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Lowering the setting value 
of the esophageal endoscopic 
submucosal dissection device 
enabled tissue damage control 
in vitro porcine model
Yukiko Yamaguchi1, Masaya Uesato1*, Shohei Yonemoto1, Tetsuro Maruyama1, 
Ryuma Urahama1, Hiroshi Suito1, Takashi Kishimoto2, Yuki Shiko3, Yoshihito Ozawa3, 
Yohei Kawasaki3 & Hisahiro Matsubara1

One of the complications of esophageal endoscopic submucosal dissection (ESD) is postoperative 
stricture formation. Stenosis formation is associated with inflammation and fibrosis in the healing 
process. We hypothesized that the degree of thermal damage caused by the device is related to 
stricture formation. We aimed to reveal the relationship between thermal damage and setting value 
of the device. We energized a resected porcine esophagus using the ESD device (Flush Knife 1.5). We 
performed 10 energization points for 1 s, 3 s, and 5 s at four setting values of the device. We measured 
the amount of current flowing to the conducted points and the temperature and evaluated the effects 
of thermal damage pathologically. As results, the mean highest temperatures for 1 s were I (SWIFT 
Effect3 Wat20): 61.19 °C, II (SWIFT Effect3 Wat30): 77.28 °C, III (SWIFT Effect4 Wat20): 94.50 °C, and 
IV (SWIFT Effect4 Wat30): 94.29 °C. The mean heat denaturation areas were I: 0.84 mm2, II: 1.00 mm2, 
III: 1.91 mm2, and IV: 1.54 mm2. The mean highest temperature and mean heat denaturation area 
were significantly correlated (P < 0.001). In conclusion, Low-current ESD can suppress the actual 
temperature and thermal damage in the ESD wound.

The use of endoscopic submucosal dissection (ESD) as a safe procedure for early esophageal cancer is increasing 
worldwide1, 2. A subacute complication of ESD is postoperative stricture formation, which can cause severe food 
passage disorder3. Widespread excision of large lesions is a widely known risk factor of postoperative stenosis1–5. 
However, excision of large lesions cannot always be avoided. There are reports that systemic and local steroid 
administration prevents postoperative stenosis6–8. However, these procedures involve risks, such as infection 
and perforation9, 10, and cannot completely prevent stenosis2, 8. There are other innovative methods, such as 
transplantation of cell sheets11, collagen patches12, and polyglycolic acid sheets13, but there are high barriers to 
their practical use in terms of cost, simplicity, and safety14. The log bridge method has been proposed for subcir-
cumferential lesions15, but it is difficult to preserve the mucosa with circumferential lesions.

Using a dog model, Honda et al.16 showed that stricture formation was associated with inflammation in the 
ESD wound and fibrosis in the healing process. We speculated that the degree of thermal damage caused by the 
ESD device was related to inflammation and fibrosis. We therefore focused on the heat generated in the tissue 
during ESD and the amount of current flowing to the wound.

There is no standard setting value for high-frequency output devices, and endoscopists mainly rely on per-
sonal or reported experience17. Most endoscopic physicians determine the setting value according to their own 
preferences so that the device can be easily operated during ESD. We aimed to show that the amount of current 
flowing to the conducted points, the temperature, and the thermal damage to tissue vary depending on the set-
ting value of the high-frequency output device during ESD, and to propose the optimal setting value that has 
minimal effect on the wound.
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Materials and methods
Experimental procedure.  The study was performed in Chiba University Hospital. The experimental sam-
ple was obtained by purchasing the esophagus of two porcines that had already been removed. This sample was 
selected because the tissue is close to the human body, and the number is kept to a minimum. All procedures 
were approved by the institutional animal care and use committee of the Chiba University, in compliance with 
the national guideline of Japan. The equipment consisted of a microammeter (Power Meter 3335/HIOKI E.E. 
CORPORATION, Japan), thermography (Thermo FLEX F50/Nippon Avionics Co., Ltd. Japan), high-frequency 
energy output device (VIO200D/Erbe Elektromedizin GmbH, Germany), and ESD device (Flush Knife 1.5 mm, 
DK2620JN15S; Fujifilm Medical, Tokyo, Japan) that we usually use for treatment. The microammeter was used 
to measure the energized current (mA) and the thermograph to measure the temperature (°C). The camera of 
thermography was set 10 cm from the porcine esophageal mucosa. We energized the sample in vitro with the 
Flush Knife. The tip of the device contacted with the sample without pressing. Energization was performed 
at four setting values (I: SWIFT COAG mode, Effect 3, Wat 20/II: SWIFT COAG mode, Effect 3, Wat 30/III: 
SWIFT COAG mode, Effect 4, Wat 20/IV: SWIFT COAG mode, Effect 4, Wat 30 (Table 1) of the high-frequency 
output device. The sample was energized for 1 s, 3 s, and 5 s for 10 repetitions under the same conditions (Fig. 1). 

