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Purpose: To identify a reliable biomarker for screening diabetic nephropathy (DN)
using artificial intelligence (AI)–assisted ultra-widefield swept-source optical coherence
tomography angiography (UWF SS-OCTA).

Methods: This study analyzed data from 169 patients (287 eyes) with type 2 diabetes
mellitus (T2DM), resulting in 15,211 individual data points. These data points included
basic demographic information, clinical data, and retinal and choroidal data obtained
through UWF SS-OCTA for each eye. Statistical analysis, 10-fold cross-validation, and the
random forest approach were employed for data processing.

Results: The degree of retinal microvascular damage in the diabetic retinopathy (DR)
with the DN group was significantly greater than in the DR without DN group, as
measured by SS-OCTA parameters. There were strong associations between perfusion
density (PD) and DN diagnosis in both the T2DM population (r = −0.562 to −0.481,
P < 0.001) and the DR population (r = −0.397 to −0.357, P < 0.001). The random
forest model showed an average classification accuracy of 85.8442% for identifying DN
patients based on perfusion density in the T2DM population and 82.5739% in the DR
population.

Conclusions: Quantitative analysis of microvasculature reveals a correlation between
DR andDN. UWF PDmay serve as a significant and noninvasive biomarker for evaluating
DN in patients through deep learning. AI-assisted SS-OCTA could be a rapid and reliable
tool for screening DN.

Translational Relevance:Weaim to study the pathological processes of DR andDNand
determine the correspondence between their clinical and pathological manifestations
to further clarify the potential of screening DN using AI-assisted UWF PD.

Introduction

Diabetic retinopathy (DR) and diabetic nephropa-
thy (DN) are common microvascular complications
of type 2 diabetes mellitus (T2DM) and can affect
the macula and peripheral retina, leading to blindness

in critically ill or end-stage renal disease patients.1–3
Therefore, the early diagnosis of DR and DN
is very important to prevent blindness in these
patients.

In recent years, rapid advancements in imaging
technology have enabled dynamic, multilevel, three-
dimensional, and high-resolution observation of the
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retina and choroid. Given the close relationship
between the pathophysiological mechanisms and clini-
cal changes of DN and DR,2,4 researchers believe
that these conditions can predict each other.2,5,6 Previ-
ous studies have explored the correlation between DN
and fundus images or blood flow in the macular
region, finding that renal impairment is linked to the
enlargement of the foveal avascular zone (FAZ) in
diabetic patients.7,8 However, microvascular lesions in
DR are not confined to the macular fovea but are
widespread throughout the retinal microvasculature.
In this context, swept-source optical coherence tomog-
raphy angiography (SS-OCTA) allows for the quick,
highly detailed, and noninvasive quantification of a
wide range of retinal features.9 Our preliminary SS-
OCTA studies confirm that this technology provides
valuable information for detecting potential blood flow
damage at various stages of DR.10

Currently, the clinical diagnostic criteria for DN
rely primarily on invasive serological examinations and
renal biopsies.11 Retinal screening for DN in T2DM
patients is typically limited to fundus imaging and the
FAZ evaluation, which do not provide comprehensive
quantification of retinal and choroidal microvascula-
ture characteristics. Additionally, due to the abnor-
mal renal function in DN patients, invasive fluores-
cein fundus angiography (FFA) cannot be used to
assess retinal and choroidal microvasculature damage.
We hypothesized that certain parameters from the
ultra-widefield (UWF) SS-OCTA could serve as
rapid, noninvasive, and reliable screening biomarkers
for DN.

To test this hypothesis, we conducted a prospective
study to observe retinal and choroidal microvascula-
ture characteristics in patients with DR and DN using
UWF SS-OCTA. We then classified the data using a
random forest model to distinguish DN patients from
the T2DM population (including a control group, a
DR without DN group, and a DR with DN group)
and the DR population (including a DR without
DN group and a DR with DN group). The goal is
to provide real-time monitoring for DR patients and
assess the presence of DN using artificial intelligence
(AI)–assisted UWF parameters. This approach aims to
identify a quick, noninvasive, and reliable biomarker
for DN screening.

Methods

General Information

This study included a total of 169 patients with
T2DM who were treated at the Shandong Eye Hospi-

tal from November 2020 to May 2022. The study
protocol was approved by the Institutional Review
Board of Shandong Eye Hospital (approval No.
SDSYKYY202105). Written informed consent was
obtained from all participating patients. All patients’
demographics and basic clinical characteristics were
recorded. Patients without any systemic diseases or
retinopathywere included in the healthy group. Patients
with T2DM12 and meeting the diagnostic criteria of
DR13 were allotted to the DR without DN group.
Patients with T2DM12 and meeting the diagnostic
criteria of DR13 but not of DN14,15 were included in
the DR with DN group.

