
sensors

Article

Analysis of Mobile Edge Computing for
Vehicular Networks †

Zachary W. Lamb * and Dharma P. Agrawal

Center for Distributed and Mobile Computing, EECS Department, University of Cincinnati, P.O. Box 210030,
Cincinnati, OH 45221-0030, USA; agrawadp@ucmail.uc.edu
* Correspondence: lambzw@mail.uc.edu
† This paper is an extended version of “Context-Aware Mobile Edge Computing in Vehicular Ad-Hoc

Networks” published in the Proceedings of the 2018 28th International Telecommunication Networks and
Applications Conference (ITNAC), Sydney, Australia, 21–23 November 2018.

Received: 26 February 2019; Accepted: 12 March 2019; Published: 15 March 2019
����������
�������

Abstract: Vehicular ad-hoc Networks (VANETs) are an integral part of intelligent transportation
systems (ITS) that facilitate communications between vehicles and the internet. More recently, VANET
communications research has strayed from the antiquated DSRC standard and favored more modern
cellular technologies, such as fifth generation (5G). The ability of cellular networks to serve highly
mobile devices combined with the drastically increased capacity of 5G, would enable VANETs to
accommodate large numbers of vehicles and support range of applications. The addition of thousands
of new connected devices not only stresses the cellular networks, but also the computational and
storage requirements supporting the applications and software of these devices. Autonomous vehicles,
with numerous on-board sensors, are expected to generate large amounts of data that must be
transmitted and processed. Realistically, on-board computing and storage resources of the vehicle
cannot be expected to handle all data that will be generated over the vehicles lifetime. Cloud computing
will be an essential technology in VANETs and will support the majority of computation and long-term
data storage. However, the networking overhead and latency associated with remote cloud resources
could prove detrimental to overall network performance. Edge computing seeks to reduce the overhead
by placing computational resources nearer to the end users of the network. The geographical diversity
and varied hardware configurations of resource in a edge-enabled network would require careful
management to ensure efficient resource utilization. In this paper, we introduce an architecture which
evaluates available resources in real-time and makes allocations to the most logical and feasible resource.
We evaluate our approach mathematically with the use of a multi-criteria decision analysis algorithm
and validate our results with experiments using a test-bed of cloud resources. Results demonstrate
that an algorithmic ranking of physical resources matches very closely with experimental results and
provides a means of delegating tasks to the best available resource.

Keywords: cloud computing; distributed computing; mobile computing; VANET; wireless networks

1. Introduction

Advancement in autonomous vehicle technologies has created a demand for higher-bandwidth,
improved availability, and ubiquitous networking technologies. The aging capabilities of the
dedicated short range communication (DSRC) standard, which were originally defined for vehicular
communications, are being phased out in favor of modern and capable technologies. The pursuit
of 5G next-generation networking technologies continues to push development of more robust and
ubiquitous wireless communications. Bolstered by such advanced technologies, extensive deployment
of vehicular ad-hoc networks (VANETs), capable of supporting a wide array of applications will soon

Sensors 2019, 19, 1303; doi:10.3390/s19061303 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/6/1303?type=check_update&version=1
http://dx.doi.org/10.3390/s19061303
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 1303 2 of 20

be feasible. Traditional VANETs are ad-hoc in nature, meaning vehicles can communicate with one
another without the need for any infrastructure. However, it is widely accepted that an effective
vehicular network would require some form of static infrastructure such as roadside-units (RSUs),
cell towers, or base stations. An infrastructure built on 5G would support such a network architecture
since they are expected to operate in a cellular fashion, not unlike current cellular networks.

Recently, research has begun to explore the concept of cellular vehicular networks, referred to as
cellular-Vehicle to Everything (C-V2X) [1–4]. In C-V2X, vehicles do not need to communicate directly
with one another. Instead data-transfer takes place just as a cellular phone network, where base stations,
or cell towers, cover an area and provide service to all the users in the cell. Communication between
vehicles is facilitated by the cell tower and the message would pass from the source vehicle to tower
and finally to the destination vehicle. In this scheme, vehicles only need to maintain contact with the
cell tower, whereas pure vehicle-to-vehicle (V2V) would require a vehicle to negotiate communication
with many other vehicles within its vicinity. However, this approach would require the use of the
already stressed cellular infrastructure or the addition of new cell towers. Substantial progress has
been made to an implementation of cellular V2X in the Long-Term Evolution (LTE) variant LTE-V that
employs network functions virtualization (NFV). With NFV, the functions of LTE, such as routing,
are virtualized and can be run on commoditiy hardware. This removes the vendor-specific hardware
requirements of LTE and results in a much more flexible system. The benefits of LTE over the 802.11 p
based DSRC standard include much higher capacity and greater communication range. An increased
communication range is particularly valuable in vehicular networks, since this would allow any
emergency information to be disseminated throughout the network more quickly. In terms of incident
reporting, faster information dissemination could provide a safer driving environment.

In response to the progress towards 5G, researchers have begun exploring methods to incorporate
the technology into the vehicular network domain. One proposed method of leveraging 5G and
cellular technologies in vehicular communications is to introduce shared spectrum platform. In [5] the
authors present an approach similar to works in which a combination of LTE and DSRC is proposed
and seeks to create a shared spectrum combination of DSRC and 5G. While this may be further off
than a combination of DSRC and LTE, coexistence of DSRC, cellular, and 5G would allow for a more
robust scalable network that leverages both licensed and un-licensed bands. Sharing spectra, such as
those defined for cellular and mmWave allows for full utilization of the available spectrum. Not only
would this approach achieve a better utilization of the spectrum, it would allow new technologies to be
rolled out alongside existing hardware and allow for an incremental transition to 5G. Continuing the
pursuit of full spectrum utilization, additional works have explored the use of wavelengths in the free
space optical (FSO) portion of the spectrum. The authors in [6] present experiments that show a simple
infrared light emitting diode can suffice for optical communication with a mobile vehicle. In [7]
a method for car-to-car, or V2V, is proposed and also uses simple light emitting diodes paired with
a PIN photodiode at the receiver. While commodity hardware is more feasible, another approach would
be to employ more powerful hardware to operate in a cellular fashion. For example, optical receivers
could reside on the cell towers, or RSUs, and act at the relay for communications between vehicles.
This would also allow the full bandwidth and throughput of FSO communication to be exploited
when uploading data from vehicle to the roadside infrastructure. As noted in [8] an additional benefit
of FSO is low power usage and immunity to RF interference. FSO also has some inherent security
since the transmission beam will be very narrow and any intrusion would be immediately detected
as a drop in signal strength. Immunity to RF interference makes FSO a great candidate for a shared
spectrum technology and could perform well alongside existing RF communications. Employing FSO
in vehicular communications presents another source of unlicensed spectrum as well as another means
for high-capacity wireless communications. With many challenges involved in tracking, alignment,
and attenuation, FSO has been explored only for simple applications such as intra-vehicle and V2V
communication via LED light sources already available on most modern vehicles.



