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Simple Summary: In European countries, black soldier fly larvae (BSF) proteins are gaining
rapid acceptance as high value protein ingredients in pet food and aquaculture feed formulations.
BSF protein derivatives (proteins and protein hydrolysates) contain a significant share of short-chain
peptides that are known to possess antioxidant behavior. In the present study, the in vitro antioxidant
potential of BSF protein derivatives was analyzed using five different models. Chickenmeal and
fishmeal are commonly used in pet food and aquaculture feed formulations and hence were used
as industrial benchmarks. The results obtained during this study show that chickenmeal and
fishmeal offer little or no advantage in protecting animal cells against the oxidative damage resulting
from neutrophils and myeloperoxidase response. Moreover, chickenmeal and fishmeal even show
pro-oxidant responses in some of the models tested during this study. It was found that the BSF
protein derivatives used in this study could be effective in protecting the animal cells from oxidative
damage as a consequence of immune response.

Abstract: European legislation permits the inclusion of insect proteins in pet and aquaculture
diets. Black soldier fly larvae (BSF) are one of the most actively produced species due to their low
environmental impact and nutritional characteristics. BSF protein derivatives (proteins and protein
hydrolysates) contain a substantial amount of low molecular weight peptides that are known to possess
antioxidant potential. In this study, the in vitro antioxidant potential of commercial BSF proteins and
protein hydrolysates was investigated for (1) radical scavenging activity, (2) myeloperoxidase activity
modulation, and (3) neutrophil response modulation. Chickenmeal and fishmeal are commonly
used in pet food and aquaculture formulations. Hence, both were used as industrial benchmarks
during this study. The results indicate that fishmeal and chickenmeal are ineffective at suppressing
the oxidative damage caused by neutrophil response and myeloperoxidase activity. Fishmeal and
chickenmeal even exhibit pro-oxidant behavior in some of the models used during this study. On the
other hand, it was found that BSF protein derivatives could be effective in protecting against the
cellular damage resulting from neutrophil and myeloperoxidase activities. The outcomes of this
study indicate that BSF protein derivatives could be potentially included in pet food and aquaculture
feed formulations as health-promoting ingredients.
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1. Introduction

Insects are commonly consumed as food in many cultures around the world [1–3]. In European
countries, insect proteins are gaining rapid acceptance as high value protein ingredients in animal
diets. The European Union has already approved the inclusion of insect proteins in pet food and
aquaculture feed formulations [4]. Chickenmeal and fishmeal are common ingredients in pet food and
aquaculture feed preparations, respectively [5,6]. Insect proteins are increasingly being viewed as an
alternative to chickenmeal and fishmeal in these markets [4]. Amongst all the insect being produced
on industrial scale, the black soldier fly (Hermetia illucens) larvae has gained special attention due
to its ability to grow on a wide range of organic residues and unique nutritional composition [7,8].
The nutritional suitability of black soldier fly larvae (BSF) proteins in aquaculture and pet diets is well
established [9–13].

Pets develop a wide range of health disorders with age. Aging can accelerate the free radical
damage in a pet’s body, which might lead to cognitive and locomotor system malfunctioning [14].
Similarly, oxidative stress in fish as a result of immune response could lead to compromised health [15].
Neutrophils (white blood cells) are responsible for the primary defense mechanism of the body.
Upon receiving the signal, neutrophils rush to the site of intrusion by pathogenic microbes. Then,
neutrophils inactivate the pathogens by phagocytosis and the release of reactive oxygen species (ROS).
The production of ROS is crucial for the host defense [16,17]. However, in the long term, excessive ROS
production by neutrophils could damage animal cells and might lead to cellular aging, cancer, reduced
immunity, etc. [18]. Dietary interventions that can scavenge ROS may help in reducing oxidative
damage in the animal body and resulting health conditions [14].

Some short-chain peptides and free amino acids are known to possess antioxidant activity.
These molecules can actively scavenge ROS and free radicals [19]. Studies on preparations obtained
from the hydrolysis of Amphiacusta annulipes, Bombyx mori, Gryllodes sigillatus, Locusta migratoria,
Schistocerca gregaria, Tenebrio molitor, and Zophobas morio proteins have indicated the strong antioxidant
potential of insect protein hydrolysates [20–23]. Research institutes and companies are currently
developing methods leading to the production of BSF protein hydrolysates that have superior
nutritional properties [24–27]. BSF proteins hydrolysates have a significant share of proteins <1000 Da.
This includes a mixture of short-chain peptides and free amino acids [24]. However, until now,
only a few studies have been realized to evaluate the antioxidant potential of BSF protein hydrolysates.
Firmansyah and Abduh [27] evaluated the DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity
of a BSF protein hydrolysate. On the other hand, Zhu et al. [26] evaluated the DPPH, ABTS (2,2’-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid), superoxide, and hydroxyl radical scavenging activity
of BSF protein hydrolysates. No studies have been realized to date that evaluate the antioxidant
activity of BSF protein hydrolysates using fundamental enzymatic and cellular models. Therefore,
the antioxidant potential of BSF protein hydrolysates is poorly understood on a fundamental level.
Detailed investigations on the in vitro antioxidant activity of BSF proteins and protein hydrolysates
may unlock new applications of these protein derivatives to improve animal health.

