
Aging Cell. 2020;19:e13038.	 		 	 | 	1 of 11
https://doi.org/10.1111/acel.13038

wileyonlinelibrary.com/journal/acel

 

Received:	28	January	2019  |  Revised:	6	July	2019  |  Accepted:	19	August	2019
DOI: 10.1111/acel.13038  

O R I G I N A L  A R T I C L E

Systemic GDF11 stimulates the secretion of adiponectin and 
induces a calorie restriction‐like phenotype in aged mice

Lida Katsimpardi1,2*  |   Nicolas Kuperwasser3  |   Claire Camus1,2  |    
Carine Moigneu1,2  |   Aurélie Chiche5 |   Virginie Tolle4 |   Han Li5 |   Erzsebet Kokovay6 |   
Pierre‐Marie Lledo1,2

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided the original work is properly cited.
©	2019	The	Authors.	Aging Cell	published	by	the	Anatomical	Society	and	John	Wiley	&	Sons	Ltd.

*Lead	contact	

1Perception	and	Memory	Lab,	Neuroscience	
Department,	Institut	Pasteur,	Paris,	France
2Centre	National	de	la	Recherche	
Scientifique,	Unité	Mixte	de	Recherche	
3571,	Paris,	France
3Department of Cell Growth and 
Signaling,	Institut	National	de	la	Santé	
et	de	la	Recherche	Médicale	(INSERM)	
U1151,	Institut	Necker	Enfants	Malades	
(INEM),	Université	Paris	Descartes,	France
4Centre de Psychiatrie et 
Neurosciences,	UMR‐S	
894,	INSERM,	Université	Paris	Descartes	
Sorbonne	Paris	Cité,	Paris,	France
5Department	of	Developmental	&	Stem	
Cell	Biology,	Cellular	Plasticity	&	Disease	
Modelling,	CNRS	UMR	3738,	Institut	
Pasteur,	Paris,	France
6Cell	Systems	and	Anatomy,	Brashop	
Institute	for	Longevity	and	Aging	
Studies,	University	of	Texas	Health	Science	
Center	at	San	Antonio,	San	Antonio,	TX,	
USA

Correspondence
Lida	Katsimpardi	and	Pierre‐Marie	Lledo,	
Perception	and	Memory	Lab,	Neuroscience	
Department,	Institut	Pasteur,	Paris,	France.
Emails:	lida.katsimpardi@pasteur.fr;	
pmlledo@pasteur.fr

Funding information
Agence	Nationale	de	Recherche,	Grant/
Award	Number:	ANR‐10‐LABX‐73,	ANR‐11‐
IDEX‐0004‐02	and	ANR‐15‐CE37‐0004‐01;	
Morrison	Trust	Foundation;	Barshop	
Institute	Nathan	Shock	Center

Abstract
Aging	is	a	negative	regulator	of	general	homeostasis,	tissue	function,	and	regenera‐
tion.	Changes	in	organismal	energy	levels	and	physiology,	through	systemic	manipu‐
lations	 such	as	calorie	 restriction	and	young	blood	 infusion,	 can	 regenerate	 tissue	
activity	and	 increase	 lifespan	 in	aged	mice.	However,	whether	these	two	systemic	
manipulations	could	be	linked	has	never	been	investigated.	Here,	we	report	that	sys‐
temic	GDF11	triggers	a	calorie	restriction‐like	phenotype	without	affecting	appetite	
or	GDF15	levels	in	the	blood,	restores	the	insulin/IGF‐1	signaling	pathway,	and	stimu‐
lates	adiponectin	secretion	from	white	adipose	tissue	by	direct	action	on	adipocytes,	
while	repairing	neurogenesis	in	the	aged	brain.	These	findings	suggest	that	GDF11	
has a pleiotropic effect on an organismal level and that it could be a linking mecha‐
nism	of	 rejuvenation	between	heterochronic	 parabiosis	 and	 calorie	 restriction.	As	
such,	GDF11	could	be	considered	as	an	important	therapeutic	candidate	for	age‐re‐
lated neurodegenerative and metabolic disorders.
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1  | INTRODUC TION

Aging	 negatively	 affects	 organismal	 functions,	 including	 meta‐
bolic	 and	 homeostatic	 regulation,	 organ	 regeneration,	 and	 stem	
cell	 function,	 resulting	 in	 the	progressive	 loss	of	 the	 individual's	
capacity	 to	 self‐sustain	 (Brett	&	Rando,	2014).	Each	organ	dete‐
riorates	 at	 a	 different	 rate,	 and	 changes	 in	one	 tissue	 are	 trans‐
lated	 into	 organismal‐level	 alterations,	 through	 humoral	 factors,	
suggesting	 an	 extensive	 crosstalk	 between	 physiological	 actors	
(Zhang,	Chen,	&	Liu,	2015).	As	such,	aging	is	the	most	 important	
risk	factor	for	a	multitude	of	diseases,	such	as	neurodegeneration,	
metabolic	disorders,	cardiovascular	disease,	and	cancer	(Niccoli	&	
Partridge,	2012).

However,	it	is	possible	to	reverse	or	delay	aging	with	genetic	or	
systemic	 manipulations	 (Mahmoudi,	 Xu,	 &	 Brunet,	 2019).	 Dietary	
interventions,	 such	 as	 intermittent	 fasting	 and	 calorie	 restriction	
(CR),	are	to	date	the	most	efficient	ways	to	delay	aging	and	increase	
lifespan	across	different	species	(Brandhorst	et	al.,	2015;	Colman	et	
al.,	2009).	Because	of	their	efficiency,	many	efforts	are	focused	on	
finding molecules that mimic the effects of CR.