Sensors 2019, 19, 1303 3 of 20

In any case, meeting the communication demands of vehicular networks necessitates a network
architecture that can support highly mobile devices while maintaining the ability to handle both real-time
messages and delay-tolerant data off-loads. As we progress toward semi, and eventually fully autonomous
vehicles, demand for vehicle-collected data will increase greatly. The numerous on-board sensors, cameras,
and LiDar systems are expected to generate Terabytes of data daily for each vehicle [9]. This data will be
invaluable to both vehicle manufactures and researchers and can be leveraged to monitor and improve
vehicle performance, relieve traffic congestion, and so on. However, accommodating this influx of new
data will put additional strain on both networking and computing infrastructure.

Addressing the growing demand of future applications has also prompted researchers to explore
edge-computing in vehicular networks. With future vehicles expected to possess a reasonable amount
of computing resources, researchers have begun to explore the use of vehicles themselves as edge
nodes in a distributed cloud system. In [10] the authors present a scheme that employs groups of
vehicles as “micro-clouds” and can be used to aggregate and pre-process data before it is transferred
to back-end resources. Clustering vehicles and electing a cluster-head (CH), allows for the data of
multiple vehicles to be aggregated, which can reduce the amount of data communication between the
access point, or RSU and reduce overall network traffic by transmitting fewer bytes. Other works have
followed similar trends in which they employ computational and storage enabled RSUs to explore
some of the hardware requirements for data-gathering in VANETs [11]. In this scenario, RSUs make an
event-based decision on which data should be uploaded to the intelligent transportation system (ITS)
servers. RSUs acting as a compute layer allows for decisions about which data to collect or reject and
are made much closer to the network edge, thus reducing the load on the ITS servers and minimizing
the amount of data that is transmitted through the network. Edge nodes with computational and
storage capabilities also provide a means for efficient content delivery in vehicular networks [12].
Given sufficient storage space at edge nodes, the network has the potential to cache the contents
and ensure a timely delivery to end users. This has added value for any location-based service that
provides data to vehicles. Any information relevant to a particular location can be cached at a nearby
Base Station and, made readily available to vehicles. This technique could also be extended to include
file sharing between vehicles, assuming sufficient storage space is available on the vehicles hardware.

Incorporating a new source of data also has a significant impact on the computational and storage
requirements. While it is safe to assume that an autonomous vehicle will process a large amount of its data
in real-time, it is not unrealistic to assume that additional data must be transferred to remote locations
for storage and later processing. Moving and processing data is costly and requires careful planning
to minimize resource impact. In an environment as demanding as vehicular networks, the utilization
of resources must be carefully managed. In traditional cloud computing, tasks and associated data
are transmitted to more powerful remote resources. However, the network overhead of this scheme
may not suffice for the real-time applications of VANETs. In a VANET scenario, numerous vehicles
will rely on a single base station for requests and data upload. Forwarding large amounts of data to
a single node would likely results in network congestion and would be exacerbated in areas of high
traffic. One possible solution lies in the concept mobile edge-computing (MEC), which is a paradigm in
which computational tasks distributed throughout the network and often kept closer to the end-user.
Ref. [13] emphasizes the importance of NFV and software defined networking (SDN) in MEC and note
that vehicular networks are a primary market driver. A method to optimize the usage of a single cloud
resource is presented in [14] and could prove useful for groups of users that are in close proximity to
a single edge resource. Expanding this method to MEC would allow users to be clustered based on their
nearest resource and could provide optimal utilization of that resource. Two main goals of MEC are
to reduce network congestion and minimize delay experienced by the user. By reducing the distance
the data must travel over the network, executing tasks at an edge node minimizes the impact on the
network. This also reduces delay as both the request and response will reach their destination sooner.
While the reduction in delay for trivial requests will be negligible, situations involving transmission
of data could see significant reductions. For computational tasks, these reductions in delay are also



Sensors 2019, 19, 1303 4 of 20

dependent on computational capability of each resource. For example, when delegating a task to a less
powerful nearby resources; the reduction in delay may be overshadowed by an increased computational
time of the local resource. The task of resource provisioning in a vehicular network would be complex
and requires a sophisticated system to monitor resources and distribute tasks accordingly.

Vehicular networks present a unique opportunity for use in both MEC and what is known as
fog computing (FC). Similar to MEC, FC seeks to perform computational tasks on the most logical
resource so as to reduce the overall impact on the storage, computational, and network resources [15].
However, fog computing will employ resources even closer to the end-user, including the end node
itself. Vehicular networks with appropriate infrastructure can utilize edge computing by off-loading
some tasks to the RSUs, base stations, cell towers, or other infrastructure that provides connection
to the network backbone. Additionally, vehicular networks can further leverage FC by employing
powerful on-board computational hardware that is expected to reside on future vehicles. The inclusion
of such hardware in the network creates a new architecture that could contextually execute, store,
or transmit any data in the most logical and efficient fashion. The SDFC–VeNET architecture proposed
in [16] employs a combination of both SDN and FC to provide an effective mechanism to minimize
the delay associated with handover. Through rigorous simulation, the authors demonstrate the
benefits of FC in vehicular networks and its ability to support a large number of vehicles in a dense
network. An additional concept that has gained traction in vehicular networking is the use of named
data networking (NDN). NDN is an extension of content-centric networking (CCN) and is based
on the premise that the primary function of a network is data dissemination and retrieval. In [17]
the proposed Navigo scheme separates content based on geographic location and is simulated with
a music streaming application. With regard to task delegation, the geographic classification of data
used by the authors could be applied to resource manager in an edge computing network. Given that
the biggest factor in performance is often delay, the default resource for a region could be designated
as the geographically closest resource.