Assessment of thermal damage.  After the experiment, the esophagus was preserved in formalin. The 
conduction points were then excised in the direction of the minor axis of the esophagus and stained with hema-
toxylin and eosin. One pathologist determined the extent of heat denaturation (Fig. 2) and measured the area of 
thermal damage using the GNU Image Manipulation Program.

Statistical analysis.  The data are expressed as means in the text and as means ± standard deviation in the 
figures. The associations between the setting values of the high-frequency output device and the integrated ener-
gization amount (mA), the maximum energization amount (mA), the maximum temperature (°C), the inte-
grated temperature (°C), the vertical distance of heat denaturation (µm), and the heat denaturation area (mm2) 
were tested using Spearman’s rank correlation coefficient, Pearson’s correlation coefficient, and analysis of vari-
ance (ANOVA) with contrast. We also performed linear regression with the integrated energization amount as 
the independent variable and the cumulative temperature as the dependent variable. To assess the fitting of this 
model, we calculated the R2 value. A two-trailed P value < 0.05 was considered to indicate statistical significance. 
Statistical analyses were performed with SAS for Windows (Ver. 9.4, SAS Institute Inc., Cary, NC, USA).

Results
Analysis was performed of 10 energization points under 12 conditions in the porcine esophagus. Energization 
was performed for 1 s, 3 s, and 5 s at four setting values (Table 1). The outcomes of the study are summarized in 
Table 2 and illustrated in Fig. 3.

Amount of energization.  The mean current peak values were I: 1.19/1.21/1.26 (mA), II: 1.30/1.34/1.29 
(mA), III: 1.40/1.47/1.48 (mA), and IV: 1.46/1.50/1.45 (mA). A significant correlation was observed between 

Table 1.   Setting value of high frequency energy output device.

Setting value Effect Wattage

I 3 20

II 3 30

III 4 20

IV 4 30

Figure 1.   The resected porcine esophagus was pinned onto the rubber plate. Energization was repeated 10 
times under the same conditions.
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Figure 2.   The conduction point was excised in the direction of the minor axis of the porcine esophagus and 
stained with hematoxylin and eosin. One pathologist determined the extent of heat denaturation.

Table 2.   Measurement results and statistical analysis results under each setting. a I: Swift coagulation mode, 
Effect 3, Wat 20; II: Swift coagulation mode, Effect 3, Wat 30; III: Swift coagulation mode, Effect 4, Wat 20; IV: 
Swift coagulation mode, Effect 4, Wat 30. b Spearman’s correlation with p-value. c Anova with specific contrast (I 
vs IV).

