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Abstract
Introduction Research comparing levodopa/carbidopa intestinal gel (LCIG), deep brain stimulation (DBS), and continuous 
subcutaneous apomorphine infusion (CSAI) for advanced Parkinson’s disease (PD) is lacking. This network meta-analysis 
(NMA) assessed the comparative effectiveness of LCIG, DBS, CSAI and best medical therapy (BMT) in reducing off-time 
and improving quality of life (QoL) in patients with advanced PD.
Methods A systematic literature review was conducted for randomized controlled trials (RCTs), observational and interven-
tional studies from January 2003 to September 2019. Data extracted at baseline and 6 months were off-time, as reported by 
diary or Unified Parkinson’s Disease Rating Scale Part IV item 39, and QoL, as reported by Parkinson’s Disease Question-
naire (PDQ-39/PDQ-8). Bayesian NMA was performed to estimate pooled treatment effect sizes and to rank treatments in 
order of effectiveness.
Results A total of 22 studies fulfilled the inclusion criteria (n = 2063 patients): four RCTs, and 16 single-armed, one 2-armed 
and one 3-armed prospective studies. Baseline mean age was between 55.5–70.9 years, duration of PD was 9.1–15.3 years, 
off-time ranged from 5.4 to 8.7 h/day in 9 studies, and PDQ scores ranged from 28.8 to 67.0 in 19 studies. Levodopa/car-
bidopa intestinal gel and DBS demonstrated significantly greater improvement in off-time and QoL at 6 months compared 
with CSAI and BMT (p < 0.05). There was no significant difference in the effects of LCIG and DBS, but DBS was ranked 
first for reduction in off-time, and LCIG was ranked first for improvement in QoL.
Conclusions This NMA found that LCIG and DBS were associated with superior improvement in off-time and PD-related 
QoL compared with CSAI and BMT at 6 months after treatment initiation. This comparative effectiveness research may 
assist providers, patients, and caregivers in the selection of the optimal device-aided therapy.
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1 Introduction

As Parkinson’s disease (PD) progresses, motor compli-
cations can arise and worsen over time; for example, an 
increase in off-time frequently occurs. This, along with other 
symptoms, has a negative impact on patient’s quality of life 
(QoL) and activities of daily living (ADL) [1, 2]. The burden 
of advancing disease also affects caregivers of people with 
PD [3, 4]. In practice, when motor fluctuations cannot be 
improved with optimized oral therapy (or best medical ther-
apy [BMT]), patients may be classified as having advanced 

PD [5–7]. For these patients, device-aided therapy may be 
considered as an alternative treatment option to BMT.

Device-aided therapies for PD include levodopa/carbi-
dopa intestinal gel (LCIG), deep brain stimulation (DBS), 
and continuous subcutaneous apomorphine infusion (CSAI). 
Levodopa/carbidopa intestinal gel is a gel formulation of 
levodopa/carbidopa that is administered continuously via a 
percutaneous endoscopic gastrostomy (PEG) into the small 
intestine using a portable pump [8]. Levodopa/carbidopa 
intestinal gel circumvents the impact of erratic gastric emp-
tying on oral levodopa/carbidopa and provides more con-
sistent plasma levels of levodopa [9], which is a metabolic 
precursor of dopamine that is depleted in PD. Deep brain 
stimulation involves the surgical insertion of electrodes to 
deliver controlled electrical impulses to the subthalamic 
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Key Points 

As Parkinson’s disease (PD) progresses and optimized 
treatment with oral therapies fails to control symptoms, 
device-aided therapies such as levodopa/carbidopa 
intestinal gel (LCIG), deep brain stimulation (DBS), and 
continuous subcutaneous apomorphine infusion (CSAI) 
may improve symptoms such as off-time.

Comparative randomized controlled trials evaluating 
device-aided therapies for advanced PD are not available.

This network meta-analysis was conducted to compare 
the three device-aided therapies and best medical therapy 
(BMT), with a focus on changes in off-time and quality 
of life (QoL).

In this analysis, LCIG and DBS were associated with 
superior improvement in off-time and PD-related QoL 
compared with CSAI and BMT at 6 months after treat-
ment initiation.

There was no significant difference in the effects of 
LCIG and DBS, but DBS was ranked first for reduction 
in off-time, and LCIG was ranked first for improvement 
in QoL.

These results could help inform treatment choices for 
people whose PD symptoms are not well controlled with 
optimized oral therapy.

However, there have been no comprehensive clinical trials 
comparing the three device-aided therapies for advanced 
PD. Individual patient and disease factors may influence the 
selection of patients for each device-aided therapy [6], and 
with limited published data, information on the comparative 
effectiveness of device-aided therapies for reducing off-time 
and improving QoL is still needed to aid the decision-mak-
ing process for patients, caregivers, and providers.