Machines for Eye Examination

All the patients were examined by an experi-
enced physician using UWF SS-OCTA (SS-OCT,
VG200D; SVision Imaging, Ltd, Luo Yang, China).
The commercial SS-OCT equipment contained an SS
laser with a central wavelength of approximately 1050
nm (full width of 990–1100 nm) and a scanning rate
of 200,000 A-scans per second. The full width of
the half-maximum axial resolution of the device in
tissue was approximately 5 μm, and the estimated
lateral resolution on the retinal surface was approx-
imately 15 μm.16 Both optical coherence tomogra-
phy (OCT) and OCTA data of 21 × 21 mm2

area centered on the macular fovea were obtained by
1024 (horizontal) × 1024 (vertical) B-scans. By using
the built-in eye-tracking mode of the device based on
the integrated confocal scanning laser detector lens,
eye movement artifacts during and between scans were
minimized.17

Data Extraction and Deep Learning Analysis

The built-in AI identification and quantification
software of the SS-OCTA recorded the area, perime-
ter and acircularity index, and fractal dimension 300
(FD300; blood flow density within a radius of 300
μm around FAZ)18 of FAZ, total retinal thickness
(RT) (measured from the internal limiting membrane
to the retinal pigment epithelium [RPE] in the central
subfield),19 retinal vessel density (VD) and perfusion
density (PD) of the deep vascular complex, choroidal
perfusion (CP), choroidal vascularity volume (CVV;
defined as the volume of the large and medium
choroidal vessels), choroidal vascularity index (CVI;
defined as the ratio of the volume of the large
and medium choroidal vessels to the total choroidal
volume), and choroidal thickness (CT) (measured from
the outer edge of the hyperreflective RPE line to the
inner edge of the sclera) in different circular radii
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around the fovea.19–22 Data collection was carried out
independently by an experienced investigator.

Automatic measurement using SS-OCT built-in
software offers an effective and objective method for
quantitatively evaluating retinal and choroidal struc-
tures. Typically, the system’s default hierarchical mode
was used, with manual corrections made for any
segmentation errors. However, scan artifacts present
substantial challenges to accurate quantification of
the retinal and choroidal layers.23,24 To address this,
the image quality score (IQS) of SS-OCTA images
was assessed, and images with scores below 8 were
excluded to eliminate large errors caused by projection,
bulk motion, signal reduction, and other issues.23 This
evaluation was performed by two experienced ophthal-
mologists who were kept blinded to the participants’
data. In cases of disagreement, a more experienced
ophthalmologist made the final decision. Samples with
IQS scores below 8, which could not be corrected
manually due to segmentation errors, motion artifacts,
defocus, decentration, and masking, were excluded.

A deep learning method was employed to standard-
ize the data, selecting the most relevant optimal OCT
parameters through 10-fold cross-validation (expressed
by the importance of explanatory variables). Then,
the data were randomly divided into 10 groups with
approximately equal numbers to form a training set
and a test set. The training set was divided into 10
folds for cross-validation, with each fold containing
90% training data and 10% verification data.25 Finally,
the training set data were then fitted to a random
forest model, which was used to classify the data
from the testing set.26 Based on the optimal OCT
parameters, we identified DN patients (DR with DN
group) from the T2DM population (control group,
DR without DN group, DR with DN group) and
the DR population (DR without DN group, DR with
DN group) and calculated the classification accuracy.
All results were evaluated through a 10-fold cross-
validation.27

The obtained data were also statistically analyzed
using SPSS v26.0 (SPSS, Inc., Chicago, IL, USA).
The data were tested for normal distribution, followed
by one-way analysis of variance or Kruskal–Wallis
test (H test) as appropriate. Bonferroni correction was
applied for multiple comparisons. Additionally, the
Spearman correlation coefficient was used to evaluate
the relationship between OCT parameters and group-
ing categories.

Results

Patient Characteristics

The baseline demographic and clinical characteris-
tics of the enrolled patients are summarized in Table 1.
In this study, data from 169 patients (287 eyes) with
T2DM were analyzed, comprising 15,211 individual
data points. Ninety-eight control subjects (162 eyes)
without retinal microvascular lesions were recruited,
comprising 45 males and 53 females. Retinal microvas-
cular lesions were identified in 71 subjects (125 eyes).
There was a significant difference in gender distribu-
tion among the three groups (χ2 = 6.978, P = 0.031).
The average ages of patients among the control, DR
without DN, and DR with DN groups were 54.31 ±
11.27 (range, 23–72), 56.76 ± 9.91 (range, 32–75), and
56.00 ± 9.67 (range, 39–79) years, respectively. There
was no significant difference (F = 0.524, Bonferroni
corrected P = 0.694). Patients in the control group
did not have T2DM. The duration of T2DM in the
DR without DN group (mean ± SD = 9.53 ± 6.71)
was significantly shorter than that in the DR with DN
group (mean ± SD = 13.31 ± 6.40) (t = −2.399, P =
0.02).