Energized conditiona I II III IV r (p-value)b) I vs IV (p-value)c

Energized for 1 s

Maximum energization 
amount (mA) 1.19 (0.03) 1.30 (0.08) 1.40 (0.05) 1.46 (0.09) 0.84 (< 0.001) < 0.001

Integrated energization 
amount (mA) 4.40 (0.05) 4.59 (0.10) 4.98 (0.37) 5.48 (0.12) 0.87 (< 0.001) < 0.001

Maximum temperature 
(°C) 61.19 (8.19) 77.28 (6.40) 94.50 (10.85) 94.29 (16.69) 0.79 (< 0.001) < 0.001

Integrated temperature 
(°C) 403.21 (34.36) 478.70 (31.84) 612.60 (64.04) 608.28 (98.66) 0.81 (< 0.001) < 0.001

Heat denaturation ver-
tical distance (μm) 560.18 (183.28) 587.73 (218.80) 1117.78 (370.63) 741.24 (217.29) 0.43 (0.005) 0.125

Heat denaturation area 
(mm2) 0.84 (0.23) 1.00 (0.36) 1.91 (0.47) 1.54 (0.55) 0.63 (< 0.001) < 0.001

Energized for 3 s

Maximum energization 
amount (mA) 1.21 (0.04) 1.34 (0.06) 1.47 (0.04) 1.50 (0.04) 0.90 (< 0.001) < 0.001

Integrated energization 
amount (mA) 13.08 (0.38) 13.59 (0.11) 16.24 (1.04) 16.33 (0.47) 0.84 (< 0.001) < 0.001

Maximum temperature 
(°C) 59.35 (7.41) 88.26 (10.29) 94.52 (8.72) 100.20 (18.71) 0.71 (< 0.001) < 0.001

Integrated temperature 
(°C) 990.94 (112.72) 1439.86 (130.33) 1630.25 (209.27) 1838.34 (406.93) 0.80 (< 0.001) < 0.001

Heat denaturation ver-
tical distance (μm) 482.55 (221.08) 670.40 (101.18) 1126.14 (644.76) 1035.12 (483.72) 0.50 (0.001) 0.006

Heat denaturation area 
(mm2) 0.86 (0.31) 1.34 (0.25) 2.29 (1.15) 2.15 (1.07) 0.55 (< 0.001) 0.002

Energized for 5 s

Maximum energization 
amount (mA) 1.26 (0.03) 1.29 (0.07) 1.48 (0.03) 1.45 (0.06) 0.77 (< 0.001) < 0.001

Integrated energization 
amount (mA) 22.03 (0.48) 21.33 (2.86) 28.03 (0.36) 27.14 (0.47) 0.70 (< 0.001) < 0.001

Maximum temperature 
(°C) 72.95 (10.02) 73.90 (12.79) 86.99 (12.93) 85.64 (13.57) 0.54 (0.000) 0.028

Integrated temperature 
(°C) 1841.81 (78.38) 1916.41 (279.87) 2379.52 (453.24) 2494.51 (632.67) 0.47 (0.002) 0.001

Heat denaturation ver-
tical distance (μm) 564.05 (156.06) 586.98 (274.26) 944.80 (334.46) 1006.68 (459.02) 0.48 (0.002) 0.005

Heat denaturation area 
(mm2) 0.90 (0.38) 0.98 (0.57) 2.25 (1.01) 2.26 (1.12) 0.60 (< 0.001) 0.001
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the current peak values and the setting conditions (r = 0.84, P < 0.001/r = 0.90, P < 0.001/r = 0.77, P < 0.001). The 
current peak values of I were significantly lower than those of IV (P < 0.001/P < 0.001/P < 0.001). The integrated 
energization amount was I: 4.40/13.08/22.03 (mA), II: 4.59/13.59/21.33 (mA), III: 4.98/16.24/28.03 (mA), and 
IV: 5.48/16.33/27.14 (mA), and a significant correlation was observed between the amount of integrated ener-
gization and the setting conditions (r = 0.87, P < 0.001/r = 0.84, P < 0.001/r = 0.70, P < 0.001). The amount of inte-
grated energization of I was significantly lower than that of IV (P < 0.001/P < 0.001/P < 0.001).