When single-arm studies constitute the majority of the 
evidence, traditional network meta-analysis is a sub-optimal 
approach due to the lack of common comparators. An unan-
chored matching-adjusted indirect comparison (MAIC) to 
connect single-arm studies to the evidence network is an 
alternative approach. Matching-adjusted indirect comparison 
is an indirect comparison method frequently used by health 
technology assessment agencies [21, 22]. It is used to com-
pare one therapy with individual patient-level data (IPD) 
with another therapy with published aggregate data (AD). 
It reweights the IPD to match the AD population in baseline 
characteristics, estimates the outcome in the weighted IPD, 
and compares it to the outcome in the AD study as if the 
outcomes were assessed within the same study.

The primary objective of this analysis was to assess the 
effectiveness of LCIG, DBS, CSAI, and BMT in reducing 
off-time and improving QoL in patients with advanced PD, 
using MAIC and a Bayesian network meta-analysis (NMA) 
of clinical trial and observational study data.

2  Methods

2.1  Data Source and Search Strategy

A systematic literature review was conducted in Medline, 
Embase, and the Cochrane Library within the date range 
of January 2003 (the earliest date when all three device-
aided therapies were widely available) to September 2019 
to identify clinical studies of CSAI, DBS, and LCIG for 
the management of patients with advanced PD (the meth-
odology of this literature review was not registered). Indi-
vidual patient-level data were extracted from four AbbVie-
sponsored studies [11, 23–25]. Predefined search terms 
were based on the Patient Intervention Comparator Out-
come Study (PICOS) design criteria [26] and the Preferred 
Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA [27]). Search terms included ‘Parkinson dis-
ease’ in combination with variations of the device-aided 
therapy names including ‘deep brain stimulation’, ‘CSAI’, 

nucleus, the internal globus pallidus, or the ventral interme-
diate nucleus. The electrodes deliver high frequency stimu-
lation to the targeted area, which overcomes the abnormal 
activity associated with some PD symptoms. Continuous 
subcutaneous apomorphine infusion is the continuous sub-
cutaneous delivery of apomorphine solution via a pump 
[10]. This approach provides a continuous plasma delivery 
of apomorphine, which mimics the effect of dopamine in 
the striatum. These device-aided therapies have all been 
shown to reduce off-time, and in some studies they have 
also improved QoL in patients with advanced PD [11–13]. 
These improvements have also been observed in longer term 
follow-up and observational studies [14–16]. Comparative 
effectiveness of some device-aided therapies in patients with 
PD has been reported [17, 18]. A recent systematic review 
compared data from studies of LCIG, DBS, and CSAI and 
presented the results in a format aimed at patients [19], and 
expert guidance on such therapies has been published [20]. 
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‘LCIG’, and ‘infusion’ (see Online Resource Table 1 for a 
detailed list of the search terms).

2.2  Selection of Studies, Screening, and Data 
Extraction

Studies were included in the analysis if they were published 
in English, reported randomized clinical trials (RCTs), ret-
rospective and prospective observational studies and other 
interventional studies and had a sample size of ≥ 20 people 
with advanced PD treated with either LCIG, DBS, CSAI, 
or BMT. Studies were included if off-time was assessed by 
diary or Unified Parkinson's Disease Rating Scale (UPDRS) 
part IV item 39 and/or QoL was assessed by Parkinson’s 
Disease Questionnaire (PDQ-39/PDQ-8). The UPDRS item 
39 records the proportion of the waking day spent in off-
time on a scale from 0 (none) to 4 (76–100%). Parkinson’s 
Disease Questionnaire scores range from 0 to 100, with 
higher scores indicating worse health. Data were included 
if the outcomes were reported at baseline and 6 months 
or as change at 6 months (± 3 months where the 6-month 
follow-up was not available). Data had to be reported as 
mean values with standard error and the number of patients 
assessed—or if not reported, then this needed to be calcula-
ble from standard deviations (SDs) or confidence intervals 
(CIs) from the published data. Studies were excluded if they 
included patients with early-stage PD, Parkin mutations, and 
PD-related dementia, and if they were comparisons of sub-
groups (e.g., female vs male; overweight vs normal weight; 
mutation-positive vs mutation-negative).

Following the removal of duplicate studies, each article 
was screened by two independent reviewers (ET, MLE, 
SK, FD, SP, BW, or HW; see Acknowledgments for details 
of reviewers) based on its title and abstract. Full-text pub-
lications of studies that passed the first round of screening 
were then reviewed by two independent reviewers. Data 
extracted from each selected publication for the NMA 
were amount of off-time/day and QoL scores at baseline 
and 6 months. In addition, information on study design, 
patient characteristics, treatments, and last reported fol-
low-up were extracted. Information was independently 
entered into a collection form by two reviewers. For the 
IPD extraction, internal access to the original trial data 
was permitted. Study investigators (LW and PLK) used 
the trial protocols and data dictionary to extract indi-
vidual patient characteristics (age, gender, PD duration, 
daily levodopa dose, and daily levodopa equivalent dose), 
outcomes of interest (off-time and PDQ scores), as well 
as trial-level information from the original datasets. To 
ensure accuracy of the data collected, each reviewer 
audited the other reviewer’s collection form. Disputes 

and any inconsistencies identified were resolved through 
discussion between the first two reviewers or adjudication 
by a third reviewer.