The current study investigates the antioxidant potential of BSF proteins and protein hydrolysates,
using (1) radical scavenging models involving DPPH and ABTS; (2) enzymatic models involving
myeloperoxidase activity; and (3) a cellular model involving neutrophil response. Chickenmeal and
fishmeal were used as industrial benchmarks in this study.

2. Materials and Methods

2.1. Reagents

All the reagents were of analytical grade. Dimethyl sulfoxide, methanol, ethanol,
calcium chloride, potassium chloride, sodium chloride, hydrogen peroxide, and Tween-20 were
purchased from Merck (VWR, Leuven, Belgium). Sodium nitrite, bovine serum albumin,
phorbol 12-myristate 13-acetate, and PercollTM were purchased from Sigma (Bornem, Belgium).
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Aqueous extracts and solutions were made in Milli-Q water obtained using Milli-Q water
system (Millipore, Bedford, MA, USA). Bicinchoninic acid and copper (II) sulfate solutions were
purchased from Sigma (Steinheim, Germany). Whatman filter paper grade 4 (270 mm) was
purchased from Amersham (Buckinghamshire, UK). A Sterlip 30 mL disposable vacuum filter
system was purchased from Millipore (Bedford, MA, USA). 2,2-Diphenyl-1-picrylhydrazyl and
2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) were purchased from Aldrich (Darmstadt, Germany).
8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4(2H,3H)dione (L-012) was purchased from Wako
Chemicals (Neuss, Germany).

2.2. Raw Materials

Chickenmeal (CM) and fishmeal (FM) were purchased from an online webshop in September
2019. The chemical composition of both ingredients as declared by the supplier is indicated in Table 1.

Table 1. Chemical composition of chickenmeal and fishmeal (as in basis, provided by supplier).

Nutrients Chickenmeal Fishmeal

Moisture (g/kg) 60.0 100.0
Crude protein (g/kg) 700.0 710.0

Crude fat (g/kg) 120.0 120.0
Added antioxidant No Yes (E324 *)

Form Powder

* E324: Ethoxyquin.

BSF meat (BSF-P), BSF hydrolyzed meat (BSF-HP), and BSF aqueous protein hydrolysate (BSF-APH)
were provided by Protix B.V. (Dongen, The Netherlands) in October 2019. According to the supplier,
(1) BSF-P was pasteurized minced meat that was supplied frozen at −20 ◦C (brand name: PureeXTM).
BSF-P is partially defatted and dried to produce BSF proteinmeal (brand name: ProteinXTM). (2) BSF-HP
was enzymatically hydrolyzed and pasteurized minced meat, which was also supplied frozen at
−20 ◦C (brand name: PureeXpro

TM). (3) BSF-APH was the hydrolysate of water-soluble BSF proteins
(brand name: ProteinAXpro

TM). The details about each hydrolysis step (type of enzyme and hydrolysis
conditions) employed for the production of BSF-HP and BSF-APH were not disclosed by the supplier.
It was also indicated that BSF-APH has high solubility in water (>95%). The chemical composition of
all three ingredients as declared by the supplier is indicated in Table 2.

Table 2. Chemical composition of black soldier fly larvae (BSF) protein derivatives (as in basis, provided
by supplier).

Nutrients BSF-P 1 BSF-HP 2 BSF-APH 3

Moisture (g/kg) 700.0 a 700.0 a 55 a

Crude protein (g/kg) 120 a 120 a 455 a

Crude fat (g/kg) 122.5 a 122.5 a 35 a

Added antioxidant No No No
% of total proteins

<1000 Da >6 >24 >98

Form Frozen minced meat Powder
1 BSF-P: PureeXTM; 2 BSF-HP: PureeXpro

TM; 3 BSF-APH: ProteinAXpro
TM; a Mean values based on the range

proposed by supplier.

Water-soluble extracts were prepared for CM, FM, BSF-P, and BSF-HP. These products (100 g each)
were dissolved with six times volumes of Milli-Q water based on their respective dry matter contents
(e.g., BSF-P had dry matter content of 33.3% and was diluted 200 mL Milli-Q water) and stirred for
2 h on a magnetic stirrer. Post centrifugation (1000× g for 30 min at 4 ◦C), the top fat layer was
removed, and the supernatant was filtered using a Whatman filter (Grade 4). The centrifugation
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and filtration steps were repeated to remove all non-soluble residues. Finally, the supernatant was
filtered using a Sterlip filter (50 mL, 0.22 µm) and freeze dried over a period of two days to obtain
respective water-soluble extract powders. BSF-APH was used directly because it has water solubility
>95%. All four water-soluble extract and BSF-APH powders were stored in a desiccator (at 18 ◦C) until
further use.