Intermittent	fasting	or	fasting‐mimicking	diets	(FMDs)	promote	
multi‐tissue	regeneration,	enhance	cognitive	performance,	and	ex‐
tend	healthspan	in	mice	(Brandhorst	et	al.,	2015).	In	humans,	FMD	
beneficially affects subjects who were at risk for metabolic diseases 
(Wei	et	al.,	2017).	CR,	a	more	long‐term	regimen,	consists	of	a	20%–
40%	reduction	in	calorie	intake	without	malnutrition	and	is	the	most	
well‐studied	dietary	intervention	(McCay,	Crowell,	&	Maynard,	1935).	
CR	induces	an	extension	of	lifespan	of	up	to	50%	in	several	organ‐
isms,	including	worms,	rodents,	and	monkeys	(Bordone	&	Guarente,	
2005).	A	 reduction	 in	calorie	 intake	prevents	genetic	changes	and	
reduces	the	incidence	of	several	diseases,	such	as	cardiovascular	dis‐
ease,	age‐associated	cancer,	and	immune	deficiencies,	while	increas‐
ing	neurogenesis	 in	 the	brain	 (Hursting,	Perkins,	Phang,	&	Barrett,	
2001;	Lane,	Ingram,	&	Roth,	1999;	Lee,	Klopp,	Weindruch,	&	Prolla,	
1999;	Lee,	Seroogy,	&	Mattson,	2002;	Mattson,	2010).	Some	of	the	
physiological changes occurring in CR are believed to affect the in‐
sulin/IGF‐1	axis	of	aging.	CR	decreases	serum	IGF‐1	concentrations	
by	40%	in	rodents,	and	decreased	IGF‐1	signaling	is	thought	to	be	in‐
volved	in	delayed	aging	(Bonkowski,	Rocha,	Masternak,	Al	Regaiey,	&	
Bartke,	2006;	Dunn	et	al.,	1997;	Holzenberger	et	al.,	2003).	Another	
hormone	 involved	 in	this	process	 is	adiponectin,	which	 is	secreted	
in response to CR and negative energy balance and its serum levels 
increase	in	mice	subjected	to	CR	(Combs	et	al.,	2003).	Adiponectin	
is a hormone with broad beneficial effects for the organism. It pro‐
motes	antidiabetic	effects	by	promoting	 insulin	sensitivity	 (Combs	
et	al.,	2004;	Maeda	et	al.,	2002;	Pajvani	&	Scherer,	2003;	Yamauchi	
et	 al.,	 2003)	 and	 prevents	 atherosclerosis	 by	 attenuating	 chronic	
inflammation	 (Ohashi,	Ouchi,	&	Matsuzawa,	2012;	Okamoto	et	al.,	
2002;	 Yamamoto	 et	 al.,	 2005).	 Importantly,	 increased	 adiponectin	
levels are also associated with decreased growth hormone signaling 
and	extended	longevity	in	mice	(Berryman	et	al.,	2004;	Otabe	et	al.,	
2007).	Therefore,	CR	induces	vast	changes	in	the	levels	of	circulating	
hormones,	resulting	in	an	altered	composition	of	the	systemic	milieu.

Interestingly,	 youthful	 alterations	 of	 the	 systemic	 milieu	 have	
been recently shown to be crucial in rejuvenating multiple organs. 
Infusion of young factors in the aged blood changes the composi‐
tion	 of	 the	 systemic	 milieu,	 via	 heterochronic	 parabiosis	 or	 injec‐
tions of young plasma in aged mice. These methods have been very 
successful	 in	rejuvenating	several	tissues,	 including	those	with	low	
regenerative	 potential	 such	 as	 the	 heart,	muscle,	 and	 central	 ner‐
vous	system,	as	we	and	others	have	previously	shown	(Castellano	et	
al.,	2017;	Conboy	et	al.,	2005;	Katsimpardi	et	al.,	2014;	Loffredo	et	
al.,	2013;	Ruckh	et	al.,	2012;	Sinha	et	al.,	2014;	Villeda	et	al.,	2011,	
2014),	suggesting	that	aging	is	a	malleable	process	and	that	achiev‐
ing the right systemic “cocktail” can activate tissue plasticity at al‐
most any age.

The fact that altered blood composition by either heterochronic 
parabiosis	or	CR	leads	to	organ	rejuvenation,	despite	very	different	
biological	contexts,	raises	the	exciting	possibility	that	these	two	sys‐
temic	manipulations	may	share	common	pathways	and	mechanisms,	
and	that	rejuvenation	via	parabiosis	could	be	due,	at	least	in	part,	to	
youthful factors acting as CR mimetics in the aged organism. One of 
the	factors	identified	in	parabiosis	experiments	was	GDF11,	which	
was	shown	to	rejuvenate	the	aged	brain	(Katsimpardi	et	al.,	2014),	
while having a broader rejuvenating effect on other peripheral aged 
organs,	 such	as	 the	muscle	and	heart	 (Loffredo	et	al.,	2013;	Sinha	
et	 al.,	 2014).	 Subsequently,	 other	 reports	 argued	 that	GDF11	was	
positively	associated	with	aging,	cachexia,	and	inhibition	of	muscle	
regeneration	in	aged	mice	(Egerman	et	al.,	2015;	Harper	et	al.,	2016;	
Jones	et	al.,	2018),	while	different	studies	showed	a	beneficial	role	
for	GDF11	 in	 the	 periphery	 (Poggioli	 et	 al.,	 2016;	 Su	 et	 al.,	 2019;	
Walker	et	al.,	2016).	In	the	central	nervous	system,	GDF11	was	also	
shown to be neuroprotective for neurovascular recovery and neuro‐
genesis	(Anqi,	Ruiqi,	Yanming,	&	Chao,	2019;	Ma	et	al.,	2018;	Ozek,	
Krolewski,	Buchanan,	&	Rubin,	2018;	Schafer	&	LeBrasseur,	2019;	
Zhang	et	al.,	2018).

While	 systemic	 administration	 of	 recombinant	 GDF11	 protein	
induced a rejuvenating effect on the brain by increasing neurogene‐
sis	and	vascular	remodeling,	GDF11‐injected	aged	mice	also	became	
lean	(Katsimpardi	et	al.,	2014;	Ozek	et	al.,	2018;	Poggioli	et	al.,	2016).	
This	 led	 us	 to	 hypothesize	 that	 the	 rejuvenation	 effect	 of	GDF11	
may	result	from	a	concerted	action	of	this	molecule	on	whole‐organ‐
ismal physiology and that this interesting protein may be a rejuvena‐
tion mechanism coupling CR and heterochronic parabiosis.