In this paper, we extend our work originally presented in [18] and provide a more in-depth analysis
of the proposed architecture and its application to real-world test cases. Additional experiments are
conducted with LTE wireless communications and a mobile node to better replicate the environment
of vehicular networks. In our architecture, we assume that computational tasks can be delegated to
any available resource throughout the network. This would include remote cloud servers, edge nodes,
and the mobile devices themselves, where edge nodes are defined as computational resources distributed
throughout the network. These could be in the form of computationally-enabled base stations,
computationally-enabled RSUs, or small cloud servers. In this aspect, our technique is not unlike
traditional edge computing in that we seek to utilize computational resources at the network edge
and alleviate the load on remote resources. However, our framework differs from others in the way
we separate requests based on their context and maintain a default resource for time-critical tasks.
Traditional edge computing seeks to minimize delay and delegate tasks to the nearest resource that can
accommodate the job. However, the priority of request can vary and depends solely on the application
for which the request was made. For example, a task to process data collected from on-board sensors
about overall long-term vehicle performance, would be classified differently than a task to process data
collected on real-time traffic status. Creating a distinction between task types ensures availability of
sufficient resources for time-critical jobs as they arise and allows delay-tolerant jobs to be completed as
resources become available.

2. CAMEVAN: Contextual Architecture for Mobile Edge-Computing in Vehicular Networks

In this work, we propose a contextual architecture for mobile edge-computing in vehicular
networks (CAMEVAN) that seeks to delegate computational tasks in a more efficient way.
Our architecture considers a variety of parameters when deciding where to send a request. Factors
include: computational complexity, memory impact, data size, and delay. Real-time decisions are
made for each job that take into account each factor and examine available resources to determine



Sensors 2019, 19, 1303 5 of 20

an optimal location for task completion. Our architecture works by handling computational tasks in
real-time and making a decision on which available resources the task should be executed. It should be
noted that our architecture is designed toward computationally intensive tasks and does not generate
requests for data or other trivial requests to remote resources. The types of tasks we target are those
that will have noticeable effect on CPU usage and network performance. These are tasks that wish
to perform some type of data processing, or execute a computationally intensive task. In the case of
tasks involving large amounts of data that needs to be processed, pre-processing or data-reduction can
be delegated to the less powerful edge nodes to reduce the amount of data that must be transmitted
to a more capable remote resource. Figure 1 shows an overview of the layers of our the CAMEVAN
architecture. In the network edge layer, we assume that we have computationally-enabled edge
devices that have the ability to perform modest computational tasks. In our architecture, we propose
computationally-enabled RSUs (CERSUs) that act as the base station for V2I communication, but can
also provide limited computational resources. In this layer, we also include edge servers, that contain
computational resources closer to the network edge. The final layer is the remote resource layer,
which represents any remote application server, web server, or ITS application server. The overall
goal of the architecture is to minimize the distance any request or data must travel over the network.
The delay for a computational request could be reduced if the edge resource possesses reasonable
processing power and is geographically closer to the requesting node. Given that edge resources
will have limited capabilities and be required to support a large number of users, we must define
a method of ranking all available resources in real-time. Any benefit in reduced communication
delay would be irrelevant if the edge resource is near full-utilization and a distant resource is idle.
To measure the real-time utilization of computational resources, our architecture queries available
resources and simultaneously measures the round-trip communication delay between the requesting
node and resource. Given the recent enough statistics, we can then rank each resource and provide
a recommendation for a given task.

Figure 1. Contextual architecture for mobile edge-computing in vehicular networks
(CAMEVAN) architecture.

In the CAMEVAN architecture, the task manager shown in Figure 2 is responsible for querying
available resources and delegating tasks. Depending on the network configuration and type of
computational resources available, the task manager could reside on each computational node or
at end nodes only. For our case, we assume that the task manager exists at the end nodes of the
network and delegates tasks to local and remote resources. Local resources are computationally-enabled
edge nodes while remote resources are geographically distant servers. The task manager takes into
account priority of the task and expedites execution when the given request is urgent or in support of



Sensors 2019, 19, 1303 6 of 20

a real-time application. These requests are delegated to default resources that can be both local and
remote depending on the task complexity. Less time-critical tasks, along with those involving larger
amounts of data are delegated based on a status query of available resources. Results from recent queries
can be saved and used for subsequent requests with a threshold defining the lifetime of a query result.
If a query is not recent enough, a new query is initiated and the results are saved to a resource table.
The time required for a new query of all resources is equal to the highest round trip delay observed
for all resources, frequent queries may create additional delay. In our experiments the observed round
trip delay was on the order of a couple hundred milliseconds for a geographically diverse test-bed of
resources. Increasing the lifetime of query table results could reduce latency and network overhead
when during task delegation. However, if this threshold is too high the status of available resources may
not be accurately reflected and values may become stale. In either case the task manager will delegate
a given task to the best available resource based on real-time metrics.

Figure 2. Design of CAMEVAN task manager.

In our architecture, V2I infrastructure and remote resource layers are not like those found in
existing MEC architectures. Our architecture varies from others by seeking to delegate computational
tasks to the most logical resource in a contextual way. The decision-making process is handled
by a multiple-criteria decision analysis (MCDA) method, which takes into account both beneficial
and non-beneficial criteria. The MCDA method we employ is the technique for order of preference
by similarity to ideal solution (TOPSIS) [19], that works by assuming that the chosen alternative
should have the shortest geometrical distance from the positive ideal solution (PIS) and the farthest
distance from the negative ideal solution (NIS). TOPSIS assumes that each criterion should be
maximized or minimized. In our case, we have a mixture of both beneficial and non-beneficial
criteria. The alternatives are the different resources available for task delegation. TOPSIS provides
a ranking of these alternatives, which ranks our resources from best to worst with respect to the
parameters of the individual computational task. For example, a task with a high memory requirement
may be delegated to the resource with the most free memory. One the other hand a task with a small
memory requirement can be delegated to a resource with available processors but little free memory.