2.3. Protein Quantification

The protein content of the four water-soluble extracts and BSF-APH powder was analyzed using
bicinchoninic acid (BCA) protein assay [28]. The calibration curve was obtained using bovine serum
albumin (BSA) as standard at concentrations of 0, 0.125, 0.25, 0.5, and 1 mg/mL. Stock solutions of
3 mg/mL water-soluble extracts and BSF-APH were used for analysis. A test solution was made by
dissolving 4900 µL BCA (49/50) and 100 µL copper (II) sulfate (1/50). Sample stock solutions (10 µL)
and test solution (200 µL) were added in wells of a 96-well plate. This plate was incubated at 37 ◦C
for 30 min, and absorbance was measured at 450 nm using a Multiscan Ascent (Fisher Scientific,
Asse, Belgium).

2.4. DPPH Assay

DPPH radical scavenging activity was analyzed according to the protocol of
Brand-Willams et al. [29], with some modifications. DPPH test solution was made by dissolving
10.5 mg of DPPH in 40 mL of ethanol. Test solution was made fresh and stored in the dark until
further use. DPPH working solution was made by diluting the test solution with 10 times ethanol
(to obtain absorbance of 0.6 to 0.8 at 517 nm). DPPH working solution (1920 µL) was mixed with 20 µL
of the sample dilutions (four water-soluble extracts and BSF-APH in Milli-Q water) to obtain a final
concentration of 0.0125, 0.025, 0.05, 0.1, and 0.2 mg/mL. The decrease in absorbance after 30 min of
incubation in the dark was recorded at 510 nm using an HP 8453 UV-vis spectrophotometer (Agilent
Technologies, Waldbronn, Germany). Instead of sample dilutions, only Milli-Q water was used in case
of control.

2.5. ABTS Assay

ABTS cation radical scavenging activity was analyzed according to the protocol of Arnao et al. [30],
with some modifications. ABTS test solution was made by dissolving 7.0 mmol/L ABTS and 2.45 mmol/L
potassium persulfate in Milli-Q water. The test solution was kept overnight in the dark at room
temperature. ABTS working solution was made by diluting with methanol to obtain the absorbance
between 0.7 and 0.8 at 734 nm. ABTS working solution (1920 µL) was mixed with 20 µL of samples
dilutions (four water-soluble extracts and BSF-APH in Milli-Q water) to obtain final concentrations
of 0.0125, 0.025, 0.05, 0.1 and 0.2 mg/mL. The decrease in absorbance after 30 min of incubation in
dark was recorded at 734 nm using an HP 8453 UV-vis spectrophotometer (Agilent Technologies,
Waldbronn, Germany). Instead of sample dilutions, only Milli-Q water was used in case of the control.

2.6. Myeloperoxidase (MPO) Activity Using Specific Immunological Extraction Followed by Enzymatic
Detection (SIEFED) Assay

SIEFED assay is a licensed method developed by Franck et al. [31] for the specific detection of
animal origin MPO. MPO solution was made by diluting human MPO in 20 mM of phosphate buffer
saline (at pH 7.4), 5 g/L BSA, and 0.1% Tween-20. Sample dilutions at final concentrations of 0.0125,
0.025, 0.05, 0.1, and 0.2 mg/mL were incubated for 10 min (at 37 ◦C) with MPO solution at a final
concentration of 25 ng/mL. After incubation, the mixtures were loaded into the wells of a 96-well
microtiter plate coated with rabbit polyclonal antibodies (3 µL/mL) against equine MPO and incubated
for 2 h at 37 ◦C in darkness. After washing up the wells, the activity of the enzymes captured by the
antibodies was measured by adding hydrogen peroxide (10 µM), NO2

− (10 mM) and AmplexTM Red
(40 µM). The oxidation of AmplexTM Red into the fluorescent adduct resorufin was monitored for
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30 min at 37 ◦C with Fluoroskan Ascent (Fisher Scientific, Asse, Belgium). Instead of sample dilutions
only Milli-Q water was used in case of control.

2.7. Myeloperoxidase (MPO) Activity Using Classical Measurement

MPO solution was prepared as mentioned in Section 2.6. Sample dilutions at final concentrations
of 0.0125, 0.025, 0.05, 0.1, and 0.2 mg/mL were incubated for 10 min (at 37 ◦C) with MPO solution at a
final concentration of 25 ng/mL. After incubation, the mixture (100 µL) was immediately transferred
into a 96-well microtiter plate. This was followed by the addition of 10 µL NO2

− (10 mM) and
100 µL of AmplexTM Red and hydrogen peroxide mixture (at concentrations mentioned in Section 2.6).
The oxidation of AmplexTM Red into the fluorescent adduct resorufin was monitored for 30 min at
37 ◦C with Fluoroskan Ascent (Fisher Scientific, Asse, Belgium) immediately after addition of the
revelation mixture. Instead of sample dilutions, only Milli-Q water was used in case of control.