Temperature.  The mean highest temperatures at 1  s/3  s/5  s for each setting were as follows: I: 
61.19/59.35/72.95 (°C), II: 77.28/88.26/73.90 (°C), III: 94.50/94.52/86.99 (°C), and IV: 94.29/100.2/85.64 (°C), 
and a significant correlation was observed between the highest temperature and the setting conditions (r = 0.79, 
P < 0.001/r = 0.71, P < 0.001/r = 0.54, P < 0.001). The highest temperature of I was significantly lower than that 
of IV (P < 0.001/P < 0.001/P = 0.028). The mean accumulated temperatures were I: 403.21/990.94/1841.81 (°C), 
II: 478.7/1439.86/1916.41 (°C), III: 612.6/1630.25/2379.52 (°C), and IV: 608.3/1838.34/2494.51 (°C), and a sig-
nificant correlation was observed between the accumulated temperature and the setting conditions (r = 0.81, 
P < 0.001/r = 0.80, P < 0.001/r = 0.47, P = 0.002). The accumulated temperature of I was significantly lower than 
that of IV (P < 0.001/P < 0.001/P = 0.001).

The integrated temperature of the tissue was increased by increasing the accumulated energization amount 
(r = 0.91, P < 0.001). A significantly strong correlation between the accumulated energization amount and the 
accumulated temperature was found, and a prediction calculation formula for the accumulated temperature was 
derived: (Integrated temperature = 164.40 + 82.74 × (integrated energization amount); R2 = 0.82) (Fig. 4).

Assessment of thermal damage.  The mean vertical distance of thermal damage was I: 
560.18/482.55/564.05 (µm), II: 587.73/670.40/586.98 (µm), III: 1117.78/1126.14/944.80 (µm), and IV: 
741.24/1035.12/1006.68 (µm), and a significant correlation was observed between the vertical distance of ther-
mal damage and the setting conditions (r = 0.43, P = 0.005/r = 0.50, P = 0.001/r = 0.48, P = 0.002). There was no 
significant difference between the vertical distance of thermal damage of I and IV under 1 s of energization (P 
= 0.125/P = 0.006/P = 0.005). The mean area of heat denaturation was I: 0.84/0.86/0.90 (mm2), II: 1.00/1.34/0.98 
(mm2), III: 1.91/2.29/2.25 (mm2), and IV: 1.54/2.15/2.26 (mm2), and a significant correlation was observed 
between the area of heat denaturation and the setting conditions (r = 0.63, P < 0.001/r = 0.55, P < 0.001/r = 0.60, 
P < 0.001). The area of heat denaturation of IV was significantly larger than that of I (P < 0.001/P = 0.002/P = 0
.001).

Discussion
The usefulness of steroid administration for the prevention of stenosis after esophageal ESD has been reported. 
This is because local inflammation and fibrosis that cause stenosis can be prevented by steroids5. Nevertheless, 
there have never been surgical procedures that do not cause inflammation or fibrosis. This study compared the 
effects of the setting values of the high-frequency output device by measuring the amount of current flowing 
to the conducted points, the temperature, and the thermal damage to the tissue. We evaluated the degree of 

Figure 3.   Scatter plot and regression line showing the correlation between integrated energization 
and temperature (Pearson’s correlation coefficient; r = 0.91). The regression follows (Integrated 
temperature = 164.40 + 82.74 × (integrated energization amount); R2 = 0.82).
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thermal damage at the energization point pathologically and found that the lower the setting value, the less the 
thermal damage.

When performing ESD, we use different modes of high-frequency energy output devices, depending on the 
situation16. Various parameters, including power settings, allow control of tissue heating and the resulting out-
comes of cutting and/or coagulation of tissue17. For the surrounding incision, we use the ENDO CUT I mode, 
which enables us to incise using sudden heat, which causes the water in the tissue to evaporate and the cell 
membrane to break due to water vapor. This mode provides both cutting and coagulation effects. The SWIFT 
COAG mode, which allows incision with hemostasis, is used for exfoliation of the submucosa. This mode uses 
higher voltage and lower current, providing a smaller cutting effect and a larger hemostatic effect18. In cases 
of bleeding, we use a SOFT COAG mode so that the moisture in the tissue evaporates and contracts to cause 
a hemostatic effect, resulting in coagulation. These modes are adjusted by effects and watts. The effect settings 
range from 1 to 8. If the effect setting is high, the voltage rises and the current flows quickly to the tissue, so that 
coagulation is completed quickly19. On the other hand, the lower the effect, the lower the voltage, and the current 
flows through the tissue relatively slowly.

