs. To generate Fig. 6, we implemented
an SVM algorithm with linear kernel within Mathematica, using an 80%
training set.
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