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With the rapid development of brain-computer interface technology, as a new biometric feature, EEG signal has been widely
concerned in recent years. The safety of brain-computer interface and the long-term insecurity of biometric authentication have a
new solution. This review analyzes the biometrics of EEG signals, and the latest research is involved in the authentication process.
This review mainly introduced the method of EEG-based authentication and systematically introduced EEG-based biometric
cryptosystems for authentication for the first time. In cryptography, the key is the core basis of authentication in the cryptographic
system, and cryptographic technology can effectively improve the security of biometric authentication and protect biometrics. The
revocability of EEG-based biometric cryptosystems is an advantage that traditional biometric authentication does not have.
Finally, the existing problems and future development directions of identity authentication technology based on EEG signals are

proposed, providing a reference for the related studies.

1. Introduction

In computer science and cryptography, authentication is
defined as the confirmation of a user’s claimed identity.
Authentication is different from identity recognition.
Identity recognition identifies who the user is, while au-
thentication determines whether the user’s identity is con-
sistent with that declared in the system. The former identifies
the unique identifier corresponding to the user character-
istics, while the latter determines whether the user is a le-
gitimate user or an attacker of the system. Authentication
includes identification, and it needs to first identify the user’s
identifier corresponding to the user’s characteristics. Au-
thentication is widely used in various security systems (such
as access control) and information systems such as computer
networks. In the real world, each user has a unique real
identity, while in the network, each user needs to have a
unique digital identity.

Authentication methods can be divided into three cat-
egories: biometric (owned by the individual), password
(known to the individual), and token (owned by the indi-
vidual) [1]. The authentication based on biological features
[2] has a wide range of applications. In principle, as long as
the physiological or behavioral features of people meet the

requirements of universality, uniqueness, stability, and
anti-fraud, they can be used as biometric features for au-
thentication, such as the face, fingerprint, iris, voice print,
DNA, and gait. However, these features are prone to be
tampered with, forged, coerced, and irrevocable. The pass-
word-based authentication technology requires that the
password should be random and long enough. The password
is easy to forget unless the users have a good memory. Also,
personal passwords can be stolen, and weak passwords can
be attacked with violence and guesswork. The token-based
authentication technology, such as digital certificate [3], in
which users hold a private key corresponding to their own
identity for authentication, is considered the most secure
cryptography approach. Real-world tokens such as ID cards
and access cards usually require users to carry them around,
but they can be copied or stolen. In cryptography, the key is
the core basis of authentication in the cryptographic system.
In this review, the method of EEG-based authentication can
be divided into EEG-based biometric classification au-
thentication and EEG-based biometric cryptosystem au-
thentication. The EEG-based authentication methods are
shown in Figure 1.

The electroencephalogram (EEG)-based authentication
takes the individual difference in the EEG signals as the only
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FiGure 1: EEG-based authentication methods.

corresponding identity and performs authentication. As a
new type of biometric feature [4], EEG signals meet the basic
requirements of authentication [5]. Different from the
biometric features such as fingerprints and faces, which are
easily affected by external factors, EEG signals are relatively
stable. Since EEG signals are generated by neural activities in
the brain, they have a unique neural pathway pattern and are
difficult to forge in terms of physiological theories. Studies
have shown that different individuals produce different EEG
signals by endogenous spontaneous generation and exoge-
nous stimuli-induced generation [6], confirming the
uniqueness of human EEG signals to a certain extent. The
EEG signals under stimulus are different from those under a
normal condition; that is, EEG signals can be used as a kind
of biometric feature to monitor the abnormal state of people.
When the brain is in a compulsion state, it cannot produce
EEG signals. This phenomenon can be used as an effective
indicator to differential between voluntariness and intimi-
dation. Besides, since EEG signals can only be generated by a
living body, the EEG signals will no longer exist once an
individual dies, making it highly stress-resistant.

Biometric features are generally divided into physio-
logical features (fingerprints, iris, DNA) and behavior fea-
tures (gait, signature). Because of its high dependence on
task behaviors and emotional sensitivity, EEG signals are
characterized as a fusion of physiological and behavioral
features. Compared with traditional biometric features, task-
dependent EEG authentication has the revocability that
other biometric authentications do not have. Also, its high
dependence on tasks allows it to show different character-
istics according to tasks. Once certain characteristics are lost
or stolen, they can be revoked in time to prevent the system
from being attacked. Therefore, EEG signals can effectively
solve the irrevocable problem of traditional biometric
features.