2  | RESULTS

We	sought	to	investigate	the	effect	of	systemic	GDF11	treatment	
on organismal physiology and metabolism via daily intraperito‐
neal	 (IP)	 injections.	First,	we	determined	the	 levels	of	circulating	
GDF11	 in	 the	 bloodstream	 after	 injection.	 Aged	 (22‐month‐old)	
mice	were	 injected	with	 recombinant	GDF11	 (rGDF11,	1	mg/kg)	
whereas	control	young	 (3‐	to	4‐month‐old)	and	aged	 (22‐month‐
old)	mice	were	 injected	with	saline.	Blood	GDF11	was	measured	
by	sandwich	ELISA	12	hr	after	the	last	injection.	The	average	value	
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of	blood	GDF11	 in	young	mice	was	at	400	pg/ml.	Aged	GDF11‐
injected	 mice	 presented	 an	 average	 value	 of	 blood	 GDF11	 at	
399	pg/ml,	whereas	the	 intrinsic	circulating	protein	could	not	be	

detected	in	the	blood	of	control	aged	mice	(Figure	1a).	Moreover,	
we	confirmed	the	specificity	of	this	assay	for	GDF11	by	using	re‐
combinant	myostatin	(rMST),	which	was	not	detected	at	any	con‐
centration	(Figure	1a	and	online	detailed	Materials	and	Methods).	
These	results	show	that	supplementation	of	rGDF11	injected	IP	at	
1	mg/kg	 in	aged	mice	 increased	the	 levels	of	blood	GDF11	com‐
pared	to	 intrinsic	GDF11	circulating	 in	the	blood	of	control	aged	
mice,	bringing	 them	 to	a	 youthful	 level.	We	 repeated	 this	meas‐
urement	by	Western	blotting	where	the	anti‐GDF11	antibody	was	
fully	validated	for	sensitivity	and	specificity	to	the	GDF11	antigen	
(Figure	 S1	 and	online	detailed	Materials	 and	Methods).	Western	
blot	analysis	of	GDF11‐injected	or	saline‐injected	aged	mice	con‐
firmed	 that	 GDF11‐injected	 mice	 exhibited	 significantly	 higher	
concentration	 of	GDF11	 in	 the	 blood	 compared	 to	 control	 aged	
mice	(Figure	1b).

Next,	 we	 examined	 the	 effect	 of	 systemic	 GDF11	 injections	
on body weight. Mice were IP injected daily at 7 p.m. in order to 
ensure that the protein is present during the active phase of mice 
(night	time),	and	all	 injected	mice	were	weighed	weekly.	After	one	
week	of	daily	administration,	GDF11‐treated	mice	were	significantly	
leaner	 than	age‐matched	controls	 (Figure	1c	and	Figure	S2a),	with	
an	average	reduction	of	8%	of	their	initial	body	weight	(Figure	S2b).	
Interestingly,	as	we	continued	the	administration	of	GDF11,	we	ob‐
served no further weight loss after this time point following an ad‐
ditional	 two	weeks	of	GDF11	 treatment,	 and	GDF11‐treated	aged	
mice remained as lean as young mice and maintained a statistically 
significant weight difference compared to control aged mice for the 
rest	of	 the	 treatment	 (Figure	1d).	Analysis	of	 the	weight	 loss	phe‐
notype showed a strong reverse correlation between the degree 
of	 weight	 loss	 and	 the	 initial	 body	 weight	 in	 GDF11‐treated	 ani‐
mals	 (Pearson's	correlation	coefficient,	 rGDF11	=	−.739;	Figure	S2c).	
To	examine	their	physical	performance	and	motor	coordination,	we	
performed	 the	 rotarod	 test,	where	 all	 aged	mice	were	equally	 ac‐
tive	and	showed	no	signs	of	frailty	at	the	end	of	the	3‐week	GDF11	
treatment	(Figure	S2d).	We	then	examined	the	fat	and	muscle	tissues	
of	these	mice.	Visceral	(epididymal)	white	adipose	tissue	(WAT)	was	
significantly	reduced	after	3	weeks	of	treatment	(Figure	1e),	whereas	
tibia	muscle	mass	remained	the	same	(Figure	S2e).	Moreover,	mus‐
cle	 sections	 from	 these	mice	were	histologically	 analyzed	by	H&E	
staining,	and	no	morphological	changes	were	observed	between	the	
two	aged	groups	(Figure	S2f).	Because	of	our	previous	finding	that	
GDF11	can	rejuvenate	the	aged	brain,	we	also	examined	brain	sec‐
tions	of	the	aged	mice	after	3	weeks	of	GDF11	or	saline	treatment.	
Quantification	of	doublecortin	(DCX,	a	marker	of	migrating	neuro‐
blasts	and	neurogenesis)	in	the	aged	subventricular	zone	neurogenic	
niche	 revealed	 that	 these	mice,	 which	 lost	 weight,	 also	 increased	
their	neurogenic	capacity	(Figure	S3),	suggesting	a	simultaneous	role	
for	GDF11	in	both	brain	rejuvenation	and	weight	loss	in	aged	mice.

Next,	we	asked	whether	the	weight	loss	changes	observed	with	
GDF11	 treatment	 would	 have	 a	 long‐lasting	 effect.	 Thus,	 we	 in‐
jected	the	aged	mice	with	rGDF11	(1	mg/kg)	or	saline	for	two	weeks	
to	repeat	the	“weight	loss	and	stabilization”	period	and	then	stopped	
injecting	the	mice.	Indeed,	GDF11‐treated	mice	lost	weight	the	first	

F I G U R E  1  Serum	GDF11	levels	correlate	with	weight	loss	and	
calorie	restriction.	(a)	ELISA	measurements	of	circulating	GDF11	in	
the	plasma	of	young,	old,	and	GDF11‐treated	old	mice	12	hr	after	
injection	(nY	=	6,	nO	=	10,	nGDF11	=	10	mice	per	group).	Recombinant	
MST	(2	and	0.5	ng/ml)	was	used	as	a	specificity	control.	(b)	Western	
blot	of	equal	serum	volumes	from	aged	GDF11‐injected	and	aged	
control	mice	probed	with	a	specific	anti‐GDF11	antibody.	(c)	
Graphic representation of body weight reduction after 8 days of 
daily	systemic	GDF11	or	saline	administration	in	22‐month‐old	mice	
(n	=	20	mice	per	group).	(d)	Weekly	measurement	of	weight	over	
3	weeks	of	daily	GDF11	or	saline	administration	(n = 7 mice per 
group).	(e)	Measurement	of	WAT	weight	after	22	days	of	treatment	
(nO	=	7,	nGDF11	=	6	mice	per	group).	(f)	Weekly	weight	measurement	
of	mice	injected	with	GDF11	for	2	weeks	and	monitored	for	
3	weeks	without	injections	(n	=	10	mice	per	group).	(G)	Western	
blot	from	equal	volumes	of	young	and	old	AL	and	old	CR	mice	
plasma	probed	with	anti‐GDF11	antibody.	(h)	Quantification	of	(G)	
by	optical	intensity	(nY‐AL	=	4,	nO‐AL	=	4,	nO‐CR	=	7	mice	per	group).	
One‐way	and	two‐way	ANOVA	and	Tukey's	post hoc test for 
multiple	group	comparisons;	Mann–Whitney	test	for	two‐group	
comparisons; *p	<	.05,	**p < .01; ****p	<	.0001;	mean	±	SEM
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week	 and	 subsequently	 reached	 a	 plateau.	 Interestingly,	 3	 weeks	
after	we	 stopped	 the	 injections,	 these	mice	maintained	 the	 same	
weight,	which	was	significantly	reduced	compared	to	the	time	point	
before	 the	 injections,	 despite	 the	 lack	of	GDF11	 supplementation	
(Figure	1f).	These	findings	suggest	that	systemic	GDF11	administra‐
tion	triggers	changes	in	organismal	physiology	that	have	a	long‐last‐
ing effect.