The first step of TOPSIS is to create a decision matrix (DM). For our application, the decision
criteria were parameters such as computational complexity, memory impact, data size, and delay



Sensors 2019, 19, 1303 7 of 20

which we refer to as C1, C2, . . . , Cn. Our alternatives use different computational resources which we
refer to as A1, A2, . . . , An. The elements of the matrix correspond to the values of criteria i with respect
to alternative j.

DM =



C1,n C1,2 · · · C1,n

A1,1 x1,1 x1,2 · · · x1,n
A2,1 x2,1 x2,2 · · · x2,n
...

...
...

. . .
...

Am,1 xm,2 · · · · · · xm,n

.

Next, we create a normalized decision matrix (NDM) R from the DM, xij(mn). R = (rij)mn where
the normalization method is defined as:

rij =
xij√

∑m
k=1 X2

kj

, i = 1, 2, ..., m, j = 1, 2, ..., n.

We then determine the weighted decision matrix t with:

tij = rij · wj, i = 1, 2, · · · , m, j = 1, 2, · · · , n,

where

wj =
Wj

∑n
k=1 Wk

, j = 1, 2, · · · , n.

We can then find the PIS and NIS. PIS as the best alternative Ab and NIS as the worst alternative
Aw are found with the following:

Aw = {〈max(tij)|i = 1, 2, · · · , m|j ∈ J−〉,

〈min(tij|i = 1, 2, · · · , m)|j ∈ J+)〉} ≡ twj|j = 1, 2, · · · , n.

Ab = {〈min(tij)|i = 1, 2, · · · , m|j ∈ J−〉,

〈max(tij|i = 1, 2, · · · , m)|j ∈ J+)〉} ≡ twj|j = 1, 2, · · · , n,

where J+ and J− represent beneficial and non-beneficial criteria respectively, and are defined as follows:

J+ = {j = 1, 2, · · · , n|j}.

J− = {j = 1, 2, · · · , n + j}.

L2-distance between alternative i and the worst condition Aw is calculated with:

diw =

√√√√ n

∑
j=1

(tij − twj)2, i = 1, 2, · · · , m.

Similarly, the distance between alternative i and the best condition Ab can be found with:

dib =

√√√√ n

∑
j=1

(tij − tbj)2, i = 1, 2, · · · , m,

where diw and dib are the Euclidean distances between the target alternative i and the worst and
best conditions.



Sensors 2019, 19, 1303 8 of 20

Finally, we calculate the similarity to the worst condition with:

siw =
diw

(diw + dib)
, 0 ≤ siw ≤ 1, i = 1, 2, · · · , m.

The value siw = 1 if and only if the alternative has the best solution and siw = 0 if and only if the
alternative has the worst condition. siw can then be used to rank the alternatives as siw(i = 1, 2, · · · , m).

Our architecture makes use of these rankings to choose an optimal resource for execution of each
task. Adjusting the weights of each given criteria can bias the system to be sensitive to a certain criteria.
In our case, we have both beneficial and non-beneficial criteria, meaning that some values are better
when high and some are better if lowered. For instance, one of our criteria is the delay which is defined
as the round-trip ping time that is affected by geographical distance and represents network overhead.
In time-sensitive situations, delay criteria would have a higher weight to ensure that important jobs
are executed in a timely manner. Conversely, jobs with delay-tolerance such as data off-loading, could
be given a lower weight for delay-tolerance, since the task is not time-sensitive. Adjusting the weights
of criteria for different job types ensures that resources are used efficiently for a range of situations.

3. Comparison of Task Delegation Scheme with Experimental Results

To demonstrate the trade-offs of executing computational tasks in different geographical regions,
we developed two test cases that performed computations on data sets of varying sizes. The data
we focus on for these tasks is GPS trace data that was collected by an Android smart phone while
in a vehicle under normal driving conditions. The data was retrieved from a Google Maps Timeline
and was filtered to include only records collected when the device was predicted to be in a moving
vehicle. The first of the two tasks was to parse the raw GPS trace data, which is in the JavaScript
object notation (JSON) format, to a more condensed and readable comma separated values (CSV)
format. This task involves a large amount of text parsing, whereas the second task involves a large
number of geographical distance calculations using a Haversine-based formula [20]. The second task
seeks to discover which intersections were encountered by the driver over a period of time. This task
requires a database of intersection coordinates, which is obtained through OpenStreetMap and the
Overpass-Turbo API. Our data was collected in the Washington, D.C. metro area and spans the period
of June 6 2018 to August 6 2018. We break this data set into chunks representing one week of GPS data
each. It should be noted that the size of each chunk can vary slightly depending on the amount of
driving. On average each week of raw data consisted of 2639 GPS coordinate pairs.

For our remote servers, we utilized the Google Cloud Infrastructure, particularly Google Cloud
Compute Engine. This service allowed us to easily replicate the server in different geographical regions
and adjust the hardware of each resource. In each case our servers were configured identically with
Ubuntu 14.04 and all processing is handled by PHP, Java, and Apache web server. For portability,
each task was implemented in Java and exported to a Jar file. Requests to the server were handled by
a simple PHP script that makes calls to execute the correct Jar file with the corresponding data.

3.1. JSON Parsing

Our first computational task was to parse the raw GPS trace data from a JSON format to CSV
format. This task involved simple text parsing in which the elements of JSON notation were removed
and the desired attributes were left in a CSV format. We extracted its attributes from the raw data
including: time stamps, GPS coordinates, and observed activity type at the given time stamp. The task
was implemented in Java programming language and made use of a series of regular expressions to
extract the target attributes. Once the records were reduced to the desired attributes, we then further
reduced the data by taking only records with an observed activity type of driving or “inVehicle”.
Figure 3 shows an example record in the raw JSON format, and Figure 4 provides an example of the
final CSV output after the parsing process.