The initial research on EEG signals focused on the
medical field, especially the abnormal discharge behavior of

the brain such as epilepsy and other neurological diseases.
With the technological development of the brain-computer
interface [7, 8] and the commercial acquisition equipment,
the EEG signals can be easily obtained, providing powerful
tools for the research on brain neuroscience and promoting
the study of EEG signals to a new level. The brain-computer
interface establishes a direct interaction path between the
brain and the computer. Based on the interface, the brain can
directly control the computer or equipment without going
through the nerve or the muscle. The brain-computer in-
terface can decode [9] human intentions, mental states, and
emotional changes [10] and encode them as control in-
structions to control external devices [11]. Also, it gives
feedback through the neural interface to stimulate and
regulate the central nervous system. Although most brain
control technologies, intention recognition, and disease
diagnosis are hoped to be widely used between different
subjects to achieve good compatibility, the decoding of EEG
signals of different subjects is actually a kind of decoding of
different identities. With the rapid development of con-
sumer-grade noninvasive brain-computer interface devices
such as EMOTIV System [12]and NeuroSky [13], the devices
have become more portable, commercial, and popular, and
they are widely used by researchers. EEG and brain-com-
puter interfaces are faced with security issues [14, 15]. For
example, the devices may be attacked, and the private in-
formation involved in the personal EEG signals may be
leaked [16]. To solve the security problem, authentication
can effectively control access, and EEG signals as the bio-
metric feature of the brain-computer interface system are
undoubtedly the best natural feature for authentication.
Similar to the current smart terminal that can only be used
by legitimate users, the EEG and the results of analysis and
processing can only be accessed by their owners.

EEG as a biometric has been studied in-depth by many
researchers [17]. Gui et al. [17] summarized the EEG as a
biometric, and Bidgoly et al. [18] fully discussed the methods
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and challenges of EEG-based authentication. Based on their
work, this review makes a further analysis and proposes to
divide the authentication methods into EEG-based bio-
metric classification authentication and EEG-based bio-
metric  cryptosystem  authentication,  which  was
systematically introduced for the first time. Also, this review
analyzes some of the latest research results (such as the
influence of EEG frequency channel position on the accu-
racy of certification, phase synchronization characteristics,
and multimodal combination authentication) and safety
issues. The rest of this study is organized as follows. Section 2
introduces the physiological basis of EEG, and Section 3
describes the EEG acquisition methods. Section 4 introduces
the pretreatment methods of EEG biometric authentication.
Section 5 discusses the feature extraction methods of EEG
signals. Section 6 introduces the authentication methods of
EEG. Section 7 presents the existing problems and future
development direction of EEG certification. Finally, section
8 concludes the paper.

2.EEG

2.1. Physiological Characteristics of EEG. EEG is a method of
using electrical signals to record brain activity. It is the sum
of the postsynaptic potentials of many neurons in the ce-
rebral cortex, and it is a multichannel recording of the
subject’s response activities in the central and autonomic
nervous systems [5]. The central nervous system, including
the brain and spinal cord, responds consciously to external
stimuli. The autonomic nervous system is a control system
that works unconsciously to regulate body functions, such as
heart rate, breathing, and pupillary response. EEG signals
reflect the neural activities generated by internal and ex-
ternal stimuli. Also, they represent physiological and be-
havioral information.

EEG contains a large number of physiological charac-
teristics, including individual cognitive ability [19], gender
[20], age, disease, emotion [21, 22], and other individual
differences. There are considerable individual differences in
brain structure and extensive cognitive functions. Different
individuals have unique connectivity between different
functional areas of the brain [23, 24]. The EEG signal of
different individuals performing the same task is signifi-
cantly different, but that of the same individual performing
the same task is relatively stable and repeatable. Therefore,
EEG signal has unique and stable characteristics [18]. The
EEG is highly dependent on the individual’s neural activity
that has a very complex and unique nonlinear neural
pathway. In this case, it can be affected by external stimuli,
personal emotions, pressure, and mental state. The collection
of EEG requires special equipment, and the collected in-
formation is not exposed like faces or fingerprints, making it
difficult for attackers to forge fake faces or use gelatin to
forge fingerprints [25].

2.2. EEG Frequency. EEG signals have different frequencies
in different neural states of brain activity. Researchers are
trying to investigate the frequency bands of EEG to find the

most suitable one for authentication and reduce the amount
of data for analysis. Person in different physical or psy-
chological states displays different EEG frequencies. The
rhythmic activity within a certain frequency range repre-
sents a specific brain activity condition. Therefore, different
frequency bands of EEG are usually studied in a targeted
manner, and the characteristics of the bands are listed in
Table 1 [17].

Zhang et al. [26] calculated the cosine similarity of the
EEG signals of different subjects and revealed that the av-
erage similarity of the EEG signal in the delta band is the
lowest. That is, the signal contains the most distinguishable
features and the most unique information for identification,
and it is the most stable waveband in different states. The
researchers thought that the better stability of the EEG signal
in the delta band is because the delta frequency band is the
most basic waveband necessary for physiological activities in
any state [26]. Altahat et al. [27], Wang et al. [24], and Li
et al. [28] found that the authentication accuracy of the EEG
signal in the beta and gamma bands is higher than that of the
EEG signals in other frequency bands. The reason is that the
EEG signal in the gamma frequency band is the main
component of the EEG signals produced by visual infor-
mation processing tasks, and the EEG signal in the beta
frequency band is the main component of the EEG signals
produced by visual-related mental tasks. The studies of
Kumar et al. [29], Nguyen et al. [30], and Thomas and Vinod
[31] have shown that the gamma band has the highest
performance. The reason may be that the gamma band is
more chaotic and complex than other bands, making it more
nonlinear and unpredictable [32].