Since	GDF11	seems	to	be	directly	associated	with	energy	expen‐
diture	at	the	systemic	level,	we	wondered	how	intrinsic	GDF11	lev‐
els	would	be	affected	in	a	metabolically	altered	context.	To	answer	
this	question,	we	performed	CR	in	aged	mice	(22‐	to	28‐month‐old)	
and	compared	them	to	age‐matched	ad	libitum	(AL)‐fed	aged	mice,	
as	well	as	young	(3.5‐month‐old)	AL	mice.	Analysis	of	their	serum	by	
immunoblotting	with	the	specific	anti‐GDF11	antibody	showed	that	
levels	 of	 circulating	GDF11	were	 increased	 in	CR	 aged	mice	 com‐
pared	 to	 their	AL‐fed	aged	counterparts	 (Figure	1g,h).	This	 finding	
provides	further	evidence	that	GDF11	levels	in	the	blood	correlate	
with organismal energy levels.

In	order	to	better	understand	the	effect	of	GDF11	on	body	weight	
changes,	we	decided	to	narrow	our	analysis	to	the	specific	window	
of	the	first	week	where	weight	loss	was	observed.	In	this	window,	
we sought to investigate whether body weight reduction after sys‐
temic	 GDF11	 administration	 was	 due	 to	 changes	 in	 appetite	 and	
food	consumption.	To	address	this	question,	young	and	aged	mice	
were	placed	in	metabolic	cages	on	the	third	day	of	GDF11	or	saline	
treatment	for	a	period	of	5	days	 (Figure	2a).	While	GDF11‐treated	

aged	animals	lost	weight	(Figure	2b),	no	changes	in	food	intake	were	
observed	(Figure	2c).	All	aged	mice	traveled	similar	distances	in	the	
open‐field	test	(Figure	2d,e),	suggesting	that	GDF11‐induced	weight	
loss did not result from locomotor hyperactivity. Other metabolic 
and	hormonal	parameters,	water	consumption,	urine	and	feces	se‐
cretion,	blood	glucose,	corticosterone,	and	leptin	levels	were	exam‐
ined.	All	of	these	parameters	remained	unchanged	in	GDF11‐treated	
aged	mice	 compared	 to	 their	 controls	 (Figure	 S4d‐f,	 respectively).	
These	 findings	 demonstrate	 that	 systemic	 GDF11	 induces	weight	
loss without changes in appetite in aged mice.

Since	 it	was	previously	 reported	 that	 supraphysiologic	overex‐
pression	of	GDF11	 in	 the	 liver	of	young	mice	 induced	weight	 loss	
and	cachexia	 through	activation	of	GDF15	and	anorexia	 (Jones	et	
al.,	 2018),	we	 sought	 to	 examine	 this	 in	our	paradigm	of	 systemic	
rGDF11	 administration.	 Thus,	 we	 injected	 3‐month‐old	 young	
mice	 with	 GDF11	 (1	 mg/kg)	 IP	 for	 one	 week.	 In	 our	 paradigm,	
GDF11	 induced	 a	 slight	 weight	 loss	 in	 young	mice	 (4%	 reduction	
of	 their	 initial	body	weight),	 but	 significantly	 less	 than	 in	old	mice	
(Figure	 3a).	 Interestingly,	 young	 GDF11‐treated	 mice	 showed	 en‐
hanced	performance	 in	 the	 rotarod	 test	with	a	5%	 increase	 in	 the	
median	 of	 the	 survival	 curve	 (medianyoung‐ctrl	 =	 55,	 medianyoung‐
GDF11	=	60;	Figure	3b).	As	 in	old	mice,	 tibia	muscle	mass	 remained	
the	same	(Figure	3c)	and	no	morphological	changes	were	observed	
in	muscle	tissue	after	GDF11	administration	(Figure	3d).	Moreover,	
we	 examined	GDF11‐injected	 and	 control	 young	mice	 for	 GDF15	
activation.	We	performed	the	previously	reported	ELISA	assay	for	

F I G U R E  2  Food	consumption	and	physical	activity	are	not	affected	when	GDF11‐treated	aged	mice	lose	weight.	(a)	Schematic	
representation	of	metabolic	cage	experiment:	Young	and	aged	mice	were	injected	with	saline	or	GDF11	for	3	days	before	transfer	to	
metabolic	cages,	where	they	remained	for	5	days	while	continuing	to	be	injected	daily.	(b)	Graphic	representation	of	daily	weight	loss,	
averaged	over	5	days	(n	=	5	mice	per	group).	(c)	Graphic	representation	of	the	average	ratio	of	food	intake	per	body	weight	(nY	=	4,	
nO	=	10,	nGDF	=	10	mice	per	group).	(d)	Measurement	of	distance	travelled	during	20	min	in	the	open‐field	arena	(n	=	9	mice	per	group).	(g)	
Representative	traces	of	mouse	movements	during	20	min	of	the	open	field	test.	Mann–Whitney	test	for	two‐group	comparisons;	**p < .01; 
mean	±	SEM
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GDF15	detection	(Jones	et	al.,	2018)	using	the	serum	of	these	mice	
at	 one	week	 after	 treatment,	 and	 saw	 no	modification	 of	 GDF15	
(Figure	3e).	This	demonstrates	that	a	one‐week	systemic	GDF11	ad‐
ministration	activates	GDF15‐independent	pathways	for	moderate	
body weight reduction in young mice.