Our results indicated that the best-corrected visual
acuity (BCVA) measured using the international
standard chart of vision and recorded as the logarith-
micminimumangle of resolution (logMAR)wasworse

Table 1. Demographic and Clinical Characteristics of Enrolled Patients

Variable Control Group
DRWithout
DN Group

DRWith DN
Group χ2/F/t Test

Bonferroni
Correction

N (subjects/eyes) 98/162 42/75 29/50
Gender (male/female) 45/53 27/15 20/9 χ2 = 6.978 P = 0.031*

Age, y 54.31 ± 11.27 56.76 ± 9.91 56.00 ± 9.67 F = 0.524 P = 0.694
Duration of diabetes, y 0 ± 0 9.53 ± 6.71 13.31 ± 6.40 t = −2.399 P = 0.02*

BCVA (logMAR) 0.02 ± 0.04 0.30 ± 0.29 0.59 ± 0.42 H = 91.827 P < 0.001**

IOP 15.24 ± 1.95 15.39 ± 2.55 15.56 ± 2.56 H = 0.759 P = 0.684

IOP, intraocular pressure.
*P ≤ 0.05, **P ≤ 0.001.



AI-Assisted PD as Biomarker for Screening DN TVST | October 2024 | Vol. 13 | No. 10 | Article 19 | 4

Figure 1. The ultra-widefield fundus vascular images of retinal vascular complexes. The fundus vascular images of deep vascular complex
in the control (A), DR without DN (B), and DR with DN (C) groups.

Table 2. The Characteristics of FAZ in the Control, DR Without DN, and DRWith DN Groups Using UWF SS-OCTA.

Variable
Control
Group

DRWithout
DN Group

DRWith DN
Group F or H Test

Bonferroni
Correction

FAZ area, mm2 0.38 ± 0.08 0.43 ± 0.15 0.51 ± 0.18 H = 13.397 P = 0.001***

FAZ perimeter, mm 2.58 ± 0.32 2.79 ± 0.56 3.09 ± 0.74 H = 11.344 P = 0.003**

FAZ acircularity index 0.71 ± 0.09 0.93 ± 0.28 0.99 ± 0.30 H = 16.236 P < 0.001***

FAZ FD300, mm−1 42.71 ± 5.37 42.2 ± 6.98 38.72 ± 7.35 H = 5.757 P = 0.056
**P ≤ 0.01, ***P ≤ 0.001.

in the DR without DN group (mean ± SD = 0.30 ±
0.29) and DR with DN group (mean ± SD = 0.59
± 0.42) compared to the control group (mean ± SD
= 0.02 ± 0.04). The BCVA was significantly poorer
in the DR with DN group (H = 91.827, Bonferroni
corrected P < 0.001). There was no significant differ-
ence in intraocular pressure among the three groups
(mean ± SD = 15.24 ± 1.95, 15.39 ± 2.55, and 15.56
± 2.56; H = 0.759, P = 0.684).

Retinal Vascular Complexes

In the UWF vascular images of the deep retinal
vascular complexes (Fig. 1), the control group exhib-
ited evenly distributed and densely packed blood
vessels. In contrast, patients with DR showed nonper-
fusion areas, with significantly larger areas observed in
those with DN.

As depicted in Table 2 and Figure 2A, compared to
the control group, the area (H = 13.397, Bonferroni
corrected P = 0.001), perimeter (H = 11.344, Bonfer-
roni corrected P = 0.003), and acircularity index (H =
16.236, Bonferroni corrected P < 0.001) of the FAZ
were significantly increased in both the DR without
DN and DR with DN groups. However, there was no
significant difference in the FD300 of FAZ among the

three groups (H = 5.757; Bonferroni corrected P =
0.056).

In Table 3 and Figures 2B–D, we compared the PD
and VD of the deep vascular complex and RT across
various circular radii centered on the macular fovea.
Except for PD0–1 mm and VD0–1 mm, significant differ-
ences in PD and VD of the deep vascular complex were
found across different radii among the three groups
(Bonferroni corrected P< 0.001). Both the average PD
and VDwere significantly decreased in the DRwithout
DN and DR with DN groups compared to the control
group. Moreover, the reduction in PD and VD in the
DR with DN group was notably more pronounced
than in the DRwithout DN group within certain radii.
Moreover, significant differences in RT0–3 mm (H =
11.272, Bonferroni corrected P = 0.004), RT0–6 mm
(H = 28.986, Bonferroni corrected P < 0.001), RT0–9
mm (H = 22.306, Bonferroni corrected P < 0.001),
and RT0–12 mm (H = 10.861, Bonferroni corrected P
= 0.004) were observed among the three groups. The
mean RT values in both DR without DN and DR with
DN groups were significantly higher compared to the
control group.