2.3  Network Meta‑analytical Approach

Single-arm studies were incorporated by unanchored MAIC 
[21]. To simulate RCTs, studies with IPD were matched to 
AD from published literature with similar distributions 
of baseline patient characteristics (e.g., baseline age, sex, 
years since PD diagnosis, and levodopa daily dose, off-time 
and PD-related QoL). Matching-adjusted indirect compari-
son was performed to match each single-arm trial or sin-
gle treatment observational study with AD to one of three 
studies with IPD [11, 23, 25]. The fourth study from which 
IPD were available was not used as only 37 patients were 
included and this study did not report daily levodopa dose 
at baseline or off-time at 6 months [24]. Matching-adjusted 
indirect comparison reweighted the IPD study population 
such that it had baseline characteristics (mean and percent-
age composition) similar to the AD study population. The 
weight assigned to any individual in an IPD study was equal 
to the odds of being enrolled in an AD trial [21, 22]. Because 
several AD studies were matched to the same IPD study, 
correlation between relative effects was accounted for by 
multinormal distributions with variance-covariance matrix 
[28]. For off-time, two RCTs were simulated by MAIC, and 
for QoL, three RCTs were simulated by MAIC (networks 
shown in Online Resource Figure 1). A sensitivity analysis 
by type of study (e.g., excluding single-arm studies) is not 
reported as the findings were considered unmeaningful.

Network meta-analysis was performed on RCTs, simu-
lated RCTs and comparative observational studies. A Bayes-
ian hierarchical model with Markov Chain Monte Carlo 
(MCMC) simulation was used to estimate the relative effect 
of different treatments. Treatment parameters were estimated 
using normal likelihood with identity link. Three parallel 
Markov chains, with 50,000 iterations each discarding the 
first 5000 burnt-in, were used. The convergence of MCMC 
chains was checked by trace plots and Gelman–Rubin diag-
nostic statistics [28]. Fixed and random effects models were 
assessed and compared using overall residual deviance and 
the deviance information [28]. To check for consistency of 
the results, an inconsistency model was used to fit to the 
data and compared with a standard consistency model [29]. 
The inconsistency model assumes unrelated mean relative 
effects with no consistency, and is approximately equivalent 
to performing separate pairwise meta‐analyses, while the 
random effects models allow shared variance parameters to 
be estimated [29]. These direct estimates can be used to cal-
culate inconsistency between studies. League tables of pair-
wise comparisons for all treatments are reported. Relative 
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treatment effects of all treatment comparisons are reported 
as median differences and 95% credible intervals (CrI). 
Treatments are ranked as the percentage of time ranked 1st, 
2nd, 3rd, or 4th from Bayesian iterations. A fixed-effect 
model was chosen for the analysis because most pairwise 
treatment comparisons involved only one underlying study 
rather than multiple studies. In addition, results using the 
fixed and random effect models were found to be similar, 
with the only difference being that estimations had wider 
credible intervals using the random effects model.

Study bias was analyzed using the Cochrane Risk of 
Bias (RoB) tool to assess RCTs, ROBINS-I tool for non-
randomized comparative studies, and the National Institutes 
of Health (NIH) Quality Assessment Tool for before-after 
(pre-post) studies with no control group or single-arm stud-
ies [30–32].

3  Results

The literature review identified 64 publications; of these, 22 
with data from 2063 patients fulfilled the inclusion criteria 
and were included in the analysis (Fig. 1; Table 1) [11–13, 
23–25, 33–48]. In these studies, 908 patients were assigned 
to treatment with LCIG, 705 to DBS, and 322 to CSAI. Of 
the 22 selected studies, 16 were single-arm studies (seven of 
LCIG, two of CSAI and seven of DBS), two compared DBS 
with BMT, and four studies separately compared LCIG with 
BMT, LCIG with CSAI, CSAI with BMT, and DBS versus 
LCIG versus CSAI. In two of the RCTs [11, 12], follow-up 
was 3 months and so data were carried forward to create the 
6-month datapoint.

Fig. 1  PRISMA flow chart showing identification and selection of studies
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Table 1  Summary of the 22 studies included in the network meta-analysis

BMT best medical treatment, CSAI continuous subcutaneous apomorphine infusion, DBS deep brain stimulation, LCIG levodopa/carbidopa 
intestinal gel
a Included both prospective and retrospective data
b Only LCIG naïve patients included
c Only 1 month group included

Author/Reference Study design Countries Number of patients 
included in analysis

Data source Trial interventions

Antonini et al. (2017) [25] Single-arm,  prospectivea Australia, Austria, Belgium, 
Bulgaria, Czech Republic, 
Denmark, France, Ger-
many, Greece, Ireland, 
Italy, Netherlands, Nor-
way, Romania, Slovenia, 
Spain, Switzerland, UK

375 Patient-level LCIG

Fernandez et al. (2015) [23] Single-arm, prospective Australia, Canada, Czech 
Republic, Finland, 
Germany, Israel, Italy, 
Netherlands, New Zea-
land, Poland, Portugal, 
Russian Federation, Spain, 
Thailand, United King-
dom, USA