Next,	we	sought	to	investigate	which	metabolic	pathways	were	
affected	 in	aged	mice	after	 systemic	GDF11	administration.	Using	
the	ELISA	mentioned	above,	we	measured	GDF15	levels	in	serum	of	
aged	mice	injected	with	GDF11	for	either	one	week	or	for	3	weeks.	
In	both	 cases,	 no	 significant	 change	was	observed,	 and	 there	was	
even	a	trend	for	decreased	GDF15	levels	after	3	weeks	of	treatment	
(Figure	4a).	Together	with	the	fact	that	no	anorexia	was	observed,	
these	 results	 suggest	 that	GDF11	 induces	a	healthy,	GDF15‐inde‐
pendent	weight	loss	in	aged	mice.	We	then	sought	to	measure	insu‐
lin	levels,	with	or	without	fasting.	For	this,	aged	mice	were	treated	
with	GDF11	or	saline	for	1	week,	and	then,	mice	were	fed	or	fasted	
for	 6	 hr	 before	 blood	 collection.	 Insulin	was	measured	 in	 all	 sam‐
ples	using	an	ELISA.	We	found	that	aged	GDF11‐treated	mice	that	
underwent	fasting	exhibited	a	significant	decrease	 in	 insulin	 levels	
compared	to	control	fasted	mice,	whereas	no	significant	change	was	
observed	in	fed	mice	(Figure	4b).	In	relation	to	this	finding,	we	also	
measured	plasma	 IGF‐1	 levels,	which	were	 significantly	decreased	
in	old	GDF11‐treated	compared	to	old	control	mice,	at	both	9	and	

22	days	of	treatment,	showing	that	GDF11	rapidly	induces	metabolic	
changes	 that	 remain	 sustained	over	 time	 (Figure	4c).	 Since	weight	
loss	was	appetite‐independent	but	linked	to	a	reduction	in	visceral	
WAT,	we	next	examined	adiponectin,	an	adipose‐secreted	hormone	
that	 induces	 appetite‐independent	 weight	 loss	 (Qi	 et	 al.,	 2004).	
Adiponectin	is	inversely	correlated	with	adipose	mass	and	is	known	
to	increase	in	the	context	of	CR	(Combs	et	al.,	2003).	Indeed,	in	our	
CR	paradigm,	serum	levels	of	adiponectin	were	 increased	solely	 in	
aged	 CR	 mice,	 the	 only	 mice	 that	 lost	 weight,	 compared	 to	 both	
young	and	old	control	AL	mice	(Figure	4d,f).	Similarly,	we	observed	
elevated	levels	of	adiponectin	in	aged	GDF11‐treated	mice,	also	the	
only	group	that	underwent	weight	loss,	compared	to	young	and	old	
control	mice	(Figure	4e,g).	Adiponectin	circulates	in	multiple	isoforms	
in	the	blood,	and	total	and	high	molecular	weight	(HMW)	forms	are	
inversely	associated	with	obesity	(Lubbers	et	al.,	2013).	In	order	to	
further	examine	which	isoforms	were	affected	in	our	paradigm,	we	
performed	an	ELISA	that	distinguishes	between	these	forms	of	ad‐
iponectin. This assay showed that total adiponectin was increased 
in	 the	blood	of	GDF11‐treated	mice,	but	no	change	was	observed	
for	the	HMW	isoform	of	circulating	adiponectin	(Figure	4h).	Taken	
together,	these	results	demonstrate	that	systemic	GDF11	adminis‐
tration in aged mice is involved in metabolic pathways by inducing 
sustainable hormonal changes similar to those activated in CR.

F I G U R E  3  Young	mice	perform	better	and	exhibit	a	moderate	GDF15‐independent	body	weight	reduction	after	systemic	GDF11	
treatment.	(a)	Graphic	representation	of	body	weight	reduction	after	8	days	of	daily	systemic	GDF11	or	saline	administration	in	young	
and	aged	mice	(nY	=	10,	nO	=	20	mice	per	group).	(b)	Evaluation	of	young	mice	for	their	locomotor	and	coordination	performance	using	the	
rotarod test. The survival curve represents the fraction of mice not falling from the rotarod over the latency to first fall. The data represent 
the	best	out	of	three	trials	for	each	mouse.	(medianyoung‐ctrl	=	55,	medianyoung‐GDF11	=	60;	calculated	using	the	Wilcoxon	rank	test).	(c)	
Measurement	of	tibialis	anterior	muscle	mass	(nY	=	9,	nYGDF11	=	10	mice	per	group).	(d)	Histological	analysis	of	tibialis	anterior	muscle	sections	
by	H&E	staining.	Scale	bar:	50	μm.	(e)	ELISA	measurements	of	circulating	GDF15	in	the	plasma	of	saline	or	GDF11‐treated	young	mice	(nY	=	7,	
nYGDF11	=	8	mice	per	group).	One‐way	and	two‐way	ANOVA	and	Tukey's	post hoc	test	for	multiple	group	comparisons;	Mann–Whitney	test	
for	two‐group	comparisons;	**p < .01; ****p < .0001; #: t‐test	between	young	ctrl	and	young	GDF11	mice	with	p	=	.0007;	mean	±	SEM
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Given the tight link between weight loss and adiponectin se‐
cretion,	we	wondered	whether	GDF11	might	trigger	this	pathway	
by	a	direct	action	on	white	adipose	tissue	in	aged	mice;	thus,	we	
tested	 this	 hypothesis	 on	 mature,	 in	 vitro	 cultured,	 adipocytes.	
Adipocytes	 were	 differentiated	 from	 3T3‐L1	 cells,	 a	 pre‐adipo‐
cyte	cell	 line,	and	were	cultured	until	maturation,	defined	by	the	
size	of	lipid	droplets	inside	each	cell	by	Oil	Red	O	staining.	Once	
adipocytes	 reached	 full	 maturation	 (large	 lipid	 droplets),	 they	
were	 treated	 with	 rGDF11	 (20	 ng/ml)	 in	 the	medium	 for	 6,	 48,	
and	96	hr	to	establish	a	timeline	of	GDF11	action.	Using	BODIPY	
lipid	 staining,	 we	 observed	 no	 changes	 in	 morphology	 or	 lipid	
droplet	 size	 in	mature	 adipocytes	 after	GDF11	 treatment	 at	 any	
time	point	 (Figure	5a).	Then,	we	measured	adiponectin	secretion	
over	time	into	the	culture	medium	by	Western	blotting	(Figure	5b).	
Adiponectin	levels	were	significantly	increased	compared	to	con‐
trol	medium	after	6	hr	and	persisted	up	to	48	hr	of	GDF11	treatment	