Sensors 2019, 19, 1303 9 of 20

The raw data was continually collected and contained records with various activity types such
as “still”, “inVehicle”, “onFoot”, “onBicycle”, and so on. Since we only targeted the records that
were collected while the user was driving or “inVehicle”, our parsing process resulted in a significant
reduction in the size of the data set. For example, one week of GPS trace data in the raw JSON format
is approximately 27,841 lines of text and has a size of 657 KB. Parsed to CSV format without removing
the undesired records, the data is approximately 2283 lines of text and 369 KB. Once we have extracted
all activity types other than “inVehicle”, the data was approximately 109 lines of text and 36 KB.
This reduction in data size greatly reduced the complexity of any future processing. In our test cases,
this parsed data was the direct input to our next task. This process also demonstrated value in an edge
computing system in which we may decide to perform trivial tasks at the edge of the network such as
data pre-processing or reduction. In this case, performing the parsing task at the network edge can
greatly reduce latency and communications overhead. Compression of the data would serve to further
reduce the amount of data to be transmitted. However, for our test cases the data sets were small and
compression was not necessary.

Figure 3. Example of raw data in original JavaScript object notation (JSON) format.

Figure 4. Example of parsed data in comma separated values (CSV) format.

3.2. Intersection Discovery

Another task we employed to evaluate our architecture is the discovery of which intersections
were encountered by the driver. We accomplished this by creating a database of all intersections
in the region in which the vehicle operated. The coordinates of each intersection were found with
OpenStreetMap and simple script that leverages the Overpass-turbo API. Figure 5 shows an example
of the method we used to retrieve the coordinates of intersections, along with a graphical view of
markers denoting intersections in a portion of our target area. The first step in discovering intersection
encounters was to define the distance r from an intersection that the user must be within for a particular
intersection to be considered visited. The parameter r represents the radius of a circle centered around
the geographical coordinates of an intersection. If a vehicle passes in this area, the intersection was
said to have been visited. As previously mentioned, we utilized a Haversine-based formula that takes



Sensors 2019, 19, 1303 10 of 20

into account the spherical shape of Earth when measuring distance between two locations. Haversine
assumes a perfect sphere, so we use Earth’s equatorial radius of 6378 km. The distance d between the
vehicle coordinates and the intersection can then be found as:

d = 2e arcsin

(√
sin2(

φ2 − φ1

2
) + cos(φ1) cos(φ2) sin2(

λ2 − λ1

2
)

)
,

where φ1, φ2 are the latitudes of the intersection and the vehicle location, λ1, λ2 are longitudes, and e is
the radius of Earth.

Figure 5. Intersection geo-location.

3.3. Experimental Results

In this section, we describe a test scenario using real-world data and the two computational
tasks previously defined. We demonstrate the use of a decision-making process using the TOPSIS
method described in Section 3 Our test cases consider three criteria and five alternatives during the
decision-making process. The criteria considered include: available processing resources, memory
available, and delay. Our alternatives were computational resources at different geographical locations.
Identifiers and the locations represented are defined as follows: central: Council Bluffs, Iowa USA; west:
the Dalles, Oregon USA; east: Ashburn, Virginia USA; cin: Cincinnati, Ohio USA; and local: requesting
device. At each location, we duplicated the computational server and create virtual machines with
identical CPU and memory resources. We also adjusted the resources of the servers, giving each
instance more processing power or more memory. In comparisons of regions, we always created
instances with identical, or as identical as possible, resources to avoid any differences arising from
imbalanced hardware. The local resources were configured as closely as possible to the other resources
and are used to represent the edge nodes on the network which are the vehicles in our application.

3.3.1. CAMEVAN Example with the TOPSIS Decision-Making Method

To demonstrate how decision-making is handled in our architecture, we work through an example
using various test cases. Recall that the TOPSIS method requires a decision matrix DM. To create this
matrix, we label the columns with our criteria and the rows with our alternatives. Non-normalized
attribute values along with the weights assigned to each criteria, are shown in Table 1.



Sensors 2019, 19, 1303 11 of 20

Table 1. Decision matrix with attribute values.

Criteria

Alternatives cpu (w = 0.35) mem (w = 0.25) delay (w = 0.4)

Acentral 6.54% 14,679 MB 151.375 ms
Aeast 2.37% 14,481 MB 145.75 ms
Awest 2.31% 14,492 MB 207.875 ms
Acin 1.4% 2680 MB 187.375 ms

Alocal 6.86% 11,202 MB 0 ms

The “cpu” criteria represents the real-time processor load at the corresponding alternative and is
represented as a percentage of current processor usage. The “mem” denotes the amount of free memory
available in Gigabytes and delay is an indicator of the round-trip communication delay in milliseconds.
In each alternative, the computational resources are kept identical with the exception of the “cin”
alternative. In the case of the “cin” alternative, we were limited in options for available infrastructure.
The only notable difference between the “cin” node and the others is a reduced amount of memory.
The “cin” node was limited to 4 GB of memory while others were allocated 15 GB, which was due to
physical hardware limitations. At any rate, this difference in memory does not adversely affect any
testing, as no test case required over 2 GB of memory. However, it may make this asset less-favorable
in the TOPSIS ranking due to lower amount of memory available. Each virtual server is configured
with a four-core Intel Xeon processor. Additional testing was conducted with singe and dual core
configurations, but the best performance was observed with the four cores. Thus, run-time results
presented were obtained with the four-core configuration. Configurations with fewer processing cores
showed very similar results in terms of ranking and had only slightly longer run times.

Before creating a ranking of our alternatives, we must transform the decision matrix into
a normalized-weighted decision matrix (NWDM). Recall that the normalized decision matrix R is found as:

rij =
xij√

∑m
k=1 x2

kj

, i = 1, 2, ..., m, j = 1, 2, ..., n

NWDM was found by multiplying each attribute in R with it’s respective weight. Applying
this to the matrix values in Table 1, we obtain the NWDM shown in the first four columns of Table 2.
From this matrix we can easily find the PIS Aw and NIS Ab with the formulas previously defined.
From the NWDM we can see that:

Ab = {0.0483412, 0.132433, 0.0}

Aw = {0.23687188, 0.02417878, 0.23759193}.

With these values known, we can then calculate the separation distance of each alternative to the
best and worst solution. Finally we measured the closeness of each alternative to the ideal solution
and rank each them accordingly. The rankings obtained for each alternative are shown in last column
of Table 2.

Table 2. Normalized-weighted decision matrix (NWDM) with ranks.