Our figure and data analysis revealed varying
degrees of damage in the retinal vascular complex
among patients in the DR without DN and DR with
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Figure 2. The OCTA parameters in the control, DR without DN, and DR with DN using UWF SS-OCTA. Comparison of the area, perimeter,
acircularity index, and fractal dimension of FAZ (A), PD (B), VD (C), RT (D), CP (E), CVV (F), CVI (G), and CT (H) in different radii at the center of
the macular fovea. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.

DN groups, particularly in PD and VD, with the DR
with DN group exhibiting more severe damage.

Choroidal Vascular Complexes

In Table 4 and Figures 2E–H, we compared the
mean values of choroidal parameters (CP, CVV, CVI,

and CT) across different circular radii centered on the
macular fovea for all included subjects.

Significant differences were observed among the
three groups in CP0–3 mm (H = 23.255, Bonferroni
corrected P < 0.001), CP0–6 mm (H = 23.645, Bonfer-
roni corrected P < 0.001), CP0–9 mm (H = 20.901, P <

0.001), CP0–18 mm (H = 7.221, Bonferroni corrected P
= 0.027), CVI0–15 mm (F = 5.418, Bonferroni corrected
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Table 3. The OCTA Parameters of the Retina in the Control, DR Without DN, and DR With DN Groups Using UWF
SS-OCTA

Variable Control Group DRWithout DN Group DRWith DN Group F or H Test Bonferroni Correction

PD0–1 mm 0.11 ± 0.04 0.10 ± 0.07 0.12 ± 0.08 F = 0.176 P = 0.893
PD0–3 mm 3.13 ± 0.26 2.50 ± 0.73 2.17 ± 0.78 H = 50.842 P < 0.001***

PD0–6 mm 12.95 ± 1.07 10.68 ± 2.55 9.38 ± 2.64 F = 34.797 P < 0.001***

PD0–9 mm 26.00 ± 2.53 21.64 ± 4.91 19.71 ± 5.17 F = 28.41 P < 0.001***

PD0–12 mm 42.38 ± 4.05 35.30 ± 7.58 33.03 ± 6.69 F = 29.626 P < 0.001***

PD0–15 mm 81.73 ± 4.04 58.17 ± 11.34 53.56 ± 9.55 H = 11.462 P = 0.003**

PD0–18 mm 115.18 ± 4.85 79.56 ± 13.78 72.61 ± 11.34 F = 19.745 P = 0.002**

PD0–21 mm 151.25 ± 5.55 103.32 ± 16.29 93.13 ± 14.50 F = 24.24 P = 0.002**

VD0–1 mm 18.55 ± 8.28 22.06 ± 15.68 20.87 ± 17.87 H = 0.096 P = 0.859
VD0–3 mm 53.70 ± 4.11 43.99 ± 13.96 37.36 ± 13.74 H = 47.770 P < 0.001***

VD0–6 mm 54.86 ± 3.65 44.86 ± 12.24 38.22 ± 11.64 H = 61.115 P < 0.001***

VD0–9 mm 46.78 ± 4.38 38.75 ± 10.52 33.74 ± 10.08 F = 28.281 P < 0.001***

VD0–12 mm 42.99 ± 3.86 35.65 ± 8.84 31.50 ± 8.03 F = 31.092 P < 0.001***

VD0–15 mm 50.29 ± 2.70 37.96 ± 7.89 33.12 ± 7.64 F = 9.131 P = 0.002**

VD0–18 mm 49.88 ± 2.23 36.68 ± 5.66 32.46 ± 5.49 F = 17.602 P < 0.001***

VD0–21 mm 48.37 ± 1.99 35.45 ± 4.13 32.43 ± 4.27 F = 25.173 P = 0.001**

RT0–1 mm 248.05 ± 9.42 315.78 ± 106.90 304.78 ± 95.81 H = 3.325 P = 0.19
RT0–3 mm 322.98 ± 15.44 368.61 ± 104.31 365.18 ± 78.59 H = 11.272 P = 0.004**