(Figure	5c),	indicating	that	GDF11	is	efficient	to	quickly	stimulate	
adiponectin	 secretion	by	 adipocytes.	 Subsequently,	we	 took	 ad‐
vantage	of	a	controlled	context,	the	adipocyte	culture,	to	examine	
whether	GDF11	promotes	secretion	of	HMW	adiponectin.	Using	
the	 ELISA	mentioned	 above,	we	 found	 that	 GDF11	 significantly	
enhanced	production	of	HMW	adiponectin	 at	 6	 hr	 of	 treatment	
compared	 to	 the	 control	 medium	 (Figure	 5d).	 Mechanistically,	
GDF11	signals	downstream	via	 the	activin	 type‐IIA	and	 type‐IIB	
receptors	in	most	cell	types	(Oh	et	al.,	2002;	Walker	et	al.,	2016).	
Therefore,	we	asked	whether	stimulation	of	these	receptors	by	a	
different ligand would also enhance adiponectin secretion. Mature 
adipocytes	were	thus	stimulated	by	Activin	A	(20	ng/ml)	or	GDF11	
(20	ng/ml)	for	6	hr.	Western	blot	analysis	of	the	conditioned	me‐
dium	 showed	 an	 equally	 significant	 increase	 in	 adiponectin	 se‐
cretion	by	Activin	A	or	GDF11	compared	to	the	control	condition	
(Figure	5f).	These	findings	demonstrate	that	GDF11	acts	directly	

F I G U R E  4  GDF11	treatment	in	aged	
mice induces hormonal changes similar to 
CR.	(a)	ELISA	measurements	of	circulating	
GDF15	in	the	plasma	of	aged	mice	treated	
with	either	saline	or	GDF11	for	1	or	
3	weeks	(nO‐3weeks	=	5,	nGDF11‐3weeks	=	4,	
nO‐1week	=	6,	nGDF11‐1week	=	6	mice	per	
group).	(b)	ELISA	measurements	of	insulin	
in	the	plasma	of	fed	or	6	hr‐fasted	aged	
mice	treated	with	either	saline	or	GDF11	
(nO‐fed	=	8,	nGDF11‐fed	=	8,	nO‐fasted	=	3,	
nGDF11‐fasted	=	4	mice	per	group).	(C)	ELISA	
measurement	of	circulating	IGF‐1	in	the	
plasma	of	young,	old,	and	GDF11‐treated	
old	mice	(n	=	5	mice	per	group).	(d‐e)	
Representative	Western	blot	images	of	
equal	volumes	of	serum	from	(d)	young	
AL,	old	CR,	and	old	AL	and	(e)	young	
ctrl,	old	GDF11‐treated	old	ctrl,	both	
probed	with	anti‐adiponectin	antibody.	
(f)	Quantification	of	(d)	by	optical	density.	
(g)	Quantification	of	(e)	by	optical	density.	
(f)	ELISA	measurement	of	HMW	or	total	
adiponectin in the plasma of aged saline 
or	1‐week	GDF11‐treated	old	mice	(n = 4 
mice	per	group).	One‐way	and	two‐way	
ANOVA	and	Tukey's	post hoc test for 
multiple	group	comparisons;	Mann–
Whitney	test	for	two‐group	comparisons;	
*p	<	.05,	**p < .01; ***p < .001; 
mean	±	SEM
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on adipocytes to stimulate activin receptors in order to increase 
adiponectin release from adipocytes.

3  | DISCUSSION

GDF11	is	a	protein	with	a	variety	of	known	roles	in	embryonic	devel‐
opment,	ranging	from	anteroposterior	development	to	formation	of	

multiple	organs,	including	the	central	nervous	system	(Harmon	et	al.,	
2004;	McPherron,	Lawler,	&	Lee,	1997;	Wu	et	al.,	2003),	yet	its	role	
in the aging organism has been controversial and its mechanism of 
action largely unknown.

Here,	we	present	evidence	that	GDF11	induces	a	healthy	calorie	
restriction‐like	phenotype	together	with	brain	rejuvenation	in	aged	
mice,	and	it	acts	by	stimulating	the	secretion	of	adiponectin	directly	
on	adipocytes.	We	demonstrate	a	potent	role	for	GDF11	as	a	met‐
abolic actor in the aged organism based on the following findings: 
(a)	 systemic	 administration	 of	GDF11	 induced	 healthy	weight	 loss	
as	 early	 as	 1	week	 after	 treatment,	 (b)	 this	weight	 loss	 reached	 a	
plateau throughout the rest of the treatment and was maintained 
for	3	weeks	beyond	the	end	of	the	treatment,	(c)	GDF11	levels	were	
increased	 in	 aged	 mice	 that	 were	 subjected	 to	 CR,	 (d)	 metabolic	
changes	 were	 independent	 of	 GDF15	 activation	 or	 anorexia,	 but	
correlated	with	changes	in	adiponectin	levels	and	the	insulin/IGF‐1	
metabolic	 pathway,	 (e)	 GDF11	 activated	 adiponectin	 secretion	 di‐
rectly	from	adipocytes,	and	(f)	all	the	above	changes	correlated	with	
a brain rejuvenation phenotype in aged mice.

The	fact	that	systemic	administration	of	GDF11	induced	healthy	
weight	 loss	 as	 early	 as	 1	 week	 after	 treatment	 and	 subsequently	
reached	a	plateau	comes	to	accordance	with	previous	reports	(Ozek	
et	al.,	2018;	Poggioli	et	al.,	2016).	During	and	after	 the	treatment,	
all	mice	were	healthy	and	displayed	no	signs	of	cachexia	or	 frailty	
contrary	 to	 previous	 reports	 (Egerman	et	 al.,	 2015).	GDF11	 treat‐
ment	did	not	affect	 food	 intake,	appetite,	or	 locomotor	activity	 in	
aged	mice.	Moreover,	muscle	sections	of	treated	aged	mice	showed	
no	morphological	or	histological	alterations	after	a	3‐week	GDF11	
treatment.