During the ESD procedure, it takes the longest time to dissect the submucosa using the SWIFT COAG mode. 
Tonai et al.20 reported that there are two basic patterns of electrocautery using the high-frequency energy output 
device. One is cut current, and the other is coagulation current. Coagulation current has a higher peak voltage 
than cut current, and thus theoretically can cause more severe thermal damage to the tissue than cut current18, 20.  
The authors performed esophageal ESD on a porcine model with a various single mode and showed that the 
ENDO CUT mode resulted in less inflammation of the tissue than the COAG mode. However, in general, COAG 
mode is used for actual ESD during the exfoliation of the submucosa. In contrast, the authors did not mention 
the heat actually generated at the wound. Therefore, we focused on the SWIFT COAG mode whose impact on 
the wound is considered to be the largest, and measured the actual heat generated at the wound. No study has 
measured the heat generated from the ESD device using thermography.

In this study, we measured the peak current and the integrated current flowing to the tissue and the highest 
temperature and the integrated temperature during energizing with the ESD device at various setting values. 
“Effect” signifies the voltage force that pushes the current, and the output setting of the high-frequency energy 
output device is controlled by the effect value and the maximum wattage value. When the wattage value was 
lowered under the condition of Effect 3, all measured values were lowered. On the other hand, under the condi-
tion of Effect 4, the measured values changed little, even if the wattage value was changed. Rather, lowering the 
wattage value resulted in higher temperatures and greater thermal damage under Effect 4. In general, the Effect 

Figure 4.   Measurement results and statistical analysis results under each setting.
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3 condition had less effect on the wound than the Effect 4 condition. This suggests that the value of Effect in the 
high-frequency energy output device is most likely related to the heat generated at the ESD wound.

We have shown positive correlations between the amount of current flowing to the tissue during ESD, the 
temperature of the device touching the tissue, and thermal damage to the tissue. The heat generated at the wound 
decreased when the setting value was lowered. There was a strong correlation between the amount of current 
consumed and the heat generated at the wound. We also evaluated the degree of thermal damage at the ener-
gization point pathologically and found that the lower the setting value, the less the thermal damage. Therefore, 
low-current ESD can contribute to the suppression of the local damage in ESD wound. The suppression of local 
thermal damage may contribute toward the suppression of the local inflammation and may result in the allevia-
tion of postoperative stenosis.

There are limitations to this study. The microammeter measured the current consumed by the high-frequency 
output device. We considered that the actual current flowing locally could be approximated by subtracting the 
standby current from the working current during ESD. The study used a resected porcine esophagus, which 
may differ from human esophageal tissue21. Since there is no thermography that can be used in the esophagus 
of a living porcine, we conducted this experiment using the extracted esophagus of porcine. In the actual ESD 
procedure, submucosal injection is performed before energization. However, if local injection was performed in 
this experiment, the conditions would change for each energization point. Therefore, local injection was not per-
formed. Above all, the current status of energization is different from the actual ESD situation. Further research 
is needed to clarify the relationship between the setting value of the high-frequency energy output device and 
postoperative stenosis. Studies should compare the degree of postoperative stenosis with the use of esophageal 
ESD under a standard setting value and a lower setting value. In addition, it will be necessary to verify whether 
ESD can be performed safely at a low setting value without losing sharpness and hemostatic effect. We are pres-
ently conducting the clinical trial “The association between quantity of electricity during ESD and postoperative 
esophageal stricture formation: a randomized, double-blind, parallel-group trial”. So far, the results show that the 
ESD procedure can be performed safely with a low setting value similar to that with usual setting.
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