2.8. Cellular Antioxidant Activity

Preparation of the neutrophil and phorbol 12-myristate 13-acetate (PMA) solutions were made
according to Paul et al. [17]. The neutrophil response modulation activity of samples was analyzed using
the protocol of Tsumbu et al. [16]. Neutrophil suspension (1 million cells/143µL PBS) was loaded in wells
of a 96-well microtiter plate and incubated for 10 min (at 37 ◦C in the dark) with phosphate buffer saline
solution of samples at final concentrations of 0.0125, 0.025, 0.05, 0.1, and 0.2 mg/mL. After incubation,
25 µL calcium chloride (10 µM) and 20 µL L-012 (100 µM) was added in wells. The neutrophils were
activated with 10 µL PMA (16 µM) immediately before monitoring the chemiluminesence response of
neutrophils during 30 min at 37 ◦C using Fluoroskan Ascent (Fisher Scientific, Asse, Belgium). Instead
of sample dilutions, only phosphate buffer saline was used in case of control.

2.9. Statistical Analyses

All the analyses were performed in triplicate. For protein quantification, the equation of a
fitted line and R-square value were calculated using linear regression. The relationships between
concentration and inhibition obtained for antioxidant assays were non-monotonic in nature. To address
this, the locally estimated scatterpot smoothing (LOESS) regression technique was used to model the
relationship [32]. Models were fitted using the R statistical software [33]. These models require a
span parameter that defines the smoothing sensitivity of the local regressions. By visual inspection, a
span parameter value of 0.4 was found to be suitable for all concentration and inhibition relationship
curves. Concentrations with a predicted inhibition percentage of interest, such as IC50 (concentration at
which 50% inhibition is reached), were found using the fitted models in combination with a numerical
search routine.

3. Results

3.1. Protein Quantification

The calibration curve resulted in the following parameters: (1) equation of line: y = 0.3314x +

0.1503 (where x is the concentration of proteins); and (2) R-squared value: 0.9989. The optical density
of samples and relative concentration of proteins (calculated using equation of line) are mentioned in
Table 3. BSF-P extract solution (3 mg/mL) exhibits the highest and BSF-HP solution exhibits the lowest
protein concentrations amongst the tested solutions using bicinchoninic acid assay.
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Table 3. Protein quantification using bicinchoninic acid assay.

Product Product Used for Testing in all
the Assays Mean Optical Density Protein Concentration

(mg/mL)

BSF-P 1 Water-soluble extract 0.486 1.013
BSF-HP 2 Water-soluble extract 0.365 0.648

BSF-APH 3 Product as provided by supplier 0.383 0.702
FM 4 Water-soluble extract 0.425 0.829
CM 5 Water-soluble extract 0.481 0.998

1 BSF-P: PureeXTM; 2 BSF-HP: PureeXpro
TM; 3 BSF-APH: ProteinAXpro

TM; 4 FM: Fishmeal; 5 CM: Chickenmeal.

3.2. DPPH Assay

The DPPH radical scavenging activity of all five samples after 30 min of incubation is indicated
in Figure 1. The plot shows the measured values as well as fitted curves obtained from LOESS.
CM exhibited pro-oxidant behavior at all tested concentrations. Whereas FM exhibited pro-oxidant
behavior at four out of five tested concentrations. It was not possible to calculate IC50 for samples,
because the samples either exhibited pro-oxidant activity or 50% inhibition was not achieved during
the assay (see Table 4). The Emax (maximum inhibition achieved during the assay) of all the samples
are also indicated in Table 5 and are in the following order: BSF-HP > BSF-APH > BSF-P > FM.
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Figure 1. DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity of PureeXTM (BSF-P),
PureeXpro

TM (BSF-HP), ProteinAXpro
TM (BSF-APH), Chickenmeal (CM), and Fishmeal (FM) (n = 3).

Table 4. Antioxidant activity IC50 (mg/mL) of samples obtained using different assays.

Assay BSF-P 1 BSF-HP 2 BSF-APH 3 FM 4 CM 5

DPPH NE c NE c NE c NE c PO d

ABTS 0.04 0.05 0.03 0.11 0.09

MPO a SIEFED NE c 0.14 0.18 PO d PO d

MPO a Classical 0.10 0.09 0.05 PO d PO d

CAA b 0.15 0.15 NE c NE c NE c

1 BSF-P: PureeXTM; 2 BSF-HP: PureeXpro
TM; 3 BSF-APH: ProteinAXpro

TM; 4 FM: Fishmeal; 5CM: Chickenmeal;
a MPO: Myeloperoxidase; b CAA: Cellular antioxidant activity using neutrophil model; c NE: Not estimated because
50% inhibition was not achieved in tested concentrations; d PO: Not estimated because sample exhibited pro-oxidant
activity on tested concentrations.
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Table 5. Antioxidant activity Emax (% inhibition) of samples obtained using different assays. ABTS:
2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid.