It	was	previously	reported	that	young	mice,	where	GDF11	was	
supraphysiologically	expressed	through	plasmid	insertion	into	the	
liver,	 lost	weight	due	to	anorexia	and	GDF15	activation,	and	dis‐
played	signs	of	frailty	(Jones	et	al.,	2018).	In	our	work	here,	systemic	
GDF11	administration	in	young	mice	did	not	affect	GDF15	levels	
in	the	blood,	and	GDF11‐treated	mice	exhibited	an	increased	per‐
formance	in	the	rotarod	test.	In	fact,	GDF15	levels	remained	un‐
changed	regardless	of	the	age	of	the	mice	or	the	length	of	GDF11	
treatment.	In	addition,	in	the	Jones	et	al.	study,	mice	steadily	lost	
weight,	 reaching	 a	 level	of	35%	 reduction	of	 their	 initial	weight,	
whereas	we	 found	 that	mice	 only	 lost	 4%	 of	 their	 initial	weight	
after	 one	week	 and	 then	 reached	 a	 plateau.	 In	 our	 paradigm,	 IP	
injections	of	1	mg/kg	rGDF11	resulted	 in	an	average	blood	con‐
centration	of	GDF11	of	399	pg/ml,	which	suggests	 that	 injected	
rGDF11	only	partially	enters	the	bloodstream.	In	the	Jones	et	al.	
(2018)	 study,	 the	 resulting	concentration	of	GDF11	 levels	 in	 the	
blood was reported to be over 3 μg/ml for the 3 μg plasmid inser‐
tion and over 12 μg/ml for the 10 μg	plasmid	insertion	in	the	liver,	
thus	the	 levels	of	circulating	GDF11	 in	that	study	were	between	
7,500	 to	 30,000	 times	 higher	 than	 in	 our	 GDF11‐injected	mice.	
Therefore,	a	high,	possibly	toxic,	dose	of	liver‐secreted	GDF11	in	
the	 blood	 and/or	 the	 different	methodology	 of	 GDF11	 delivery	
could	alter	the	functional	state	of	the	liver	(and	other	systems)	and	
induce	the	expression	of	GDF15.

F I G U R E  5  GDF11	stimulates	adiponectin	release	in	mature	
adipocyte	cultures.	(a)	BODIPY	staining	of	lipid	droplets	in	mature	
adipocytes	in	vitro	treated	with	rGDF11	or	control	medium.	(b)	
Representative	Western	blot	images	of	equal	volumes	of	adipocyte	
culture	medium	after	6	hr	of	20	ng/ml	rGDF11	or	no	treatment	
probed	with	anti‐adiponectin	antibody.	(c)	Quantification	by	
Western	blot	of	adiponectin	release	in	adipocyte	culture	medium	
after	6,	48,	and	96	hr	of	rGDF11	or	no	treatment	(n = 4 conditioned 
medium	samples	per	group).	(d)	ELISA	measurement	of	HMW	
adiponectin	in	adipocyte	conditioned	medium	after	6	hr	of	rGDF11	
or	no	treatment	(n	=	3	conditioned	medium	samples	per	group).	(e)	
Representative	Western	blot	images	of	equal	volumes	of	adipocyte	
culture	medium	after	6	hr	of	20	ng/ml	rGDF11,	20	ng/ml	activin	
A	or	no	treatment,	probed	with	anti‐adiponectin	antibody.	(f)	
Quantification	by	Western	blot	of	(E)	(n	=	6	conditioned	medium	
samples	per	group).	One‐way	and	two‐way	ANOVA	with	Tukey's	
post hoc	test	for	multiple	group	comparisons;	Mann–Whitney	
test	for	two‐group	comparisons;	*p	<	.05,	**p	<	.01,	***	p < .001; 
****p	<	.0001;	mean	±	SEM
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Our	findings	propose	a	role	for	GDF11	as	a	molecule	that	is	di‐
rectly	 coupled	with	 a	CR‐like	 phenotype.	 Indeed,	 increased	 blood	
levels	of	GDF11	are	correlated	with	body	weight	reduction,	whether	
in	the	context	of	GDF11	treatment	or	in	the	context	of	CR.	This	is	
also corroborated by the fact that after the initial weight reduc‐
tion,	treated	mice	maintained	a	 lower,	youthful	weight	for	another	
3	weeks	without	 any	 further	GDF11	 supplementation,	 suggesting	
that	GDF11	induces	secondary	hormonal	changes	that	are	stable	for	
a	 long	period	of	time.	Similarly,	mice	subjected	to	CR	exhibit	body	
weight	reduction,	improved	insulin	sensitivity,	and	lower	cholesterol	
and	 blood	 pressure	 (Anderson,	 Shanmuganayagam,	 &	Weindruch,	
2009;	Fontana,	Meyer,	Klein,	&	Holloszy,	2004).	The	 insulin/IGF‐1	
axis	of	aging	is	also	affected	in	CR	(Weindruch	&	Sohal,	1997)	and	
IGF‐1	levels	are	inversely	correlated	with	obesity	and	aging	(Chaker,	
Aid,	Berry,	&	Holzenberger,	2015;	Fontana,	Weiss,	Villareal,	Klein,	
&	Holloszy,	2008;	Holzenberger	et	al.,	2003).	GDF11	treatment	led	
to	a	27%	reduction	 in	serum	levels	of	 IGF‐1,	 in	a	sustainable	man‐
ner	throughout	GDF11	administration,	which	represents	a	reduction	
similar	to	the	effects	of	CR,	together	with	a	decrease	in	fasting	insu‐
lin	levels.	Given	that	reduced	levels	of	IGF‐1	and	insulin	are	tightly	
linked	to	increased	longevity	(Holzenberger,	2011;	Holzenberger	et	
al.,	2003),	it	would	be	interesting	to	examine	whether	longer	GDF11	
treatment could increase longevity.