Although many researchers divide EEG signals into
different frequency bands for authentication, the charac-
teristics of individual differences in brain neural activities are
distributed in all frequency bands, and there is no single
frequency band that can contain all identity-related infor-
mation [27]. Researchers achieved different results for dif-
ferent frequency bands because they used different stimulus
tasks. The main components of EEG signals induced by these
stimulation tasks are distributed in different frequency
bands, so a high accuracy can be achieved in the frequency
band highly corresponding to the task.

2.3. Locations of Brain Functional Areas of EEG. 'The research
of Bergson et al. [33] pointed out that the brain has a normal
background level, i.e., a spontaneous EEG activity pattern
that fluctuates throughout the brain. Human cognition and
decision-making have a random effect on this spontaneous
EEG background level [33]. Thus, the original EEG is
composed of inherent background EEG, task-awareness
EEG, and noise. The collection of EEG data generally re-
quires task induction, and the execution of the task corre-
sponds to different specific brain regions. Although the EEG
has a high time resolution, its spatial resolution is very low,
and it requires the corresponding electrode to be placed in
different positions on the scalp. Thus, understanding the
area of the brain where the response is generated is crucial to
promoting the optimal or suboptimal selection of the
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TasLE 1: Different frequency band characteristics of EEG signals [17].

Frequency Frequency Amplitude Status Main region

band range

Delta 1-4Hz  20-200uV Infant, adult de.ep sl?ep, deep anesthesia, Occipital and frontal lobes

physiological coma

Theta 4-8Hz  100-150uV Adolescents, adults in fatigue, depression, or old age Parietal and frontal lobes

Alpha 8-13Hz  20-100uV Adults are sober and quiet Posterior occ1p1;'glbleobe and parietal

Beta 13-30Hz  5-20uV Fully awake, irritated, and excited Frontal and temp;);:islobes, and central

Gamma >30Hz <2uV Cognitive learning and information processing Somatosensory centre

number of electrodes used and their positions. The number
and positions of the electrodes selected by different re-
searchers for different tasks are listed in Table 2.

Ruiz-Blondet et al. [39] believed that data in the O2
channel are the most stable and effective in the semantically
induced ERP paradigm. Jin et al. [40] believed that the
characteristics of the identity information are mainly con-
centrated in the seven channels of Fz, FC1, FC2, Cz, CP1,
CP2, and Pz. Salem and Lachiri [41] believed that PO3, PO4,
01, Oz, and O2 carry the most suitable identification in-
formation for biometric authentication. Due to individual
differences, choosing a different set of EEG channels for each
person will improve the accuracy of authentication [27]. Wu
et al. [34] built an optimized channel-based model for each
user to improve authentication accuracy and robustness.
Meanwhile, genetic algorithms can be used to optimize the
authentication channel. Therefore, similar to the frequency
band selection, the choice of electrode position is also highly
dependent on the stimulation task.

3. EEG Acquisition on Different Tasks

The neuronal firing of the brain is highly dependent on the
human mental state; that is, it is very sensitive to external
environmental stimulation and endogenous autonomous
regulation. Therefore, it is necessary to design a special
collection paradigm to collect EEG signals purposefully.
According to whether an EEG is evoked or not, the EEG can
be divided into spontaneously generated EEG (such as
resting-state potentials and sleep potentials without tasks
and stimulation) and evoked EEG with specific stimulus
protocols for specific tasks (such as motor imagination and
vision for specific imaging tasks) [18], which are used to
study EEG signals with temporal characteristics under
spontaneous state, environmental perception, and complex
cognition. Because of the unique brain neural pathways and
thinking patterns between different individuals, there are
different types of task signals. Even in the same type of task,
the EEG under different tasks is also different. Choosing a
suitable induction paradigm will have a great impact on the
recognition results, so the choice should be made according
to specific tasks.

3.1. Resting State. The resting state is a state in which the
brain does not perform specific cognitive tasks and remains

quiet, relaxed, and awake. As the most basic and essential
state of the brain, the resting state does not require subjects
to perform specific tasks or receive any external stimuli.
Many researchers have proved that the brain of different
people in a completely resting state produces different EEG
signals, and these signals carry unique characteristics of the
subject [36, 42-44]. The EEG is suitable for use in a universal
environment. However, this paradigm is greatly influenced
by the outside world, and it is difficult to ensure complete
silence in a real application environment. However, because
of the concealment of EEG, the researcher cannot guarantee
that the subject is indeed in a completely quiet state, and the
subject’s extra activities will seriously affect the accuracy of
certification.

3.2. Motor Imagination. The motor imaging (MI) induction
task induces the corresponding EEG signals when the
subject imagines a certain limb or tongue movement.
Modern neuroelectrophysiology research reveals that when
limb movement or motor imagination is performed, the
EEG has significant individual differences [45]. Studies have
shown that the resting potential is less noisy than that of the
motor imagination task, and the EEG of the motor imagi-
nation task is less noisy than that of the real movement task
[27]. Since the EEG of motor imagination tasks has better
individual differences, it has been used for authentication in
recent years [46]. This method is suitable for all kinds of
patients with physical disabilities and visual defects, and it
has good applicability. However, motor imagination tasks
are faced with blindness in some cases, and the execution of
motor imagination cannot induce obvious signals.