Assay Parameter BSF-P 1 BSF-HP 2 BSF-APH 3 FM 4 CM 5

DPPH
Emax (%) 14.52 48.09 16.26 0.75 PO c

C * (mg/mL) 0.20 0.20 0.20 0.03 -

ABTS
Emax (%) 89.33 76.32 90.81 70.40 69.39

C * (mg/mL) 0.20 0.20 0.20 0.20 0.20

MPO a SIEFED
Emax (%) 36.23 77.58 53.08 PO c PO c

C * (mg/mL) 0.20 0.20 0.20 - -

MPO a Classical
Emax (%) 89.66 83.82 90.86 PO c PO c

C * (mg/mL) 0.20 0.20 0.20 - -

CAA b
Emax (%) 59.57 59.64 36.62 21.81 5.08

C * (mg/mL) 0.20 0.20 0.20 0.05 0.20

* C: Concentration at which Emax is achieved; 1 BSF-P: PureeXTM; 2 BSF-HP: PureeXpro
TM; 3 BSF-APH: ProteinAXpro

TM;
4 FM: Fishmeal; 5 CM: Chickenmeal; a MPO: Myeloperoxidase; b CAA: Cellular antioxidant activity using neutrophil
model; c PO: Not estimated because sample exhibited pro-oxidant activity on tested concentrations.

3.3. ABTS Assay

The ABTS cation radical scavenging activity of samples after 30 min of incubation is shown in
Figure 2 (measured values as well as fitted curves obtained from LOESS). All the samples exhibited
a similar inhibition pattern i.e., the percentage of inhibition increased as a function of increasing
concentration. The IC50 of samples are mentioned in Table 4 and are in the following order: FM > CM
> BSF-HP > BSF-P > BSF-APH. Lower IC50 reflects a higher ABTS cation radical scavenging activity.
The Emax (maximum inhibition achieved during the assay) of all the samples are indicated in Table 5
and are in the following order: BSF-APH > BSF-P > BSF-HP > FM > CM.
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3.4. Myeloperoxidase (MPO) Activity Using Specific Immunological Extraction Followed by Enzymatic
Detection (SIEFED) Assay

The MPO response modulation activity of samples obtained using SIEFED assay is shown in
Figure 3 (measured values as well as fitted curves obtained from LOESS). BSF-HP exhibited strong
inhibition behavior, with >75% inhibition at 0.20 mg/mL concentration. The IC50 of samples are
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mentioned in Table 4 and are in the following order: BSF-APH > BSF-HP. The Emax of samples are
shown in Table 5, and they are in the following order: BSF-HP > BSF-APH > BSF-P. FM and CM show
pro-oxidant behavior at all tested concentrations. On the other hand, Emax for BSF-P was <50%.Animals 2020, 10, x 8 of 17 
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3.6. Cellular Antioxidant Activity

The neutrophil response modulation activity (measured values as well as fitted curves obtained
from LOESS) and Emax of the samples are shown in Figure 5 and Table 5, respectively. All the tested
samples exhibited Emax > 0%. BSF-APH, FM, and CM exhibited Emax < 40%. CM exhibited pro-oxidant
behavior at 3 out of 5 tested concentrations. The IC50 of samples are mentioned in Table 4. BSF-P and
BSF-HP have the same numerical IC50 values.Animals 2020, 10, x 9 of 17 
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4. Discussion

4.1. Protein Quantification

The protein concentration of BSF-APH and four water-soluble extracts estimated using
bicinchoninic acid assay are displayed in Table 3. For BSF-APH, 3 mg/mL solution resulted in
protein concentration of 0.702 mg/mL, which translates into 0.235 mg proteins per gram of BSF-APH
(or 23.5% proteins). According to the supplier, the average protein content of BSF-APH is 45.5%
(see Table 2, analyzed using the Dumas method). Differences in protein content arise due to the
method of analysis. Bicinchoninic acid assay is based on the detection of bonds specific to Cys, Trp,
and Tyr. On the other hand, Dumas assay is based on the estimation of total organic nitrogen [34].
Therefore, protein content estimated using the Dumas method is always higher than that estimated
using bichinchoninic acid assay. However, comparing the two protein estimation methods is not the
goal of this study. Considering the amino acid pattern of black soldier fly proteins, FM and CM [35,36],
it could be hypothesized that the protein content of four water-soluble extracts are in the following
order: BSF-P > CM > FM > 45.5% > BSF-HP.