RT0–6 mm 298.52 ± 13.62 340.38 ± 78.26 356.24 ± 72.87 H = 28.986 P < 0.001***

RT0–9 mm 279.60 ± 12.90 314.91 ± 73.49 333.79 ± 74.06 H = 22.306 P < 0.001***

RT0–12 mm 263.76 ± 11.43 285.22 ± 52.01 311.34 ± 72.02 H = 10.861 P = 0.004**

RT0–15 mm 249.72 ± 3.23 255.67 ± 35.16 262.40 ± 41.97 H = 0.626 P = 0.731
RT0–18 mm 235.45 ± 3.89 238.88 ± 32.10 244.64 ± 40.00 H = 0.469 P = 0.791
RT0–21 mm 224.42 ± 4.53 225.84 ± 30.16 230.50 ± 39.61 H = 0.247 P = 0.884

**P ≤ 0.01, ***P ≤ 0.001.

P = 0.013), and CVI0–18 mm (F = 5.039, Bonferroni
corrected P = 0.01). In comparison to the control
group, the CP near the macular fovea was significantly
reduced in both the DR without DN and DRwith DN
groups.

Correlation Between OCT Parameters and DN
Diagnosis

Based on the statistical analysis and fundus image
observations described above, we hypothesized that PD
and VD of the deep vascular complex may serve as
effective OCT parameters for screening DN. To test
this hypothesis, Pearson’s correlation coefficients were
computed. Specifically, since the radii of 0 to 3 mm, 0
to 6 mm, 0 to 9 mm, and 0 to 12 mm are commonly
used in UWF imaging, we conducted Pearson corre-
lation analysis for OCT parameters within these
ranges.

As shown in Table 5, UWF PD demonstrated
stronger correlations compared to other OCT parame-

ters when screening for DN in both the T2DMandDR
populations.

Screening Results of DN by Random Forest
Model

We also employed the deep learning method to
standardize our data, assessing the importance of
explanatory variables through 10-fold cross-validation
to identify the most relevant optimal OCT param-
eters. The importance of these variables, as deter-
mined by the random forest model for screening DN
from both the T2DM and DR populations, is detailed
in Table 5 (Importance). In the classification of DN
from the T2DM population, key explanatory variables
included PD (PD0–3 mm: 0.093891, PD0–6 mm: 0.086285,
PD0–12 mm: 0.251083) and VD (VD0–6 mm: 0.081844,
VD0–12 mm: 0.089028). Similarly, in the classification
of DN from the DR population, crucial variables
were PD (PD0–3 mm: 0.075730, PD0–6 mm: 0.115155,
PD0–9 mm: 0.079301) and VD (VD0–6 mm: 0.147807,
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Table 4. The OCTA Parameters of Choroid in the Control, DR Without DN, and DR With DN Groups Using UWF
SS-OCTA

Variable Control Group DRWithout DN Group DRWith DN Group F or H Test Bonferroni Correction

CP0–1 mm 0.79 ± 0.00 0.75 ± 0.16 0.79 ± 0.00 H = 0.977 P = 0.614
CP0–3 mm 7.07 ± 0.00 6.89 ± 0.86 6.83 ± 0.94 H = 23.255 P < 0.001***

CP0–6 mm 28.27 ± 0.05 27.69 ± 2.43 27.64 ± 1.68 H = 23.645 P < 0.001***

CP0–9 mm 63.09 ± 0.69 61.62 ± 4.40 61.57 ± 3.69 H = 20.901 P < 0.001***

CP0–12 mm 109.87 ± 1.08 107.96 ± 6.12 107.47 ± 6.56 H = 2.26 P = 0.323
CP0–15 mm 174.74 ± 0.36 173.77 ± 3.29 173.77 ± 1.38 H = 4.873 P = 0.087
CP0–18 mm 252.43 ± 0.43 250.76 ± 3.69 249.92 ± 3.01 H = 7.221 P = 0.027*

CP0–21 mm 343.25 ± 0.53 339.71 ± 5.04 337.38 ± 7.28 H = 5.554 P = 0.062
CVV0–1 mm 0.06 ± 0.01 0.06 ± 0.03 0.06 ± 0.02 F = 0.007 P = 0.944
CVV0–3 mm 0.68 ± 0.31 0.73 ± 0.36 0.71 ± 0.41 F = 0.274 P = 0.823
CVV0–6 mm 2.40 ± 0.98 2.51 ± 1.12 2.41 ± 1.29 F = 0.202 P = 0.806
CVV0–9 mm 4.83 ± 1.87 4.79 ± 2.05 4.49 ± 2.29 F = 0.43 P = 0.548
CVV0–12 mm 8.14 ± 2.78 7.48 ± 3.07 7.20 ± 3.63 F = 1.177 P = 0.281
CVV0–15 mm 11.83 ± 3.58 11.34 ± 3.50 10.04 ± 4.02 F = 0.886 P = 0.509
CVV0–18 mm 16.76 ± 4.77 15.66 ± 4.54 14.00 ± 5.39 F = 0.948 P = 0.486
CVV0–21 mm 21.94 ± 5.59 20.19 ± 5.65 18.31 ± 7.07 F = 0.818 P = 0.557
CVI0–1 mm 0.29 ± 0.01 0.27 ± 0.07 0.27 ± 0.07 F = 0.202 P = 0.360
CVI0–3 mm 0.29 ± 0.09 0.30 ± 0.09 0.30 ± 0.11 F = 0.573 P = 0.586
CVI0–6 mm 0.26 ± 0.07 0.28 ± 0.07 0.27 ± 0.08 F = 1.788 P = 0.169
CVI0–9 mm 0.24 ± 0.06 0.26 ± 0.07 0.24 ± 0.07 F = 1.888 P = 0.099
CVI0–12 mm 0.24 ± 0.05 0.26 ± 0.07 0.24 ± 0.07 F = 1.321 P = 0.225
CVI0–15 mm 0.33 ± 0.01 0.31 ± 0.04 0.28 ± 0.04 F = 5.418 P = 0.013*