272 Patient-level LCIG

Palhagen et al. (2016) [24]b Single-arm, prospective Norway, Sweden 37 Patient-level LCIG
De Fabregues et al. (2017) 

[36]
Single-arm, prospective Spain 37 Aggregate level LCIG

Honig et al. (2009) [40] Single-arm, prospective Germany, Italy, UK 22 Aggregate level LCIG
Vijiaratanam et al. (2018) 

[47]
Single-arm, prospective Australia 22 Aggregate level LCIG

Murata et al. (2016) [44] Single-arm, prospective Japan, South Korea, Taiwan 31 Aggregate level LCIG
Floden et al. (2015) [39] Single-arm, retrospective USA 106 Aggregate level DBS
Dafsari et al. (2016) [48] Single-arm, retrospective Germany, UK 67 Aggregate level DBS
Dafsari et al. (2018) [34] Single-arm, prospective Germany, UK 67 Aggregate level DBS
Kubu et al. (2017) [41] Single-arm, prospective USA 52 Aggregate level DBS
Soulas et al. (2011) [45] Single-arm, prospective France 41 Aggregate level DBS
Timmermann et al. (2015) 

[46]
Single-arm, prospective Austria, France, Germany, 

Italy, Spain, UK
40 Aggregate level DBS

Li et al. (2017) [42]c Single-arm, prospective China 32 Aggregate level DBS
Drapier et al. (2016) [38] Single-arm, prospective France 142 Aggregate level CSAI
Borgemeester and van Laar 

(2017) [33]
Single-arm, retrospective Netherlands 45 Aggregate level CSAI

Martinez-Martin et al. 
(2015) [43]

Two-arm
prospective

Austria, Denmark, Germany, 
Italy, Slovenia, Spain, 
Sweden, UK

87 Aggregate level LCIG vs CSAI

Dafsari et al. (2019) [35] Three-arm
prospective

Brazil, Germany, Italy, 
Slovenia, UK

173 Aggregate level DBS vs LCIG vs CSAI

Weaver et al. (2009) [13] Randomized, controlled trial USA 255 Aggregate level DBS vs BMT
Deuschl et al. (2006) [37] Randomized, controlled trial Austria, Germany 156 Aggregate level DBS vs BMT
Katzenschlager et al. (2018) 

[12]
Randomized, controlled trial Austria, Denmark, France, 

Germany, Spain, Nether-
lands, UK

106 Aggregate level CSAI vs BMT

Olanow et al. (2014) [11] Randomized, controlled trial Germany, New Zealand, 
USA

66 Patient-level LCIG vs BMT
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3.1  Patient Characteristics

Men outnumbered women in 18 of the 22 studies (Table 2). 
The mean age at baseline was between 55.5 and 70.9 years, 
the mean duration of PD was between 9.1 and 15.3 years, 
and daily levodopa dose at baseline ranged from 905.5 to 
1080.3 mg/day (Table 2).

3.2  Off‑time

Of the selected studies, nine reported off-time at baseline 
(ranging from 5.4 to 8.7 h/day) and at 6 months, and one 
reported change from baseline at 6 months (Table 3). Nine 
studies used patient diaries to assess daily off-time, and one 
study used UPDRS part IV item 39. Deep brain stimula-
tion (2.35 h/day; 95% CI 1.66, 3.04), and LCIG (2.25 h/
day; 95% CI 1.32, 3.19) but not CSAI (0.90 h/day; 95% CI 
− 0.08, 1.88) produced significantly greater reductions in 
off-time compared with BMT (Fig. 2). Pairwise compari-
sons indicated that DBS (1.45 h/day; 95% CI 0.29, 2.61) and 
LCIG (1.35 h/day; 95% CI 0.11, 2.60) resulted in greater 
improvements in off-time at 6 months compared with CSAI. 
This was not statistically different between DBS and LCIG 
(Fig. 2). Based on 135,000 Bayesian iterations, DBS ranked 
highest (ranked 1 for 58% of iterations), and LCIG ranked 
second highest (ranked 1 for 42% of iterations) for off-time 
reduction (Fig. 3).

Although the inconsistency model had a lower poste-
rior mean of the residual difference in off-time and hence 
a better fit to the data, the difference in deviance infor-
mation criterion (DIC) between the two models was < 5 
(Online Resource Table 2A). A difference in DIC > 5 is 
important to choose one model over the other [49]. In addi-
tion, the 95% CrI from the two models overlapped for all 
comparisons. Thus, no inconsistency was observed for this 
parameter.

3.3  Quality of Life

Baseline PDQ scores were reported in 19 studies with a 
range from 28.8 to 67.0 (Table 4). All device-aided thera-
pies demonstrated greater improvements in PD-specific QoL 
than BMT at 6 months, but with smaller estimated improve-
ments for CSAI (3.61; 95% CI 0.55, 6.68) than for LCIG 
(7.83; 95% CI 5.15, 10.51) and DBS (7.24; 95% CI 5.37, 
9.10) (Fig. 4). Pairwise comparisons indicated that both 
LCIG (4.22, 95% CI 1.77, 6.66) and DBS (3.63, 95% CI 
0.74, 6.50) resulted in significantly greater improvements 
in QoL at 6 months compared with CSAI. Improvement in 
QoL was not statistically different between LCIG and DBS 
(Fig. 4). Based on 135,000 Bayesian iterations, LCIG ranked 
highest (ranked 1 for 70% of iterations), and DBS ranked 

second highest (ranked 1 for 30% of iterations) for improve-
ment in QoL (Fig. 5).