Criteria’s

Alternatives cpu (w = 0.35) mem (w = 0.25) delay (w = 0.4) Rank

Acentral 0.225822 0.132433 0.173015 5
Aeast 0.0818347 0.130647 0.166586 2
Awest 0.079763 0.130746 0.237592 4
Acin 0.0483412 0.0241788 0.214161 3

Alocal 0.236872 0.101064 0.0 1



Sensors 2019, 19, 1303 12 of 20

3.3.2. Comparison of TOPSIS Ranking with Experimental Results

To validate our approach, we implemented two test cases discussed previously and conducted
a series of trials on the alternative infrastructure defined in the TOPSIS example. Recall that servers
are located in different geographical locations to represent the communication delay associated with
remote servers. Testing is accomplished by sending processing requests to each remote resource from
a local lab machine connected to a WiFi network. We chose a wireless network to better replicate
vehicular networks. However, a stationary lab machine does not accurately emulate the environment
of a vehicular network. To remedy this shortcoming, we conducted another series of trials in which
the requests were sent to the remote resources over an LTE network, as Cellular-V2X communication
has become more popular. However, experiments were conducted with an off-the-shelf smart phone
that operates in the LTE frequency band ranging 700 MHz to 2500 MHz. In the realm of vehicular
networks, LTE is being considered as an enabling technology for vehicular operating in the 5.9 GHz
frequency band as LTE-V2X [21]. Given that these technologies are still in development and an LTE
connected vehicle was not available for experimentation, the best configuration for our experiments
was an LTE smart phone.

Our first test case is JSON parsing, as previously described in this section. Figure 6 plots the run
times of the JSON parsing process on each remote resource for a range of data set sizes. The horizontal
axis specifies the amount of data by the number of weeks over which it was collected. For example, the
points at x-axis value 1 represents the run-time of JSON parsing for 1 week of GPS trace data. In both
Figures 6 and 7, dotted lines represent the cpu time taken for the process, while the solid lines represent
the total run time in milliseconds (ms) for the request including cpu time and network overhead.
Our second test case is an intersection encounter discovery, as defined previously. This task is much
more cpu intensive, as it requires a large number of Haversine distance calculations. Figure 7a,b
plot the cpu and total time for each alternative with an intersection search radius values r of 250 and
500 m respectively.

Figure 6. Run-times of JSON parsing for each resource.



Sensors 2019, 19, 1303 13 of 20

(a)

(b)

Figure 7. Intersection encounter analysis runtime with r = 250 m (a) and r = 500 m (b).

With the experimental results plotted for both processes, we can now compare the ranking
provided in our TOPSIS model. If our ranking is accurate, we should see similarities between
the performance of the remote resources and the rankings we obtained with the TOPSIS method.
Comparisons between TOPSIS rankings and the actual performance are shown in Table 3.
Our alternatives or server resources are compared by observing the total time for each processing
task to complete. In the case of the JSON parsing task we can see, in Table 4, that ranking of our
experiments vary from the TOPSIS ranking in two of five cases. However, on closer inspection, we find



Sensors 2019, 19, 1303 14 of 20

that the two incorrectly ranked cases are reversed. Upon inspecting the average run time across all
test cases for these two alternatives, shown in Table 4, we find that Aeast with an average run time of
1010.125 ms and Awest with an average run time of 948.125 ms, only differ by 62 ms overall. Similarly,
the rankings for the intersection encounter discover task exhibits a similar property in that two of
five ranks are incorrect and are reversed from what TOPSIS provides. In this case, the difference
between the two cases is even smaller than that of the JSON rankings. The average run times for the
two incorrectly ranked alternatives Acentral and Aeast are 4923.75 ms and 4947.875 ms respectively and
differ, on average, 24.125 ms across all test cases. These results demonstrate that a MCDA method,
TOPSIS in our case, can effectively make decisions about which resources are best for task execution.
In a real-world system, cpu loads, memory availability, and delay vary from the numbers we observed
due to the higher system loads and higher number of users. In each case, our systems consisted of
idle servers with only a single user making requests. However, the parameters we use are relevant to
real-world scenarios and should provide similar results. It is to be noted that the weights for each of
our criteria could easily be adjusted to bias the decision-making toward a given attribute.

Table 3. Comparison of technique for order of preference by similarity to ideal solution (TOPSIS)
ranking with test cases.

Alternatives TOPSIS Rank JSON Rank Int. Enc. Discovery Rank

Acentral 5 5 4
Aeast 2 4 5
Awest 4 2 2
Acin 3 3 3

Alocal 1 1 1

Table 4. Average run-times in milliseconds (ms).

Alternatives JSON (ms) Int. Enc. Discovery (ms)

Acentral 1040.5 4923.75
Aeast 1010.125 4947.875
Awest 948.125 4513.375
Acin 960.25 4532

Alocal 587 4160

4. Further Analysis of Delay

In a challenging environment such as a vehicular network serving autonomous vehicles, delay can
have a significant impact on real-time applications. Thus, an architecture that has some a priori
knowledge of network delay, and the ability to make informed decisions on which resource to send
a request, is desirable. To evaluate the variations in communication delay, we conduct a serious
of experiments and record the time spent processing the request along with the time taken for the
requesting node to receive the response.

In Figure 8, we target the three geographically dispersed server locations and the local server
for delay analysis. Each server is sent a series of requests with increasing data size, where data is
split into chunks by week. The number of data chunks for each test are shown on the plots as the
numbers 1 though 8 on the x-axis. The total time of the requests is shown on the y-axis in milliseconds.
The overall time taken for each request is the sum of the two bar segments. CPU time is shown in blue
and delay in orange. Recall that the “cin” server was a resource allocated in our lab at the University
of Cincinnati and had the lowest delay since it was very close to the requesting node. The request
made to the servers is the intersection discovery technique detailed in a previous section of this paper.
Here we have passed two large values for r of 0.25 km and 0.5 km. Here the intersection coordinates
could be derived by taking the centroid of the points that are found to be in the circle with radius r.
The run time increased in a linear fashion and was of little interest for our purposes. However, it can



Sensors 2019, 19, 1303 15 of 20

easily be seen that the delay varies greatly between requests. The spread of this delay can be used
to provide a better representation of what delay can be expected for a specific resource. While the
round trip communication delay may have improved with a wired connection, we purposefully chose
a wireless standard since we are seeking to emulate a wireless environment. Each of the experiments
in Figure 8 has been conducted on a lab machine and requests were sent with a WiFi connection
to the Internet. Since our target environment involves mobile nodes and wireless communication,
we conducted additional experiments where requests were sent over wireless LTE network in various
locations and while the requesting node is moving. The LTE network provider for the experiments was
Google Fi (known as Project Fi at the time of the experiments) and the experiments are conducted with
a Google Pixel 2 XL device. Experiments with the mobile device were conducted while the device was
moving at a walking pace in a congested area. The path covered in the mobile experiments traversed
the campus of the University of Cincinnati, Cincinnati, OH, USA, which has many trees, tall buildings,
and other obstructions.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Cont.