4.2. DPPH Radical Scavenging Activity

DPPH and ABTS assays are commonly used to analyze the antioxidant potential of food and
feed products [17]. DPPH radical scavenging activity represents the ability of a sample to donate
hydrogen atoms (referred as hydrogen atom transfer) or electrons (referred as single electron transfer)
to stabilize free radicals [29]. DPPH assay IC50 and Emax for all tested samples are mentioned in
Tables 4 and 5, respectively. Post 30 min of incubation, all the tested samples exhibit Emax < 50%
(with BSF-HP exhibiting highest Emax). According to the supplier, BSF-HP is manufactured by the
controlled hydrolysis of black soldier fly proteins and contains at least 24% of proteins <1000 Da
(see Table 2). On the other hand, BSF-P and BSF-APH contain at least 6% and 98% proteins <1000 Da.
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The authors were not able to find any representative literature for the molecular weight distribution
of FM and CM. However, according to the literature, FM and CM contain 2.2% and 1.1% free amino
acid (of total proteins), respectively [37], which translates into FM and CM containing at least 2.2%
and 1.1% proteins <1000 Da, respectively. Zou et al. [38] indicated that the capacity of proteinaceous
materials to scavenge free radicals depends on the protein molecular weight distribution. Proteins
with low molecular weight peptides could scavenge free radicals more efficiently. However, this does
not explain the fact that BSF-APH contains a higher amount of proteins <1000 Da and still exhibits a
lower inhibition of DPPH free radicals. The free radical scavenging activity of proteinaceous molecules
is also influenced by the following. (1) Amino acid composition: hydrophobic amino acids (for e.g.,
Tyr, Phe, Pro, Ala, His and Leu) have superior radical scavenging activity in comparison to hydrophilic
amino acids (2) Amino acid sequence: Peptides with an amphiphilic nature could enhance the radical
scavenging activity of a sample [38–40]. Chemical analyses have indicated that Tyr exhibits antioxidant
behavior via the hydrogen atom transfer mechanism. On the other hand, amino acids such as Cys, Trp,
and His exhibit antioxidant behavior via the single electron transfer mechanism [41].

FM and CM exhibit pro-oxidant behavior at most of the tested concentrations (see Figure 1).
This behavior mainly arises from the thermal processing. For both FM and CM, thermal processing
commonly involves heating the raw product at high temperatures for 15 to 20 min [42,43]. In Norway,
during fishmeal production, wild caught fish are subjected to heating at temperatures ≥70 ◦C for
time ≥20 min in order to achieve 100 log10 reductions of Enterobacteriaceae and Salmonella counts [44].
Such strict thermal processing conditions may result in the oxidation of fats and proteins. Fishmeal
contains lipids rich in polyunsaturated fatty acids that are more susceptible to thermal oxidation [45].
Antioxidants are commonly added in fishmeal to prevent the oxidation of polyunsaturated fatty acids
(also visible in Table 1). The heat-induced oxidation of amino acids leads to the development of a wide
range of oxidation products [45,46]. The pro-oxidant behavior of amino acid oxidation by-products is
already known. They can result in a wide range of health conditions in animal body [47]. According to
the supplier, all the black soldier fly protein derivatives used in this study were thermally processed at
temperatures <100 ◦C for time <1.5 min. The supplier also indicated that these thermal processing
time–temperature combinations were adopted to ensure minimum damage to nutrients (proteins and
fat) and the adequate inactivation of pathogenic microbiota. This implies that the pro-oxidant behavior
of FM and CM arises mainly due to the stringent production method.

In a recent study [27], researchers made BSF protein hydrolysate using a bromelain enzyme.
Bromelain-derived protein hydrolysate was also tested for DPPH radical scavenging activity,
which resulted in the IC50 of 8.4 mg/mL. The DPPH radical scavenging activity of this bromelain-derived
protein hydrolysate was much lower when compared to the activity of products such as BSF-HP
(IC50 0.18 mg/mL after 60 min of incubation). The higher activity of BSF-HP used in this study could
arise from compositional attributes (as previously discussed in this section) and the quality of the
raw material itself. Protix is reportedly producing insect proteins in GMP+ and SecureFeed certified
facilities, under HACCP conditions [7].

4.3. ABTS Cation Radical Scavening Activity

ABTS cation radical scavenging denotes the ability of a sample to donate electron and stabilize
free radicals [17]. The ABTS assay IC50 of all samples are indicated in Table 4. They are in the following
order: FM > CM > BSF-HP > BSF-P > BSF-APH. The higher the IC50, the lower the antioxidant activity.
In this assay, even FM and CM exhibit antioxidant activity. It appears that FM and CM extracts may be
efficient where free radical(s) could be stabilized using a single electron transfer mechanism. However,
they still exhibit lower scavenging activity in comparison to BSF derivatives.

BSF-APH has at least 98% proteins <1000 Da (the lowest protein molecular weight amongst all
tested samples) and exhibited the lowest ABTS IC50. The dependence of radical scavenging activity on
protein molecular weight is already explained in Section 4.2. According to the supplier, BSF-P and
BSF-HP have the same amino acid composition. However, due to protein hydrolysis (hydrolysis details
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were not disclosed by the manufacturer), the amount of proteins <1000 Da is higher in BSF-HP than in
BSF-P. It is therefore somewhat surprising that the BSF-P IC50 value was slightly lower in comparison
to BSF-HP. This could be explained by the mechanism of hydrolysis. Enzymatic hydrolysis is achieved
through exo- and endopeptidase. Exopeptidase cleaves the terminal peptide bond; on the other hand,
endopeptidase cleaves the non-terminal peptide bond [48]. In both cases, the sequence of amino acids
is altered. The radical scavenging ability of the resulting peptides via single electron transfer is also
dependent on the amphiphilic nature of proteinaceous molecules [38]. It is possible that the peptides
in BSF-HP are less amphiphilic in nature, which results in the lower ABTS cation radical scavenging
activity of BSF-HP compared to BSF-P.