CVI0–18 mm 0.34 ± 0.01 0.32 ± 0.04 0.29 ± 0.04 F = 5.039 P = 0.029
CVI0–21 mm 0.35 ± 0.01 0.32 ± 0.04 0.30 ± 0.04 F = 3.116 P = 0.081
CT0–1 mm 313.50 ± 47.10 343.88 ± 107.40 343.39 ± 113.90 F = 0.146 P = 0.946
CT0–3 mm 337.29 ± 115.49 346.71 ± 95.98 340.32 ± 105.65 F = 0.137 P = 0.601
CT0–6 mm 323.24 ± 109.59 321.55 ± 88.36 317.67 ± 100.68 F = 0.044 P = 0.926
CT0–9 mm 301.11 ± 96.02 292.30 ± 78.47 289.26 ± 94.01 H = 0.224 P = 0.894
CT0–12 mm 288.42 ± 82.50 264.75 ± 67.27 273.89 ± 90.78 H = 2.07 P = 0.355
CT0–15 mm 249.70 ± 60.95 252.87 ± 66.72 242.57 ± 77.09 F = 0.13 P = 0.846
CT0–18 mm 240.28 ± 56.91 241.13 ± 59.13 230.67 ± 69.11 F = 0.173 P = 0.853
CT0–21 mm 231.07 ± 50.18 230.46 ± 52.72 220.02 ± 64.42 F = 0.204 P = 0.805

*P ≤ 0.05, ***P ≤ 0.001.

VD0–9 mm: 0.124143). These results suggest that UWF
PD remains a robust OCT parameter for effectively
screening patients with DN from both T2DM and DR
populations.

Subsequently, the UWF PD data underwent further
processing using the 10-fold cross-validation method
and random forest model to screen for DN within
the T2DM and DR populations. The classification
accuracy of each group in the 10-fold cross-validation
method, along with the average classification accuracy
of the random forest method, is presented in Table 6.
The average classification accuracy of the random
forest model for identifying patients with DN using

PD was 85.8442% from the T2DM population and
82.5739% from the DR population.

Discussion

The complications of T2DM lead to a series of
global health problems that persist over time. DR and
DN are common microangiopathic complications in
patients with long-term T2DM.28 Microalbuminuria
is an early marker of endothelial injury. Its presence
significantly increases the risk of DR, indicating a
shared pathophysiological mechanism29 and a poten-
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Table 5. Correlation Coefficients and Importance of Explanatory Variables by RandomForestModel for Screening
DN Patients From the T2DM and DR Populations Using OCT Parameters