Sensors 2019, 19, 1303 16 of 20

(g) (h)

Figure 8. Comparison of CPU time and round trip communication delay for geographically dispersed
resources. The sum of the bar segments is equal to the total time for the request to be sent, processed,
and results returned. Figures (a) and (b) illustrate the run time and delay for requests sent to the “east”
server, (c) and (d) the “central”, (e) and (f) the “west”, and finally (g) and (h) the “cin” server.

Figure 9 shows experiments in which requests were sent to the central server from two locations
and while the device is moving at a walking pace between the two locations. The computations
requested were the JSON parsing task that has been detailed in an earlier section. Subsequent requests
had increasing amounts of data to be processed. The number of data chunks is shown on x-axis and
the total time in milliseconds is shown on y-axis. As in Figure 8, CPU time is shown in blue and delay
in orange. The two locations and the path walked between them are shown in Figure 10. Location
one is shown as the magenta marker and location two is shown as the green marker and the path
walked between them as the blue line. Location One has coordinates (84.51734, 39.13329) and Location
Two has coordinates (−84.52003, 39.12781). In Figure 9, we see that the delay on average is more
consistent than that of the experiments conducted using a WiFi connection to the Internet. However,
additional measurements at the time of the experiments have shown inclination as to why this is
the case. Network traffic at the time could have been higher than normal or some other unknown
circumstance could have had some effect on the network performance. In any case, our experiments
show that on average the delay of the LTE network had slightly less delay than the WiFi connection.
A clearer comparison of the delay across all experiments is shown in Figure 11, which plots delay in
milliseconds on the y-axis. Figure 11a illustrates the spread of the delay from the experiments shown in
Figure 8. The “cin” server was excluded form this analysis since it is very close to the requesting node
and had very small delay in all test cases and had a minimum of 176, maximum of 249, and average of
185.0625 milliseconds. The delay spread for the mobile experiments are shown in Figure 11b. In both
spread figures, the high fliers are shown with circles. In Figure 11b, we see that the delay at location one
had high spikes in delay compared to the delay of location two. We attribute this to the location being
inside a large multistory building and assume the structure decreased signal strength. Additional tests
would be required to verify that this is the case.



Sensors 2019, 19, 1303 17 of 20

(a) (b)

(c)

Figure 9. Comparison of CPU time and delay for requests made from a mobile device to the “central”
server location. (a) and (b) are requests made while stationary at two locations and the results in (c)
were obtained while walking between the two locations.

Figure 10. Locations used in mobile node experiments and the path walked between them for
experiments conducted while the device was moving.



Sensors 2019, 19, 1303 18 of 20

(a) (b)

Figure 11. Analysis of delay spread with high fliers shown. (a) Analysis of delay spread for intersection
encounter requests sent to the “east”, “central”, and “west” servers. (b) Analysis of delay spread from
a mobile device with requests being made while stationary at locations one and two and while walking
between the two locations.

5. Conclusions and Future Work

In this paper, we introduced the CAMEVAN architecture for vehicular networks that supports
edge-computing and employs a multiple-criteria decision analysis method to choose an optimal resource
for delegation of computational tasks. We present an example using the TOPSIS decision-making method,
and validate our results with experiments on geographically diverse test bed of computational resources.
Our experimental results support the results of the decision-making process and is accurate for the
majority of test cases. Our testing considered multiple criteria in the decision-making process, including
real-time cpu load, real time memory availability, and real time network path delay. To produce a more
robust decision-making model, more criteria could be considered or criteria weights could be adjusted to
better suite individual situations.

In our decision-making process, we consider criteria that pertain to the computational resources
and their geographical location. In future work, we would like to incorporate criteria that relate to
an individual job, such as the amount of data that must be transmitted to the computational resource,
computational complexity of the task, and priority of the task. Incorporating these criteria that vary for
each job, would allow decisions to be made with respect to both the computational resources available
and characteristics on the computational job. This type of decision-making process, would allow the
model to bias jobs that require more or less of a specific resource to be the best alternative. For example,
if a job is computationally intensive, but requires very little memory, alternatives with small amounts
of available memory wouldn’t be considered less favorable then alternatives with large amounts of
available memory.

For future work, we would like to continue the experiments with a mobile node and incorporate
more parameters into the allocation process. Mobile nodes present a unique challenge in that they
have significantly varying network delay. Accommodating this uncertainty would require a robust
and intelligent system. One potential approach would be to maintain historical measures of average
delay for each resource. With each request the delay could be measured and used to update the
information about a specific resource. Our experiments with delay have shown that geographically
diverse resource can have differing delays and could be subjected to unexpected spikes in delay.
We have also shown that current wireless communication technologies exhibit consistent delay while
travelling at low speeds. While the average delay is higher than an ideal level for geographically
distant resources, mobile edge computing would move resources closer to the edge, thus reducing
the delay while maintaining consistency. Finally, it would be beneficial to repeat the experiments for
a mobile device in a moving vehicle or, if possible, from an Internet connected vehicle.



Sensors 2019, 19, 1303 19 of 20

Author Contributions: Conceptualization, Z.W.L. and D.P.A.; formal analysis, Z.W.L.; software, Z.W.L.;
supervision, D.P.A.; writing—original draft, Z.W.L.; writing—review and editing, D.P.A.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, S.; Hu, J.; Shi, Y.; Peng, Y.; Fang, J.; Zhao, R.; Zhao, L. Vehicle-to-Everything (v2x) Services Supported
by LTE-Based Systems and 5G. IEEE Commun. Stand. Mag. 2017, 1, 70–76. [CrossRef]

2. Nguyen, T.V.; Shailesh, P.; Sudhir, B.; Kapil, G.; Jiang, L.; Wu, Z.; Malladi, D.; Li, J. A comparison of cellular
vehicle-to-everything and dedicated short range communication. In Proceedings of the 2017 IEEE Vehicular
Networking Conference (VNC), Torino, Italy, 27–29 November 2017; pp. 101–108.