In recent years, with the development of technology,
some imagination tasks similar to the motor imagination
paradigm have also been used for authentication. For ex-
ample, speech imagination is originally applied to people
whose brain function still works despite speech muscle
damage. However, researchers found that speech imagina-
tion is more natural and simpler than motor imagination,
and it does not require any external stimulation. Besides, it is
relatively difficult to cause fatigue [47].

3.3. Event-Related Evoked Tasks. The event-related potential
(ERP) evoked task is a special kind of evoked task [48]. It
reflects the cognitive process by averaging and
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TaBLE 2: Number and positions of electrodes selected by different researchers for different tasks.

Researchers Tasks Numbers Positions

Wu et al. [34] ERP 16 Fz, Cz, P3, Pz, P4, Po7, Oz, Po8, C3, C4, F3, F4, Af7, Af8, Cp5, Cp6
Koike-Akino et al. [35] ERP 14 AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1, O2
Keshishzadeh et al. [36] Resting state 6 C3, C4, P7, P8, O1, 02

Thomas et al. [31] MI 19 Fpl, Fp2, F3, F4, Fz, F7, F8, T7, T8, C3, Cz, C4, P3, Pz, P4, P7, P8, O1, O2
Gui et al. [17] VEP 6 Fpz, Cz, Pz, O1, 02, Oz

Das et al. [37] MI 17 FZ, F3, F4, F7, F8, CZ, C3, C4, T3, T4, PZ, P3, P4, T5, T6, O1, O2
Kumar et al. [29] VEP 14 AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1, 02

Huang et al. [38] VEP + sound 14 AF3, AF4, F3, F4, F7, E8, EC5, FCe, T7, T8, P7, P8, O1, O2

superimposing the brain potential recorded from the scalp
when a person performs cognitive processing on an object.
Event-related potentials have high time resolution and can
measure immediate responses to short stimuli. They are
usually measured in terms of latency and amplitude changes
in the positive and negative potentials in milliseconds after
the stimulus occurs. Common event-related potential
components can be divided into P100, N100, N200, N250,
P300 [35], N400 [49], and so on in order.

The most common event-related potential is the visually
evoked potential. Visually evoked tasks mean specific neural
activities that are induced by the nervous system and receive
external visual stimuli (such as graphics or flashing stimuli)
[29]. To generate stable and strong correlation signals, ex-
ogenous evoked events are often used as repetitive sensory
stimuli, for example, steady-state visually evoked potential
(SSVEP). Also, the differences between individuals are ob-
vious. Besides, the SSVEP has a better signal-to-noise ratio
and anti-artifact ability. The disadvantage of the visually
evoked task is that the task requires a dedicated external
device to generate stimulation. Also, the subject should have
normal vision, which is not friendly to users with visual
problems. Besides, strong visual stimulation is likely to cause
visual fatigue and emotional resistance of the subject, af-
fecting the recognition results significantly.

Common ERP evoked tasks include semantic cognition-
based neural activity measurement tasks, fatigue driving
tasks [50], rapid visual serial representation (RSVP) [51],
and steady-state auditory evoked potentials [52]. For ex-
ample, the task of reading acronyms and mental arithmetic
multiplication, as well as some reading tasks, will produce a
strong and stable potential of N400 [53, 54]. Event-related
tasks such as semantic cognition reflect different responses
of the brain to familiar and unfamiliar object stimuli. The
potential of N400 can be obtained when subjects are pre-
sented with familiar acronyms that are larger than their
unfamiliar acronyms [39]. Studies have shown that in the
RSVP event-related task, subjects are presented with a
continuous image sequence of target and nontarget images,
resulting in a strong individual difference in the ERP po-
tential. This difference is widely used for authentication.

3.4. Multitask and Task-Independent. It is generally believed
that the EEG of one type of task generally has a lower
authentication accuracy than that of multiple types.
Therefore, some researchers have designed a complex

multitask [48] evoked paradigm to make the EEG consist of
more individual different feature components, thus
achieving higher recognition accuracy. These paradigms
include the multitasking paradigm of visually evoked and
auditory evoked combination [38], the multitasking para-
digm of imaginary text, mathematical operations, and visual
stimulation [55], the multitasking paradigm of visual
stimulation, multiplication, letter combination, and graphic
rotation, and other complex multitasking paradigms [56].
However, data of multitask are more complicated than that
of a single task, increasing the difficulty of decoding and also
causing mental fatigue and resistance to the subjects.
Multitasking can improve the recognition accuracy to a
certain extent, and different researchers with different tasks
usually use different methods, which makes the method
poorly transferable to different tasks. Therefore, some re-
searchers hope that no matter what tasks the subjects are
performing, they can achieve a good authentication effect,
that is, task-independent [57].

4. Data Preprocessing

4.1. Time-Domain Analysis. The time-domain analysis
method of EEG signal extracts effective information from
the time domain of the signal to reduce noise reduction and
facilitate further processing. EEG signals are generally
manifested as waveforms in the time domain, and the time-
domain analysis method can analyze the waveform infor-
mation. The time-domain waveform of the EEG signal
contains all the characteristics of the time dimension. It
changes with time and shows the non-stationarity of the
signal. Statistical methods and signal smoothing techniques
such as mean, median, variance, and normalization are often
used to extract the necessary information from the signal to
obtain a higher signal-to-noise ratio.