Zhu et al. [26] developed BSF protein hydrolysate using a wide range of commercial enzymes.
The hydrolysates were further fractionated into the following groups using ultrafiltration: group 1
(<3000 Da), group 2 (3000 to 10,000 Da), and group 3 (>10,000 Da). The activity of these hydrolyzed
fractions was also investigated for ABTS cation radical scavenging activity. Ascorbic acid was used
as the reference molecule in this study. Interestingly, the best performing fraction and ascorbic acid
were able to inhibit 85.7% and 92.1% of ABTS cation radicals at 0.05 mg/mL concentration, respectively.
In our study, BSF-P and BSF-APH exhibit ABTS cation radical scavenging Emax of 89% and 91%,
respectively (at 0.2 mg/mL). This indicates that fractioning BSF-P and BSF-APH could result in fractions
that may have very strong antioxidant potential.

4.4. Neutrophil Response Modulation Activity

The strong free radical scavenging activities of BSF derivatives are evident from Sections 4.2
and 4.3. Furthermore, all the samples were also tested for neutrophil response modulation activity.
Neutrophils are white blood cells present in the animal body (including humans, pets, fishes, poultry,
and swine). They are involved in the primary defense against pathogens [16]. When pathogenic
microbes enter the animal body, neutrophils rush to the site of infestation and initiate defense via
the mechanism indicated in Figure 6. During degranulation, neutrophils release a wide range of
oxidative enzymes including myeloperoxidase, which results in the activation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase. NADPH oxidase is responsible for the production of
superoxide anion and by-products (e.g., hydrogen peroxide) [16,17]. Superoxide anion can further
react with the nitric oxide radical to produce peroxynitrite. This process also generates a hydroxyl
radical (by the reaction of hydrogen peroxide with metal ion) [49,50]. This battery of oxidative reactions
is crucial to the defense of the host animal. However, these ROS generated during host defense can
react with enzymes, proteins, lipids, etc., of body cells and result in the development of various health
conditions (for e.g., cellular aging, cancer, etc.) [18]. The neutrophil assay conducted in this research
determines the ability of proteinaceous molecules to scavenge ROS produced as a result of neutrophil
activity. PMA was used to activate protein kinase C present in neutrophils, which results in the
production of NADPH oxidase responsible for catalyzing ROS production. ROS production in the
system is coupled with lucigenin-amplified chemiluminescence. The ability of a proteinaceous sample
to scavenge ROS (particularly superoxide anion) is marked by a decreased chemiluminescence [51].

To the author’s knowledge, this is the first analysis of the in vitro neutrophil response modulation
activity of BSF derivatives. CM exhibited pro-oxidant behavior at 3 out of 5 tested concentrations
and had an Emax of only 5% at 0.2 mg/mL (see Figure 5 and Table 5). CM is commonly used in pet
food preparations [52]. However, the outcomes of the current study indicate that CM inclusion offers
little or no benefits relating to scavenging the ROS produced by activated neutrophils. Moreover,
CM inclusion could even result in inflammatory damage to host cells. The repetitive inflammatory
damage of canine or feline cells could translate into conditions such as accelerated aging, slow cognitive
function, etc. [14].
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On the other hand, FM exhibits mild antioxidant behavior in this assay, with an Emax of 22%
(see Table 5). At 0.2 mg/mL, FM exhibits inhibition of 5%. Aquaculture rearing media (i.e., water) offer
a continuous buffer of pathogenic bacteria. Therefore, aquaculture organisms are at the constant risk of
pathogenic bacterial invasions [53]. This results in a wide range of health conditions, including reduced
immunity, aging, etc. [15]. Our research highlights the inadequacy of FM to suppress the inflammatory
damage from repetitive neutrophil activity. This often translates into incremental cost occurring as a
result of antibiotics and nutritional supplement usage. BSF-P used in the study is also the raw material
to produce BSF proteinmeal. EU legislations already permit the use of insect proteinmeal in aquaculture
diets. BSF-P exhibits Emax and IC50 of 59.57% and 0.15 mg/mL, respectively (see Table 5). Additionally,
the supplier uses low drying temperature to convert BSF-P into BSF proteinmeal. This implies that
BSF proteinmeal will have activity similar to BSF-P. Therefore, BSF-P-derived proteinmeal could also
be effective in preventing the inflammatory damage resulting from neutrophil activity in the fish
body. Moreover, BSF-HP also exhibits neutrophil response modulation activity comparable to BSF-P
(see Table 4).

Therefore, it is possible that BSF derivatives (particularly BSF-P and BS-HP used in this study)
could offer a natural and sustainable solution to suppress oxidative damage resulting from pathogenic
invasion. The use of these ingredients may even help the aquaculture industry to improve the immune
health of fishes.