Although the inconsistency model had a lower posterior 
mean of the residual difference in PDQ scores and hence a 
better fit to the data, the difference in DIC between the two 
models was <1 (Online Resource Table 2B), and no incon-
sistency was observed for this parameter.

3.4  Risk of Bias Assessment

Of the four RCTs assessed using the Cochrane Risk of Bias 
Tool [30], three studies demonstrated a high risk of bias in 
at least one domain, and one study demonstrated some con-
cerns of bias due to unclear risk of bias in one domain (see 
Online Resource Figs. 2 and 5). The two non-randomized 
cohort studies, assessed using the ROBINS-I Tool, demon-
strated a low-to-moderate risk of bias (see Online Resource 
Figs. 3 and 5). One study had a moderate risk of bias due to 
confounding. The 16 single-arm studies assessed using the 
NIH Quality Assessment Tool for Before-After (Pre-Post) 
Studies with No Control Groups, each demonstrated a fair 
risk of bias due to lack of blinding, low sample size, loss to 
follow-up, and/or unclear eligibility or selection criteria (see 
Online Resource Figs. 4 and 5).

4  Discussion

To our knowledge, this is the first study to evaluate the 
relative effectiveness of all three currently available device-
aided therapies using a Bayesian NMA. Results showed that 
LCIG and DBS were associated with superior improvement 
in off-time and PD-related QoL compared with CSAI and 
BMT at 6 months after treatment initiation. While this analy-
sis suggested that reduction in off-time with CSAI was not 
significant compared with BMT, the pivotal trials of the 
three device-aided therapies demonstrated that off-time sig-
nificantly improved from baseline [11–13]. A reduction of 
≥ 1-h/day of off-time is considered clinically meaningful 
[50], and this was observed for DBS and LCIG, but not for 
CSAI. While the reduction in off-time was similar for LCIG 
and DBS, other aspects of these treatments that impact QoL 
are also considered by patients, caregivers and providers 
when selecting individualized treatment options. A clinically 
meaningful improvement in PDQ-8 score is − 5.94 and in 
PQD-39 is − 4.72 [51], as with off-time such improvements 
were demonstrated with both LCIG and DBS, but not for 
CSAI. Patient preference is essential to consider, as some 
patients may be unwilling to undergo invasive brain surgery 
for DBS or PEG surgery for LCIG, and would prefer the less 
invasive procedure of CSAI.
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The selection of a device-aided therapy for a patient with 
advanced PD is a complex process that involves multiple 
specialties as well as the patient and their caregivers—a 
shared decision approach is, therefore, essential [52, 53]. 
While treatment decisions need to be individualized, the 

choice of device-aided therapy can be guided by some gen-
eral principles based upon the patient’s age, cognitive func-
tion, dyskinesia, and frailty [6]. For example, in patients 
aged > 70 years, DBS may be suitable in a smaller pro-
portion of patients than infusion therapies. Although older 

Table 2  Selected baseline characteristics in individual studies

BMT best medical treatment, CSAI continuous subcutaneous apomorphine infusion, DBS deep brain stimulation, LCIG levodopa/carbidopa 
intestinal gel, NA not available, SD standard deviation

Author/Reference Male,% Age, years, mean 
(SD)

PD duration, years
mean (SD)

Trial interventions Daily levodopa 
dose in mg, mean 
(SD)

Daily levodopa equiva-
lent dose in mg, mean 
(SD)

Antonini et al. 
(2017) [25]

59 66.4 (8.8) 12.7 (6.3) LCIG 905.5 (443.5) 1061.3 (555.5)

Fernandez et al. 
(2015) [23]

59 64.0 (9.1) 12.2 (5.6) LCIG 1080.3 (546.7) NA

Palhagen et al. 
(2016) [24]

62 63.6 (7.6) 11 (4.4) LCIG NA NA

De Fabregues et al. 
(2017) [36]

59 68.2 (6.8) 13.5 (5.6) LCIG NA NA

Honig et al. (2009) 
[40]

73 58.6 (9.1) 15.3 (5.9) LCIG NA NA

Vijiaratanam et al. 
(2018) [47]

55 70.7 (6.9) 15.2 (6.8) LCIG NA 1655 (546)

Murata et al. (2016) 
[44]

39 61.6 (10.5) 12.4 (5.1) LCIG 1011.7 (629.7) NA

Floden et al. (2015) 
[39]

75 62.4 (7.9) 10.6 (5.1) DBS NA 958.5 (517.7)

Dafsari et al. (2016) 
[48]

58 61.6 (7.8) 10.5 (4.2) DBS NA 1073.55 (475.93)