4.2. Frequency-Domain Analysis. The frequency-domain
feature uses the Fourier transform-based technology to
convert the EEG signal into a frequency distribution. The
EEG power spectrogram in the frequency domain depends
on the change in frequency. According to the power
spectrogram, the distribution of different frequency bands of
the EEG signal is analyzed. The frequency-domain analysis
of EEG signals mainly uses analysis methods such as filters
and frequency spectrum estimation. Power spectrum esti-
mation is an analysis method that describes the random



characteristics of the EEG signal in the frequency domain.
This method is the basis of other frequency-domain analysis
methods, such as Chebyshev filter, Butterworth filter, and
AR parameter model estimation. Low-pass filtering of EEG
signals by the Chebyshev filter can obtain EEG signals of
specific frequency bands [34, 58]. The research by Pozo-
Banos et al. [48] revealed that the neural features extracted
from the EEG spectrum are largely independent of the
recorded cognitive tasks and experimental conditions. It is
suggested to use this task-independent neural signature for
accurate biometric authentication [48].

4.3. Time-Frequency Domain Analysis. The time-frequency
domain analysis method combines the time-domain and
frequency-domain information of EEG signals for analysis.
Meanwhile, it transforms the signals of the one-dimensional
time dimension and frequency dimension into a two-di-
mensional form. This method has a few advantages. First, it
can avoid the loss of frequency information during time-
domain analysis and the loss of signal waveform transients
during frequency-domain analysis. Also, it can extract
features that cannot be simultaneously expressed in a single
domain, such as the frequency information contained in
each moment. Currently, the most widely used time-fre-
quency domain analysis methods include short-time Fourier
transform, wavelet transform, and wavelet packet decom-
position [17].

4.4. Spatial-Domain Analysis. To collect enough informa-
tion for the authentication of EEG signals, researchers
generally use multiple electrodes to collect signals, and
different tasks involve different brain regions and the as-
sociated information between the corresponding electrodes.
Spatial-domain analysis can reduce noise, detect and remove
artifacts, and analyze the signal components with important
characteristics. The commonly used spatial-domain analysis
methods include common average reference (CAR) [59],
principal component analysis (PCA), independent compo-
nent analysis (ICA) [38, 60], and Laplacian spatial filter.
CAR calculates the average value of all electrodes and
eliminates noise by removing the average value of all
electrodes. Then, it obtains the most important information
in the EEG signal and removes the artifacts in the signal [37].

4.5. Nonlinear Dynamics Method. The nonlinear dynamics
method analyzes the functional activity state of the brain by
combining chaos and fractal theory and other nonlinear
dynamics principles and methods. Modern physiology
studies believe that the brain is a chaotic dynamic system,
and the amplitude exhibits random changes over time [32].
The EEG signal contains the information of thousands of
neuron activities. Also, the interconnections and firing
behaviors of neurons are nonlinear. Thus, it is considered
that the underlying neural subsystem that generates the EEG
signal is nonlinear [61]. In recent years, with the study of the
correlation between different brain regions and the con-
nectivity of neuron firing, nonlinear methods such as phase
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synchronization and brain connection networks have been
proposed. Researchers focus on nonlinear characteristics
such as the firing process and the degree of coordination and
asynchrony of brain neurons involved in neural activities. In
this way, the information that is involved in the general
time-frequency domain can be extracted.

5. Feature Extraction

5.1. AR Parameter Model. AR parameter model is one of the
earliest and most commonly used feature extraction
methods for EEG signals [36, 47]. It exploits the Fourier
transform-based method to calculate signal spectrum. The
key is a linear regression model that combines random
variables in the past to describe the random variables in the
later period, which usually leads to better results. The
spectrum estimation accuracy of the AR model is highly
correlated with the model order. If the model order is not
high enough, the spectrum estimation will be blurred, and if
the model order is too high, the spectrum will exhibit a false
peak. The model order depends on the signal spectral
content and sampling rate. As early as 1999, Poulos et al. [62]
used the fast Fourier transform to preprocess the EEG signal,
and they used the signal to construct an 8-order AR model
for authentication.

5.2. Power Spectral Density. Power spectral density (PSD)
defines the distribution of the power of a signal time series
with frequency, and it is a measure of the mean square value
of arandom variable. PSD is used to indicate the distribution
of signal power at each frequency point. Although the total
energy of a random signal is infinite, its average power is
limited. Based on the random characteristics of the EEG
signal, the frequency-domain power spectral density of the
EEG signal can be analyzed, and the power spectral density
characteristics can be extracted for classification or
encoding [31].

5.3. Common Space Pattern. Common space pattern (CSP)
is a spatial-domain filtering feature extraction algorithm for
two classification tasks, which can extract the spatial dis-
tribution components of each category from multichannel
EEG signals. By searching for the projection direction that
can best distinguish the two types of signals, the feature
vector with a high degree of discrimination can be obtained.
Baig et al. [63] firstly used the CSP algorithm to extract the
feature set in the state of left-hand and right-hand motion
imagination. Then, the feature subset was sent to the SVM
classifier to build the classification model. In this way, an
average classification accuracy of more than 95% is obtained.
However, this algorithm is not suitable for multi-classifi-
cation problems.