T2DM Population DR Population

Serial Number Explanatory Variable r /P Value Importance r /P Value Importance

1 PD0–3 mm –0.481/0.000*** 0.093891 –0.357/0.000*** 0.075730
2 PD0–6 mm –0.517/0.000*** 0.086285 –0.384/0.000*** 0.115155
3 PD0–9 mm –0.507/0.000*** 0.035642 –0.367/0.000*** 0.079301
4 PD0–12 mm –0.562/0.000*** 0.251083 –0.397/0.000*** 0.071463
5 VD0–3 mm –0.415/0.000*** 0.012599 –0.32/0.000*** 0.000000
6 VD0–6 mm –0.468/0.000*** 0.081844 –0.361/0.000*** 0.147807
7 VD0–9 mm –0.441/0.000*** 0.036460 –0.327/0.000*** 0.124143
8 VD0–12 mm –0.491/0.000*** 0.089028 –0.360/0.000*** 0.071463
9 RT0–3 mm 0.232/0.001*** 0.012742 0.146/0.013* 0.012768
10 RT0–6 mm 0.395/0.000*** 0.027245 0.273/0.000*** 0.023990
11 RT0–9 mm 0.365/0.000*** 0.058806 0.264/0.000*** 0.000205
12 RT0–12 mm 0.301/0.000*** 0.012904 0.226/0.000*** 0.052941
13 CP0–3 mm –0.280/0.000*** 0.017138 –0.201/0.001*** 0.000000
14 CP0–6 mm –0.289/0.000*** 0.004110 –0.208/0.000*** 0.016227
15 CP0–9 mm –0.223/0.001*** 0.011474 –0.169/0.004** 0.013969
16 CP0–12 mm –0.340/0.000*** 0.021808 –0.233/0.000*** 0.000047
17 CVI0–3 mm –0.024/0.732 0.010929 –0.022/0.708 0.010172
18 CVI0–6 mm –0.109/0.114 0.013494 –0.082/0.165 0.020079
19 CVI0–9 mm –0.250/0.000 0.013467 –0.187/0.001 0.000512
20 CVI0–12 mm –0.302/0.000*** 0.069448 –0.207/0.000*** 0.027629
21 CVV0–3 mm 0.064/0.354 0.000782 0.027/0.653 0.003248
22 CVV0–6 mm 0.011/0.873 0.031452 –0.007/0.905 0.002449
23 CVV0–9 mm –0.046/0.501 0.026070 –0.041/0.488 0.003200
24 CVV0–12 mm –0.105/0.126 0.004273 –0.075/0.203 0.000134
25 CT0–3 mm 0.078/0.256 0.005873 0.042/0.476 0.000000
26 CT0–6 mm 0.047/0.493 0.000475 0.026/0.664 0.000000
27 CT0–9 mm 0.011/0.879 0.000644 0.006/0.915 0.004981
28 CT0–12 mm –0.018/0.796 0.001480 –0.011/0.847 0.003588

*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.

tial “common development path” between DR and
DN.30,31

Due to challenges in accessing medical care and the
uneven distribution of medical resources, telemedicine
has gained unprecedented attention. Our teamurgently
needed to identify a simple and quick biomarker to
screen for diabetic microvascular complications. The
severity of DR correlates with the severity of DN,
making it a potential marker for predicting the progres-
sion of chronic kidney disease. Many studies have
evaluated the relationship between macular microvas-
cular changes and the severity of DR in nephro-
pathic patients using OCTA.7,32–35 These studies
also show that renal impairment, as a systemic risk
factor, is associated with an enlarged FAZ area in

diabetic patients.7 As DN progresses, RVD gradually
decreases36 and the retinal microvasculature in both
the superficial vascular plexus and deep vascular plexus
becomes sparse.37 Alé-Chilet et al.38 reported that VD
and FAZ areas can detect the degree of DN in patients
with type 1 diabetes mellitus in a noninvasive and
objective quantitative way. There is no potential advan-
tage of PD in judging the type of DN.

In our research, compared with the control group,
the average PD and VD of the DR without DN and
DRwith DN groups decreased significantly.Moreover,
the decrease in PD and VD was significantly greater
in the DR with DN group than in the DR without
DN group. There was a correlation between UWF PD
and DN diagnosis in both the T2DM and DR popula-
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Table 6. Classification Accuracy of DN Patients From
the T2DM and DR Populations Using Random Forest
Method

Random Forest

T2DM
Popula-
tion,
%

DR
Popula-
tion,
%

Classification accuracy of
10-fold cross-validation

86.3636 82.7586

86.3636 82.7586
95.2381 82.7586
90.4762 82.7586
85.7143 82.7586
85.7143 82.7586
95.2381 82.7586
80.9524 82.1429
76.1905 82.1429
76.1905 82.1429

Average classification
accuracy of random forest

85.8442 82.5739

tions. This prompted us to consider whether UWF PD
could be a reliable indicator for accurately screening
DN. We used a deep learning method to analyze the
UWF SS-OCT data, and the importance of explana-
tory variables by a random forest model between UWF
PD and DN diagnosis from T2DM and DR popula-
tions was still high. The average classification accuracy
of the random forest model for patients with DN
screened out by PD was 85.8442% from the T2DM
population and 82.5739% from the DR population.
This suggests that UWF PD could be a quick and
reliable biomarker for screening patients with DN from
T2DM and DR populations using deep learning.