Dafsari et al. (2018) 
[34]

75 62.3 (7.8) 10.9 (4.8) DBS NA 1121.6 (515.2)

Kubu et al. (2017) 
[41]

75 61.3 (9.3) 9.1 (4.1) DBS NA NA

Soulas et al. (2011) 
[45]

NA 62.0 (8.0) 14.5 (5.7) DBS NA 1504 (667.32)

Timmermann et al. 
(2015) [46]

33 60.2 (7.8) 11.7 (4.6) DBS NA 1399.1 (726.1)

Li et al. (2017) [42] 53 55.5 (9.1) 9.8 (4.5) DBS NA 953.20 (398.02)
Drapier et al. (2016) 

[38]
58 66.7 (10.8) 11.6 (5.4) CSAI NA 1154.1 (758.9)

Borgemeester and 
van Laar (2017) 
[33]

58 70.9 (8.1) 10.8 (4.8) CSAI 1061 (NA) NA

Martinez-Martin 
et al. (2015) [43]

53 62.5 (9.9) 15.1 (5.7) LCIG vs CSAI NA NA

Dafsari et al. (2019) 
[35]

48 63.6 (8.9) 13.3 (4.8) DBS vs LCIG vs 
CSAI

NA 1300.0 (564.4)

Weaver et al. (2009) 
[13]

82 62.3 (8.9) 11.7 (5.5) DBS vs BMT NA 1285.2 (534.2)

Deuschl et al. (2006) 
[37]

64 60.7 (7.6) 13.4 (5.7) DBS vs BMT NA 1175.5 (489.8)

Katzenschlager et al. 
(2018) [12]

62 63.3 (8.8) 11.2 (5.0) CSAI vs BMT 954.7 (490.9) 1479.1 (638.8)

Olanow et al. (2014) 
[11]

64 60.7 (7.6) 13.4 (5.7) LCIG vs BMT NA NA
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Table 3  Summary of off-time changes from the ten studies that reported off-time at 6 months

BMT best medical treatment, CSAI continuous subcutaneous apomorphine infusion, DBS deep brain stimulation, LCIG levodopa/carbidopa 
intestinal gel, NR not reported, SD standard deviation
a Measured by patient diary except Antonini et al. (2017)
b Data at 3 months carried forward

Author/Reference Trial interventions Baseline off-time in h/day, mean 
(SD)a

Reduction in off-time at 
6 months in h/day, mean 
(SD)

Antonini et al. (2017) [25] LCIG 5.9 (3.1) 4.2 (3.2)
Fernandez et al. (2015) [23] LCIG 6.8 (2.4) 4.3 (3.2)
Olanow et al. (2014) [11] LCIG 6.3 (1.7) 3.3 (3.1)b

BMT 6.9 (2.1) 2.0 (2.3)b

Borgemeester and van Laar (2017) [33] CSAI NR 1.7 (3.6)
De Fabregues et al. (2017) [36] LCIG 6.0 (1.4) 4.9 (1.1)b

Katzenschlager et al. (2018) [12] CSAI 6.7 (2.2) 2.5 (3.7)b

BMT 6.7 (2.5) 0.6 (2.8)b

Li et al. (2017) [42] DBS 8.7 (2.9) 4.4 (4.7)b

Murata et al. (2016) [44] LCIG 7.4 (2.3) 4.6 (3.0)b

Timmermann et al. (2015) [46] DBS 5.4 (3.1) 3.2 (3.9)
Weaver et al. (2009) [13] DBS 5.9 (2.6) 2.4 (3.7)

BMT 5.6 (2.9) 0.0 (1.5)

Fig. 2  Mean (95% CI) off-time reduction (h/day) with the three 
device-aided therapies versus best medical treatment. The analysis 
adjusted for baseline age, sex, disease duration, levodopa daily dose, 

and off-time. BMT best medical therapy, CSAI continuous subcutane-
ous apomorphine infusion, DBS deep brain stimulation, LCIG levo-
dopa/carbidopa intestinal gel
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Fig. 3  Ranking of device-
aided therapy and best medical 
therapy based on improvements 
in off-time at 6 months

Table 4  Summary of Parkinson’s disease-related quality of life changes from the 19 studies that reported PDQ scores at 6 months

BMT best medical treatment, CSAI continuous subcutaneous apomorphine infusion, DBS deep brain stimulation, LCIG levodopa/carbidopa 
intestinal gel, NR not reported, PDQ Parkinson’s Disease Questionnaire, SD standard deviation
a Data at 3 months carried forward

Author/Reference Trial interventions Mean (SD) PDQ score at 
baseline

Mean PDQ score at 6 
months

Mean (SD) reduction in 
PDQ score at 6 months

Antonini et al. (2017) [25] LCIG 47.1 (19.0) – 9.8 (19.9)
Fernandez et al. (2015) [23] LCIG 43.2 (15.0) – 8.8 (14.7)
Olanow et al. (2014) [11] LCIG 34.3 (17.6) – 10.0 (12.1)a