5.4. Phase Synchronization. The EEG signal is composed of
amplitude and phase information. Due to the lack of phase
information measurement and calculation methods, tradi-
tional research focuses on the amplitude analysis of a single
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electrode but ignores the phase information. The cognitive
activities in the brain integrate the functions of each brain area
and the continuous interaction between the brain areas.
Meanwhile, the synchronization in neurobiology adjusts the
oscillating neurons to synchronize the discharge of related
neurons. Phase synchronization describes the instantaneous
phase relationship between different channel pairs, reflecting
the interaction between the channel pairs and the difference in
the structure of individual white matter. Since phase syn-
chronization is the external manifestation of the individual’s
intrinsic identity, its measurement can provide a more stable
estimation of the brain function connectivity [23] than the
time-domain measurement. The brain function connectivity
is expressed as the channel position information relationship.
Therefore, the relationship between the phase synchroniza-
tion and the physiological characteristics of the brain can be
exploited to analyze the phase synchronization characteristics
of each channel. Meanwhile, a phase synchronization matrix
or brain connection network [64] can be constructed. Kong
et al. [65] regarded each channel as a node in the brain
network, and they used the phase synchronization between
nodes as the connection strength. The phase synchronization
was measured by the phase lock value to generate a con-
nection matrix, and the number of edges connected to the
node (ie., the node degree of the brain network) was syn-
thesized. Based on this, the construction feature was used for
authentication [65]. Wang et al. [24] proposed a graph feature
analysis method based on the brain-connected network to-
pology. By investigating the interaction mechanism of mul-
tichannel brain network structure nodes, a special subjective
brain network was defined. Then, the impact of different
connection indicators, map characteristics, and EEG signal
frequency bands on the performance of biometric recognition
was analyzed, revealing the huge individual differences in the
brain function connection network constructed by phase
synchronization [24].

6. Authentication Method

6.1. EEG-Based Biometric Classification Authentication.
Feature extraction aims to extract the features that can
distinguish each individual. The method of classification
treats each person as a category, and the extracted features
are divided into categories that can correspond to each
individual. The classification model is trained through su-
pervised learning to realize a one-to-one correspondence
between the features and identities for authentication.

6.1.1. Shallow Classification

(1) Linear Discriminant Analysis (LDA). LDA is a classic
linear learning method that tries to find a linear combination
of features between different categories to characterize or
distinguish them. The samples are projected onto a straight
line to make the samples of the same category as close as
possible and the samples of different categories as far away as
possible. Based on this, classification of the samples can be
achieved. LDA is one of the most widely used shallow

classifiers in EEG-based authentication [58, 66]. Kong et al.
[65] measured the phase synchronization by calculating the
phase lock value (PLV). Then, they constructed a coherence
matrix to obtain a weighted undirected network and used
the node degree of the brain network to generate feature
vectors, achieving an accuracy of 95% in the LDA classifi-
cation. Koike-Akino et al. [35] collected P300 components
on the ERP paradigm data set consisting of 25 subjects and
extracted features through PCA and partial least squares.
Using LDA, an accuracy of 96.7% can be achieved. Seha and
Hatzinakos [52] recorded the EEG signals of 40 subjects
under the stimulation of multiple auditory tones modulated
in the frequency bands of 40 Hz and 80 Hz based on the
steady-state auditory evoked task. Then, they used canonical
correlation analysis (CCA) to extract features and input
them into LDA. In this way, an accuracy classification of
96.46% was achieved.

(2) Support Vector Machine (SVM). SVM 1is a two-classi-
fication model that classifies samples by a hyperplane with
the largest interval. It achieves nonlinear classification
using different kernel functions. Currently, it is widely
used in EEG-based authentication [67]. Keshishzadeh et al.
[36] used AR to extract features from the resting-state EEG
signals of 104 individuals with closed eyes. Then, they used
the exponential normalization method to normalize the
extracted features based on the augmented reality model in
two steps. Next, the features were mapped to [0, 1] before
classification to produce more stable and better results.
Using the SVM classification model, the method achieved
an accuracy of 97.43% [36]. Brigham and Kumar [47] used
AR parameters in feature extraction and exploited an SVM
model for classification and authentication on the imag-
ined speech data sets consisting of six subjects. This
method achieved an average accuracy of 99.76% [47].
Bashar et al. [42] firstly used a band-pass filter to pre-
process the EEG signal to remove noise, and then, these
signals were divided into linearly independent segments.
Next, three feature extraction methods were applied, in-
cluding the multiscale shape description (MSD), multi-
scale wavelet packet statistics (WPS), and multiscale
wavelet packet energy statistics (WPES). These features
were finally used to train a supervised error correction
output code multiclass model (ECOC) using SVM clas-
sification. The model passed preliminary tests on nine EEG
records of nine subjects and achieved an accuracy of
94.44%. Besides, single-class SVM such as support vector
data description (SVDD) is also used for authentication.
SVDD is a single-value classification algorithm that can
distinguish between target samples and nontarget samples.
In the Graz data set B of the 2008 BCI competition, Pham
et al. [46] took the AR parameters and PSD components of
the signal as features and used SVDD classification,
achieving an accuracy of up to 99.9%.