3. Wang, P.; Di, B.; Zhang, H.; Bian, K.; Song, L. Cellular V2X in Unlicensed Spectrum: Harmonious Coexistence
with VANET in 5G systems. arXiv preprint 2017, arXiv:1712.04639.

4. Wang, X.; Mao, S.; Gong, M.X. An Overview of 3GPP Cellular Vehicle-to-Everything Standards.
GetMobile Mobile Comput. Commun. 2017, 21, 19–25. [CrossRef]

5. Zhou, H.; Xu, W.; Bi, Y.; Chen, J.; Yu, Q.; Shen, X.S. Toward 5G Spectrum Sharing for
Immersive-Experience-Driven Vehicular Communications. IEEE Wirel. Commun. 2017, 24, 30–37. [CrossRef]

6. Higgins, M.D.; Green, R.J.; Leeson, M.S. Optical wireless for intravehicle communications: A channel
viability analysis. IEEE Trans. Veh. Technol. 2012, 61, 123–129. [CrossRef]

7. Corsini, R.; Pelliccia, R.; Cossu, G.; Khalid, A.M.; Ghibaudi, M.; Petracca, M.; Pagano, P.; Ciaramella, E.
Free space optical communication in the visible bandwidth for V2V safety critical protocols. In Proceedings
of the 2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC),
Limassol, Cyprus, 27–31 August 2012; pp. 1097–1102.

8. Green, R.J. Optical wireless with application in automotives. In Proceedings of the 2010 12th International
Conference Transparent Optical Networks (ICTON), Munich, Germany, 27 June–1 July 2010; pp. 1–4.

9. Angelica, A.D. Googles Self-Driving Car Gathers Nearly 1 GB/s, May 2013. Available online: http://www.
kurzweilai.net/googles-self-driving-car-gathers-nearly-1-gbsec (accessed on 20 November 2018).

10. Hagenauer, F.; Sommer, C.; Higuchi, T.; Altintas, O.; Dressler, F. Vehicular micro clouds as virtual edge
servers for efficient data collection. In Proceedings of the 23rd ACM International Conference on Mobile
Computing and Networking (MobiCom 2017), 2nd ACM International Workshop on Smart, Autonomous,
and Connected Vehicular Systems and Services (CarSys 2017), Snowbird, UT, USA, 16 October 2017.

11. Yuan, Q.; Zhou, H.; Li, J.; Liu, Z.; Yang, F.; Shen, X.S. Toward efficient content delivery for automated driving
services: An edge computing solution. IEEE Netw. 2018, 32, 80–86. [CrossRef]

12. Lai, Y.; Zhang, L.; Wang, T.; Yang, F.; Xu, Y. Data Gathering Framework Based on Fog Computing Paradigm
in VANETs. In Proceedings of the Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint
Conference on Web and Big Data; Springer: Cham, Switzerland, 2017; pp. 227–236.

13. Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile edge computing—A key technology towards
5G. ETSI White Pap. 2015, 11, 1–16.

14. Sardellitti, S.; Scutari, G.; Barbarossa, S. Joint optimization of radio and computational resources for multicell
mobile-edge computing. IEEE Trans. Signal Inf. Process. Over Netw. 2015, 1, 89–103 [CrossRef]

15. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things.
In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland,
17 August 2012; pp. 13–16.

16. Zhang, Y.; Zhang, H.; Long, K.; Zheng, Q.; Xie, X. Software-defined and fog-computing-based next generation
vehicular networks. IEEE Commun. Mag. 2018, 56, 34–41. [CrossRef]

17. Grassi, G.; Pesavento, D.; Pau, G.; Zhang, L.; Fdida, S. Navigo: Interest forwarding by geolocations in
vehicular named data networking. In Proceedings of the 2015 IEEE 16th International Symposium on
A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Boston, MA, USA, 14–17 June 2015;
pp. 1–10.

18. Lamb, Z.W.; Agrawal, D.P. Context-Aware Mobile Edge Computing in Vehicular Ad-Hoc Networks.
In Proceedings of the 2018 28th International Telecommunication Networks and Applications Conference
(ITNAC), Sydney, NSW, Australia, 21–23 November 2018; pp. 1–7.

http://dx.doi.org/10.1109/MCOMSTD.2017.1700015
http://dx.doi.org/10.1145/3161587.3161593
http://dx.doi.org/10.1109/MWC.2017.1600412
http://dx.doi.org/10.1109/TVT.2011.2176764
http://www.kurzweilai.net/googles-self-driving-car-gathers-nearly-1-gbsec
http://www.kurzweilai.net/googles-self-driving-car-gathers-nearly-1-gbsec
http://dx.doi.org/10.1109/MNET.2018.1700105
http://dx.doi.org/10.1109/TSIPN.2015.2448520
http://dx.doi.org/10.1109/MCOM.2018.1701320


Sensors 2019, 19, 1303 20 of 20

19. Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY,
USA, 1981.

20. Robusto, C.C. The cosine-haversine formula. Am. Math. Mon. 1957, 64, 38–40. [CrossRef]
21. Masini, B.; Bazzi, A.; Zanella, A. A survey on the roadmap to mandate on board connectivity and enable

V2V-based vehicular sensor networks. Sensors 2018, 18, 2207. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/2309088
http://dx.doi.org/10.3390/s18072207
http://www.ncbi.nlm.nih.gov/pubmed/29987254
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	CAMEVAN: Contextual Architecture for Mobile Edge-Computing in Vehicular Networks
	Comparison of Task Delegation Scheme with Experimental Results
	JSON Parsing
	Intersection Discovery
	Experimental Results
	CAMEVAN Example with the TOPSIS Decision-Making Method
	Comparison of TOPSIS Ranking with Experimental Results


	Further Analysis of Delay
	Conclusions and Future Work
	References