BMT 38.3 (18.4) 5.7 (11.8)a

Palhagen et al. (2016) [24] LCIG 32.8 (11.0) – 5.9 (11.2)
Dafsari et al. (2016) [48] DBS 33.2 (18.0) 24.7 (16.0) –
Dafsari et al. (2018) [34] DBS 33.3 (17.4) 23.3 (14.4) –
Dafsari et al. (2019) [35] LCIG 45.3 (18.3) 37.4 (13.7) –

DBS 46.9 (12.0) 37.5 (15.9)
CSAI 45.8 (15.4) 32.2 (16.9)

Deuschl et al. (2006) [37] DBS 41.8 (13.9) – 9.5 (15.3)
BMT 39.6 (16.0) 0.2 (11.2)

Drapier et al. (2016) [38] CSAI 41.2 (15.5) 36.5 (13.9) –
Floden et al. (2015) [39] DBS 28.8 (14.2) – 9.1 (11.5)
Honig et al. (2009) [40] LCIG 44.2 (18.4) 20.7 (12.0) –
Katzenschlager et al. (2018) [12] CSAI 32.7 (15.0) – 0.1 (14.7)a

BMT 31.0 (12.7) − 2.4 (11.8)a

Kubu et al. (2017) [41] DBS 47.9 (23.8) 25.1 (15.4)
Martinez-Martin et al. (2015) [43] LCIG 48.6 (14.6) 32.0 (14.9) –

CSAI 49.9 (16.6) 35.0 (18.0)
Murata et al. (2016) [44] LCIG 35.5 (13.8) – 12.0 (11.5)a

Soulas et al. (2011) [45] DBS 49.9 (11.1) 41.7 (13.7) –
Timmermann et al. (2015) [46] DBS 30.5 (11.0) – 9.6 (13.4)
Vijiaratanam et al. (2018) [47] LCIG 67.0 (18.0) – 14.0 (18.9)
Weaver et al. (2009) [13] DBS 44.9 (13.2) – 7.7 (11.5)

BMT 44.3 (13.1) − 0.4 (2.4)
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Fig. 4  Mean (95% CI) Parkinson’s disease-specific quality of life 
improvement (according to PDQ-39/PDQ-8 score) with the three 
device-aided therapies versus best medical treatment. The analysis 
adjusted for baseline age, sex, disease duration, levodopa daily dose, 

and off-time. BMT best medical therapy, CSAI continuous subcutane-
ous apomorphine infusion, DBS deep brain stimulation, LCIG levo-
dopa/carbidopa intestinal gel, PDQ Parkinson’s Disease Question-
naire

Fig. 5  Ranking of device-
aided therapy and best medical 
therapy based on improvement 
in Parkinson’s disease-related 
quality of life at 6 months
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patients can undergo brain surgery if cognitive function is 
preserved and magnetic resonance imaging (MRI) excludes 
significant atrophy and vascular lesions, LCIG, or CSAI may 
be better and safer options [6, 54]. Additionally, there have 
been suggestions that discontinuation rates with CSAI are 
relatively high in the long-term due to troublesome adverse 
events related to the medication (i.e., nausea) or to the route 
of administration (i.e., subcutaneous infusion-site reac-
tions) [15, 55–57]. A clinical situation in which DBS may 
be preferred over the infusion therapies is when the patient 
has severe dyskinesia [58]. Despite the guidance offered by 
these general principles, comparative data are still needed 
to assess the benefits of each device-aided therapy. In the 
absence of head-to-head trials, this NMA provides impor-
tant information to add to the comprehensive evaluation 
of patients’ clinical status and preference that is warranted 
to ensure optimal symptom control and QoL. Despite the 
apparent benefits of LCIG and DBS versus CSAI and BMT 
shown in this analysis, identification of patients who may 
benefit more from one device-aided therapy over another 
depends on individual patient choice as well as hospital 
resource availability and healthcare professional experience.

Given the magnitude of benefit achieved with all device-
aided therapies, the main take-home message is the need 
to improve the timely referral and identification of patients 
whose symptoms are poorly controlled by optimized oral 
treatment. Patients with advanced PD have a higher disease 
burden in terms of symptoms and negative effects on ADL 
and QoL [1], and this may also have a negative impact on 
the caregivers’ burden [59, 60]. Validated selection crite-
ria and easy-to-use tools for identification of advanced PD 
(e.g., 5-2-1 criteria [61] and MANAGE-PD [62]) may help 
to improve the timely introduction of device-aided therapies. 
Research to identify suitable validated clinical indicators is 
ongoing [1, 5, 61, 63–65].

Since the literature search was conducted in 2019, a num-
ber of studies have been published. No direct comparisons 
of device-aided therapies with off-time or QoL as the main 
endpoints were identified in the last 3 years (a comparison 
of LCIG and DBS on QoL outcomes is ongoing [66]). Like-
wise, recently published RCTs of individual device-aided 
therapies have focused on different aspects of treatment such 
as dyskinesia [67], night-time treatment and sleep distur-
bances [68], and management of axial features [69]. A host 
of single-arm and/or observational studies on these three 
device-aided therapies have been published and some report 
off-time or QoL as the main outcomes [70–76]; however, the 
results of these studies would have no clear impact on the 
current analysis. In the future, a follow-up analysis may help 
refine the results of the current analysis.