(3) Low-Rank Sparse Decomposition. The low-rank sparse
decomposition method is proposed by Kong et al. [65], and
it is different from the traditional shallow classification
method. The existing studies revealed that the original



EEG is composed of inherent background EEG, task-
consciousness EEG, and noise. In [65], the superposition
principle of the background part and the task-con-
sciousness part of the EEG was studied. Also, the inherent
background EEG was used for authentication through the
low-rank sparse decomposition of the EEG signal. Kong
et al. [65] exploited the GoDec+ algorithm to decompose
the low-rank sparseness of the EEG signal and extracted
the low-rank background EEG signal from the raw EEG
data. The background EEG signal subspace of each subject
was constructed and assembled into a whole space, and the
test samples were matched to achieve efficient classifica-
tion. Based on this, the feasibility of extracting background
EEG for authentication under different data sets and
specific tasks was verified, and an accuracy of more than
95% was reached. For a data set containing different tasks,
the highest accuracy reached 99.95%. Because the low-rank
sparse decomposition method discards task-related sig-
nals, it can be used on the data sets for various tasks
theoretically.

(4) Other Classification. Zeynali et al. [67] used five mental
activity data sets of seven subjects (325 samples). Through
discrete Fourier transform, discrete wavelet transform, AR
modeling, and entropy feature extraction, the Bayesian
network (BN) [68] can achieve an accuracy of 85.97% [67].
Wang et al. [24] proposed a graph feature analysis method
with brain-connected network topology features and
classified features based on the Mahalanobis distance.
Compared with traditional univariate methods, the pro-
posed graph-based method improved the stability of au-
thentication effectively [24]. Gui et al. [17] used overall
averaging and low-pass filtering to reduce the noise of EEG
signals. Then, according to the five main frequency sub-
bands of the EEG signal, wavelet packet decomposition
(WPD) was exploited to extract the features of the EEG
signal. Based on artificial neural networks (ANNs), the
classification achieved an accuracy of about 90% [17]. Wu
et al. [34] used visually evoked EEG signals based on self-
face and non-self-face, and they compressed the multi-
channel EEG signal into a single-channel signal. Then, the
logistic regression analysis was conducted to extract the
time-domain features. Finally, the classification was per-
formed with hierarchical discriminant component analysis
(HDCA), achieving an accuracy of 91.46%. In addition to
the commonly used shallow classification for EEG-based
authentication, the learning vector quantization (LVQ)
[62], k-nearest neighbors (KNN) [49, 55], hidden Markov
model (HMM), random forest (RF) [60, 69], etc., are also
used for classification.

Due to the complexity of collecting EEG signals, the
differences between the brain regions that induce excitement
and the tasks of EEG signals, the commonly used feature
extraction methods have their limitations. For example, it is
difficult for a feature extraction method and classification to
get good results on all individuals. Shallow classifications can
be used in combination to achieve better classification re-
sults. The shallow classification methods for EEG authen-
tication are listed in Table 3.
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6.1.2. Deep Learning. Shallow classifications can usually
achieve good classification results when the classification
boundary is relatively clear. This requires that the feature set
obtained by feature extraction has a high degree of dis-
crimination. Although it is possible to design feature ex-
traction and classification methods for the EEG signals of
specific tasks, it is difficult to apply the methods to EEG
signals of other tasks to have a good performance. The data
processing of traditional machine learning is easy to lose
information. Meanwhile, specific feature extraction methods
generally require the professional knowledge of field pro-
fessionals, and the extracted features are single and insuf-
ficient. Besides, most existing machine-learning methods
focus on studying static data, which cannot classify time-
varying EEG signals accurately.

Therefore, it is proposed to use deep learning models for
decoding EEG signals because the models can effectively
capture the high-dimensional feature representation of the
signals and the potential relationship of internal features
through the nonlinear deep structure. For EEG signals with
complex information content and strong time-varying and
inconspicuous features, it is possible to extract a deep di-
mension and significant feature representation. Maiorana
etal. [57] used Siamese CNN to learn deep features for task-
independent authentication. In addition, the deep learning
models can perform on the original data directly without
complex preprocessing and feature extraction processes.
These models can be used for feature extraction, classifiers,
or feature extraction firstly and classification then as needed.

(1) Convolutional Neural Network (CNN). A deep learning
network model generally has many layers, and more deep-
level internal features can be obtained through a deeper
structure. In this case, the structure of a deep learning
network is complex with a large number of parameters. If the
data required for deep learning are sufficient, the learning
process will be long and complicated. CNN is a deep neural
network with a convolution kernel. Because of the convo-
lution kernel, the convolutional layer is partially connected
to the previous layer and shares parameters, which greatly
reduces the number of network parameters. CNN has been
widely used in image recognition and other applications, and
great success has been achieved. It is considered to be able to
extract salient features with specific and possibly unknown
internal structures. In recent years, CNN has also been used
by researchers to analyze and decode EEG signals
[34, 43, 67].