Mechanistically,	we	provide	evidence	that	GDF11	acts	directly	
on	 adipocytes	 to	 induce	 adiponectin	 secretion.	Adiponectin	 regu‐
lates	 energy	 expenditure	by	 acting	directly	 in	 the	brain	 to	 reduce	
weight	without	affecting	appetite	(Qi	et	al.,	2004),	and	its	levels	are	
known	to	increase	in	the	context	of	CR	(Miller	et	al.,	2017),	suggest‐
ing that this hormone may have an important role in regulating sys‐
temic	energy	levels	in	the	GDF11	paradigm.	It	is	interesting	to	note	
that	adiponectin	was	equally	affected	in	both	GDF11	and	CR	para‐
digms,	lending	credence	to	the	idea	that	GDF11	mimics	CR	effects.	
We	 also	 examined	 the	 different	 circulating	 forms	 of	 adiponectin.	
While	 some	 studies	 report	 a	 prevalence	of	HMW	adiponectin	 for	
improvement	of	insulin	sensitivity	(Pajvani	et	al.,	2004),	other	stud‐
ies	 suggest	 that	 the	 two	 isoforms	might	 exhibit	 different	 concen‐
trations	in	the	blood	(Berryman	et	al.,	2010).	In	our	paradigm,	total	
adiponectin	was	increased	after	GDF11	treatment,	whereas	HMW	
adiponectin remained unchanged in the serum of aged mice. These 
results	 could	be	 explained	by	 the	 fact	 that,	 unlike	 total	 adiponec‐
tin,	HMW	adiponectin	 levels	 vary	with	 age	 (Lubbers	 et	 al.,	 2013).	
The	finding	that	GDF11	treatment	on	adipocyte	cultures	greatly	in‐
creased	HMW	secretion	also	corroborates	this	hypothesis.

Mechanistically,	 we	 show	 that	 adiponectin	 secretion	 was	 due	
to	 stimulation	 of	 activin	 receptors.	 However,	 it	 is	 still	 unknown	
whether	all	the	metabolic	effects	of	GDF11	are	due	to	adiponectin	
activation	or	whether	GDF11	could	act	simultaneously	on	other	tar‐
gets.	Moreover,	since	adiponectin	has	multiple	antidiabetic,	anti‐ath‐
erogenic	effects,	it	would	be	crucial	to	explore	whether	a	synergistic	
administration	 of	 GDF11	 and	 adiponectin	 would	 further	 enhance	
the	beneficial	effects	of	this	treatment	in	age‐related	and	metabolic	
disorders.

Lastly,	it	is	extremely	important	to	note	that	the	CR‐like	phe‐
notype	induced	by	GDF11	correlated	with	a	rejuvenation	pheno‐
type	in	the	brain,	suggesting	that	GDF11	treatment	might	reverse	
brain dysfunctions related to aging along with a pleiotropic effect 
on	 whole‐body	 metabolism.	 This	 could	 be	 partly	 due	 to	 a	 syn‐
ergistic	 action	of	GDF11	with	 adiponectin,	which	 also	 enhances	
neurogenesis and is thought to mediate the beneficial effects of 
exercise	in	the	brain	(Yau	et	al.,	2014).	Therefore,	it	would	be	inter‐
esting	to	further	explore	the	mechanistic	link	between	GDF11	and	
adiponectin on brain functions and whether knocking down adi‐
ponectin	would	reduce	the	beneficial	effects	of	systemic	GDF11	
in the brain.

4  | E XPERIMENTAL PROCEDURES

4.1 | Animals

Young	(3	months)	and	aged	(22	months)	C57BL/6JRj	mice	were	ob‐
tained	from	Janvier	Labs	(France).	For	the	calorie	restriction	study,	
male	C57BL/6J	mice	were	obtained	from	Jackson	Laboratories.	All	
animals	were	group	housed	(except	for	the	metabolic	cage	experi‐
ment)	and	provided	free	access	to	water.	All	animal	procedures	were	
performed	 in	 accordance	 with	 French	 legislation	 and	 in	 compli‐
ance	with	the	European	Communities	Council	Directives	(2010/63/
UE),	 according	 to	 the	 regulations	 of	 Institut	 Pasteur	 Animal	 Care	
Committees.	 All	 calorie‐restricted	 (CR)	 and	 ad	 libitum	 (AL)	 mice	
studies	were	 approved	 by	 the	University	 of	 Texas	Health	 Science	
Center	at	San	Antonio	Institutional	Animal	Care	and	Use	Committee	
and performed in accordance with institutional and federal guide‐
lines.	All	samples	were	collected	from	fed	mice,	except	for	the	fast‐
ing	experiment	for	the	measurement	of	insulin	levels.

4.2 | Calorie restriction

Calories	were	restricted	in	a	stepwise	fashion	to	40%	of	free	feeding	
weight	by	16	weeks	of	age	(10%	restriction	at	14	weeks,	25%	restric‐
tion	at	15	weeks,	 and	40%	restriction	at	16	weeks).	Age‐matched	
controls were fed ad libitum. Mice were maintained on this diet until 
sacrifice	at	22–28	months	of	age.	Young	AL	mice	were	3.5‐month‐
old	male	 C57BL/6J.	 All	 animals	 were	 group	 housed	 and	 provided	
free access to water.

4.3 | Metabolic cages

Young	and	old	mice	were	placed	in	metabolic	cages	for	5	days,	start‐
ing	3	days	after	the	first	injection	of	GDF11	or	saline.	Each	metabolic	
cage accommodated 1 mouse. Metabolic cages assured the complete 
separation	of	urine	and	feces.	Food	and	water	consumption,	as	well	
as	feces	and	urine	secretion,	was	measured	daily	at	the	same	time	
of day to take into account circadian influences. Mice were weighed 
daily,	at	the	same	time	of	the	day.	The	metabolic	cage	experiment	
was repeated twice.
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4.4 | GDF11 administration

GDF11	 (Peprotech,	 Cat#	 120‐11)	 was	 dissolved	 in	 water,	 further	
diluted	 according	 to	 the	manufacturer's	 instructions,	 and	 injected	
at	a	concentration	of	1	mg/kg.	Control	mice	 (young	or	aged)	were	
injected	with	equivalent	volumes	of	saline.	 Injection	concentration	
was chosen based on a pilot study with three different concentra‐
tions	 (0.1,	 0.5,	 and	 1.0	 mg/kg)	 where	 consistent	 weight	 loss	 and	
brain	rejuvenation	were	observed	upon	1	mg/kg	GDF11	administra‐
tion.	The	half‐life	of	GDF11	at	 these	concentrations	was	 found	 to	
be of 12 hr.
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