The diagnosis of DN typically depends on labora-
tory examination or renal biopsy, which is not optimal
in terms of operational safety and cost-effectiveness.
Patients with DR rarely realize the need for renal
function examination.39 Although FFA is the gold
standard for detailed measurement of retinal microvas-
culature, this invasive procedure may increase the
metabolic burden on patients with DN. With advance-
ments in technology and multimodal imaging, OCTA
achieves a higher blood vessel contrast than fundus
photography and is not affected by dye leakage, which
can obscure blood vessels in dye-based angiogra-
phy.21 Furthermore, UWF SS-OCTA offers a larger
examination range and faster scanning speed,40 allow-
ing real-time and accurate assessment of peripheral
retinal blood flow in DN patients. AI based on
deep learning has garnered tremendous global interest
recently.41 By providing noninvasive, high-resolution,
deep-resolution images of retinal and choroidal vessels,

SS-OCTA significantly enhances our ability to use
these images for disease screening and evaluating thera-
peutic efficacy and response.21 Some scholars have
used deep learning models to detect and predict the
incidence of chronic kidney disease (CKD) from two-
dimensional retinal fundus images.42 Combining these
superior biomarker detection capabilities with nonin-
vasive procedures makes SS-OCTA, aided by deep
learning, a promising screening technology for clinical
practice.21

The BCVA (logMAR) of theDRwithoutDNgroup
and DR with DN group was significantly lower than
that of the control group, with the reduction in the DR
with DN group being greater. As T2DM progresses,
retinal microvascular injury in DN patients worsens,
leading to significant vision decline. In China, middle-
aged and elderly patients often do not fully understand
the complications of T2DM. It is important to note
that vision decline can reflectDRprogression in T2DM
patients and warn of the possibility of DN, highlight-
ing the need for disease awareness and screening.

Regarding choroidal indices, a meta-analysis by
Kase et al.43 indicated that monitoring choroidal
vessels in diabetic eyes could help detect DR onset
through longitudinal observation. However, there are
still controversies about changes in CT and blood
vessels in DR patients.44,45 Studies have shown that CT
is thinner and the choroidal vessel area is reduced in
diabetic patients, while others have reported thicker CT
and increased choroidal vessel area in DR patients.46
One study found no difference in choroidal changes
between the DR and control groups but did find differ-
ences between the DN and control groups.47 The result
was controversial. CVI and CVV are new quanti-
tative parameters of choroidal vascular health.48,49
Our research found that the CP (CP0–3 mm, CP0–6 mm,
CP0–9 mm, CP0–18 mm) andCVI (CVI0–15 mm, CVI0–18 mm)
decreased in patients from theDRwithoutDNandDR
with DN groups, but there was no significant difference
in CT and CVV. We speculate that the decrease in CP
may be related to the narrowing of choroidal arteri-
oles, choriocapillaris atrophy, and capillary dropout.
We aim to improve classification methods to explore
the characteristics of choroidal microvasculature in
DR and DN patients.

There are differing opinions on whether the
duration of diabetes is a reliable predictor of DN.50
Hung et al.50 conducted a meta-analysis providing
this view, while Sharma et al.51 showed that diabetes
duration was the strongest predictor of DN, with
durations over 12 years being the best predictor.
In our study, the duration of T2DM in the DR
with DN group was 13.31 ± 6.4 years, compared
to 9.53 ± 6.71 years in the DR without DN group.
This supports the idea that when the duration of



AI-Assisted PD as Biomarker for Screening DN TVST | October 2024 | Vol. 13 | No. 10 | Article 19 | 10

T2DM exceeds 12 years, DN screening should be
prioritized.

For ophthalmologists, early detection and diagno-
sis of DR and DN in T2DM patients should be
emphasized. For patients with long duration of T2DM
and DR, timely DN diagnosis is crucial to prevent
DN progression, not just focusing on DR treatment.
For endocrinologists, even without the guidance of
ophthalmologists and nephrologists, UWF SS-OCTA
provides a quick and reliable method to preliminarily
assess DN in T2DM patients through AI. Monitor-
ing UWF PD alleviates the pressure of uneven medical
resource distribution and serves as a telemedicine-
based screening scheme for T2DM complications.

There were some limitations to this study. First,
the actual duration of T2DM may have been longer
than recorded due to delayed diagnosis for various
reasons. Despite our efforts to include DR at the same
stage, strict differences between DR and DN existed
according to different development stages. Addition-
ally, we only included PD and VD for the deep vascu-
lar complex when collecting data. In the future, we will
study the influence of PD on both the deep vascular
complex and the superficial vascular complex in DN
patients.

Conclusions

Our results suggest that when evaluating patients
with DN in terms of retinal microvasculature, AI-
guided UWF SS-OCTA detection of PD may serve
as a rapid, reliable, and noninvasive early warning
tool. Whether changes in choroidal microvasculature
in patients with DR can be used as a predictive index
remains to be verified. To positively impact the quality
of life of T2DM patients, it is crucial to detect diabetic
microvascular complications (DR and DN) as early as
possible for implementing combined treatment strate-
gies.
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