The strengths of the approach taken in our analysis 
include the simultaneous comparison of the three most 
widely used device-aided therapies, the use of all evidence 

by the inclusion of single-arm studies, and the development 
of an analytical framework that could potentially be used 
to include future treatments. This analysis also has some 
limitations. Individual patient-level data were extracted from 
studies of LCIG only, but with the inclusion of several AD 
studies of LCIG, we do not believe this results in any bias 
in either direction. In the absence of sufficient randomized 
evidence to allow for direct comparisons, the use of MAICs 
to simulate RCTs and adjust for between-trial differences 
was conducted to reduce this potential confounding factor 
[21], and has been accepted as an appropriate methodology 
by decision-making bodies such as the National Institute for 
Health and Care Excellence (NICE) [22]. The inclusion of 
single-arm studies and non-randomized studies was deemed 
necessary as the number of RCTs was limited (three stud-
ies for off-time analysis and four studies for QoL analysis), 
particularly for LCIG and CSAI (one RCT each). Two RCTs 
were for DBS [13, 37], which may contribute to biases in 
favor of DBS, especially as the RCTs for DBS had larger 
patient samples. Furthermore, the DBS RCT outcomes were 
available at 6 months, while RCTs for LCIG and CSAI were 
available at 3 months. To maximize the available data and 
permit similar timepoint comparisons, the Month 3 data 
were carried forward to Month 6 for the LCIG and CSAI 
outcomes; however, greater efficacy benefits could have been 
experienced by patients on LCIG and CSAI if 6-month data 
were available. Fewer patients were assessed with CSAI (N 
= 322) than with LCIG (N = 908) and DBS (N = 705), 
which is evidenced by the wider CIs for CSAI in off-time 
reduction and QoL improvement. However, the point esti-
mates for CSAI fall outside of CIs of both DBS and LCIG, 
suggesting a statistically inferior efficacy of CSAI to DBS 
and LCIG.

The studies included in the NMA were heterogenous, and 
therefore, there is the potential to introduce confounding 
factors. The definition of BMT differed between studies, but 
considering that adjustment and optimization of medications 
were permitted across studies, BMT is likely to be similar. 
Furthermore, only a small proportion of studies (three stud-
ies in the off-time analysis and four studies in the QoL analy-
sis) included a BMT arm, so this heterogeneity is unlikely to 
have had a major influence on the findings. While baseline 
characteristics differed between studies, matching of studies 
by age, sex, years since PD diagnosis, daily levodopa dose, 
off-time and PD-related QoL, and a focus on changes in off-
time and QoL rather than their absolute values at 6 months, 
should have limited confounding effects. Ideally, PD sever-
ity would have been a useful addition factor for matching of 
studies, but this was not commonly reported across studies 
and daily levodopa dose and baseline off-time may serve 
as proxies. Specific aspects of QoL may be important in 
patient/physician preference for a given device-aided ther-
apy for each individual, but sub-domain scores for PDQ-8/
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PDQ-39 were not consistently available across the studies 
included in this analysis and so a more detailed analysis of 
QoL was not possible. Due to these described limitations of 
the included studies and the varying levels of risk of bias 
across the RCTs, this limited the meaningfullness of con-
ducting a systematic array of sensitivity analyses (such as 
conducting the analysis with single-arm studies excluded). 
Therefore, a robust network meta-analysis was performed, 
using all available evidence in the published literature with 
the MAIC approach on the available IPD studies to minimize 
confounding factors.

In the absence of sufficient randomized evidence to allow 
for direct comparisons the use of MAICs to simulate RCTs 
and adjust for between-trial differences was conducted to 
reduce this potential confounding factor [21], and has been 
accepted as an appropriate methodology by decision-making 
bodies such as the NICE. [22].

5  Conclusions

In conclusion, given the absence of head-to-dead direct com-
parisons of the three currently available device-aided thera-
pies for advanced PD, this Bayesian network meta-analysis 
provides comparative data on the clinical and humanistic 
value of these treatments. Levodopa/carbidopa intestinal gel 
and DBS demonstrated superior reductions in off-time and 
improvement in PD-related QoL compared with CSAI and 
BMT at 6 months after treatment initiation. Understanding 
the comparative benefits of each treatment provides addi-
tional information that can help the patient, caregiver, and 
provider in the selection of the most appropriate therapy 
to ensure optimal symptom control and improved QoL. 
Patients’ treatment preferences must be part of the shared 
decision approach, and this aspect has been also highlighted 
by the recent European Guidelines on invasive therapies for 
PD [20]. Future efforts should focus on the earlier detec-
tion of patients who are candidates for device-aided ther-
apy, increasing appropriate referral of these patients, and 
to broaden the availability of these therapies globally for 
patients with advanced PD including the potential to increase 
access to costly treatments for patients in the developing 
world. Patient preference studies may also inform treatment 
and reimbursement decision-making.
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