4.5. MPO Response Modulation Activity (SIEFED and Classical Assay)

The general mechanism of neutrophil response is indicated in Figure 6. The neutrophil extracellular
trap contains several molecules required to inactivate pathogenic microbes. The MPO enzyme present
in neutrophil extracellular trap can produce hypochlorous acid from hydrogen peroxide and chloride
ion. Additionally, MPO is capable of oxidizing tyrosine into the tyrosyl free radical. Both products of
MPO oxidation (hypochlorous acid and tyrosyl free radical) are crucial to inactivate pathogens. Again,
the repetitive interaction of these molecules with animal cells results in inflammatory damage [16,31].
In an animal body, MPO-Fe (III) (active form) reacts with hydrogen peroxide to form oxoferryl π cation
radical (CpI form). CpI form converts back into MPO-Fe (III) coupled with chloride ion, transforming
into hypochlorous acid. However, in the present experiment, back reduction of the Cp I form to
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MPO-Fe (III) was achieved in 2 stages. First, there was the reduction of CpI to MPO-Fe (IV) = O
via electron transfer through nitrite ions. Then, electron provisioning was done (via AmplexTM Red
oxidation to resorufin reaction), which converts MPO-Fe (IV) = O to MPO-Fe(III) form [17,31,51].
Proteinaceous molecules could prevent the oxidative damage resulting from MPO either by directly
reacting with the CpI form and terminating the halogenation or by donating hydrogen (hydrogen atom
transfer) to ROS produced as a consequence of MPO activity [16]. The MPO response modulation
activity was analyzed using the classical and SIEFED assay. The classical assay measures the ability of
a sample to complex with CpI form and stabilize ROS. Whereas in SIEFED assay, MPO is bound to
rabbit polyclonal antibodies (and the rest of the compounds are washed away), so it purely measures
the ability of samples to complex with the CpI form [31].

As with neutrophil response modulation activity, the MPO response modulation activity of BSF
derivatives is also being reported for the first time. FM and CM exhibit pro-oxidant behavior in both
the assays (see Figures 3 and 4). The presence of oxidative reaction products in FM and CM (because
of the production process) that are capable of initiating pro-oxidative response have been already
discussed in Section 4.2. Detailed in vitro investigations realized during this study indicate that the
inclusion of FM and CM in animal diets may result in inflammatory damage.

In the classical assay, BSF derivatives exhibit strong antioxidant potential, with IC50 in following
order: BSF-P > BSF-HP > BSF-APH. BSF-APH show strong antioxidant potential in the classical
assay (see Table 4), whereas, for SIEFED assay, IC50 were in the following order: BSF-APH > BSF-HP.
In the SIEFED assay, BSF-P did not reach 50% inhibition (even at the highest concentration tested).
Thus, while BSF-P and BSF-APH are more effective in stabilizing ROS, BSF-HP has higher efficacy in
complexing with the CpI form of MPO. These observations indicate that BSF derivatives could be used
in pet food and aquaculture formulations to effectively suppress inflammatory damages resulting from
MPO activity.

Free amino acids are directly absorbed from the animal intestine [54]. Whereas, the intestinal
absorption of peptides takes place by one of the following mechanisms: (1) transfer and uptake
of di- and tri-peptides by PepT1; (2) paracellular transport of water-soluble and low molecular
weight peptides via intercellular junctions; and (3) uptake of short and intermediate peptides by
transcytosis [55], indicating that the water-soluble extracts used in this study will pass the intestinal
membrane with minimum alterations. Due to this reason, BSF-APH, with high water solubility (>95%)
and the majority of proteins below 1000 Da (>98%), could be a very interesting candidate for inclusion
in pet and fish diets to promote animal health. In the future, it could be of interest to analyze the effect
of feed processing treatments on the in vitro bioactivity of BSF protein derivatives.

BSF protein derivatives used in this study offer an antioxidative advantage over FM and CM.
However, the animal body is a complex system with several biochemical processes taking place
simultaneously. Additionally, several processes interact with each other, resulting in an adapted
response [56]. It is possible that BSF protein derivatives show an altered response in the animal body.
Therefore, in the future, it could also be interesting to investigate the activity of BSF protein derivatives
using in vivo animal feeding trials.

5. Conclusions

In this study, the in vitro antioxidant activity of commercial black soldier fly proteins and protein
hydrolysates was analyzed using radical scavenging models (DPPH and ABTS assays), enzymatic
models involving myeloperoxidases activity modulation (classical and SIEFED assays), and a cellular
model involving neutrophil response modulation. Commercial fishmeal and chickenmeal were used as
industrial benchmarks. The outcomes of the present study reveal that fishmeal and chickenmeal offer
little to no advantage in terms of suppressing the oxidative damage occurring as a result of neutrophil
response and myeloperoxidase activity. Moreover, fishmeal and chickenmeal also exhibit pro-oxidant
behavior in some of the models used in this study. Results indicate that black soldier fly proteins and
protein hydrolysate could be effective in protecting against the cellular damage resulting from host
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neutrophil and myeloperoxidase response. Therefore, the black soldier fly derivatives used in this
study show advantages over chickenmeal and fishmeal for inclusion in pet food and aquaculture feed
formulations. In the future, it could be interesting to validate the fundamental in vitro knowledge
developed during this study using in vivo animal models.
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