Mao et al. [50] directly input the raw EEG data of 100
subjects during fatigue driving into CNN. The CNN with
tully connected layers can accurately identify subjects with
an accuracy of 97% [50]. Das et al. [37] used CAR spatial
filter to preprocess the collected EEG signals on the motor
imaging data set consisting of the data of 40 healthy subjects
to reduce the potential inappropriate EEG signal artifacts.
Then, the obtained data were spectrally filtered to obtain the
alpha frequency band that is considered to contain the most
important information in the EEG signals of this task. After
multiple EEG signals of the same stimulus were averaged, a
CNN with four convolution layers, two maximum pooling
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TaBLE 3: Shallow classification methods for EEG authentication.

Researchers Tasks Feature extraction Classification Accuracy (%)
MI . 99.1
Kong et al. [65] DRI mental task Node degree of brain network LDA 99.3
Salem et al. [41] MANHOB-HCI VEP CNN SVM 99.99
Seha et al. [52] Listening CCA LDA 96.46
Wu et al. [34] FRSVP VEP Fisher LDA and logistic regression HDCA 91.46
g(;ake—Akmo etal ERP PCA and partial least squares LDA 96.70
Brigham et al. [47] Imagined speech AR SVM 99.76
{z’é*]‘rathne el istening + VEP + ERP Csp LDA 96.97
%(;lsihlshzadeh et al. Resting state AR SVM 97.43
. Individual alpha frequency (IAF) delta Cross-correlation values and
Thomas et al. [31] Resting state band power (DBP) Mahalanobis distance 20
Bashar et al. [42] Resting state MSD, WPES ECOC-SVM 94.44
Gui et al. [17] VEP WPD ANN 90
Pham et al. [46] MI AR, PSD SVDD 99.90
Zeynali et al. [67] Mental task DFT, DWT, AR BN 85.97
v ' e SVM 84.49
Wu et al. [34] RSVP Fisher LDA HDCA with genetic algorithm 94.26

layers, one ReLU, and one softmax loss layer was used,
achieving an accuracy of 99.3% after 200 iterations [37]. Zhu
et al. [70] proposed a residual multiscale spatiotemporal
convolutional neural network RAMST-CNN for authenti-
cation to efficiently utilize different levels of information.
Through different scales of convolution kernels, the time-
domain and space-domain features of the data were learned.
Meanwhile, through global average pooling, the number of
network parameters was reduced. The model extracted deep-
level features from the original EEG signal and achieved a
stable accuracy of 99.96% on multiple data sets [70]. Chen
proposed a new CNN (GSLT-CNN) with global spatial and
local time filters. The GSLT-CNN was exploited to directly
process the original time-locked RSVP EEG signal of 157
subjects, and it achieved an accuracy of 99%. Because CNN
has a stronger ability to process images, the EEG signals can
be converted into images for classification by CNN.

To solve the problem of large model parameters and
insufficient training samples, Jin et al. [40] proposed a
convolutional tensor neural network (CTNN). CTNN
uses CNN to mine the local features of EEG signals in the
time and space domains of the EEG, and it uses the CTNN
with a depth-wise separable convolution mechanism to
extract the local spatiotemporal characteristics of the
brain image. Then, the tensor network (TN) was used to
capture the multi-linear related information, and the local
information was integrated into global information with
limited parameters. Finally, a small number of parameters
of the tensor neural network were used to fuse the local
features of the convolution output for classification. The
experimental results show that the CTNN has great
performance advantages for the data sets with large
numbers of individuals and a small number of individual
samples [40].

CNN can also be used for feature extraction to effectively
extract target features. Salem and Lachiri [41] believed that
there are unique individual differences in the emotional state
contained in the EEG signal. Based on this, they exploited
deep learning methods such as CNN to extract neural
features from the EEG signal. Meanwhile, the features were
considered as a repeatable discriminant feature, and then,
the polynomial kernel function SVM was used to classify the
features. On the MANHOB-HCI VEP visually evoked data
set, an accuracy of 99.99% can be achieved [41].

(2) Recurrent Neural Network (RNN). Although CNN can
extract spatial features well, EEG signals are highly time-
varying and contain rich timing features. As one of the major
characteristics of EEG signals, the temporal characteristic
reflects the changes in brain activity over time when the
subjects perform tasks. While CNN fails to deal with the
time-series features, RNN has excellent time-dependent
expression capabilities. Therefore, RNN has advantages in
processing time-varying EEG signals [26]. Zhang et al. [26]
first input the decomposed delta frequency band into an
attention-based RNN structure that assigns different at-
tention weights to different EEG signal channels according
to their importance. Based on attention scores or through
various machine-learning algorithms such as reinforcement
learning, the attention mechanism automatically redistrib-
utes the weights according to the changes in the environ-
mental factors to extract the most distinctive features. The
attention score can be inferred from the input data and used
as a weight to make the model focus on the part with a high
attention score. Reinforcement learning has shown that it is
possible to find the most valuable part through strategic
search. Based on the features learned by the attention-based
RNN, the boosting classification was adopted for
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authentication. The method was evaluated on three data sets
(two self-collected data sets and one public data set),
reaching the accuracy of 98.2%, 98.82%, and 99.89%, re-
spectively [26]. Besides, RNN can be used in combination
with CNN to effectively extract time-domain and spatial-
domain features. Wilaiprasitporn et al. [71] proposed a
combination of CNN and RNN deep learning model, where
CNN was used to process spatial information of EEG signals
and RNN was used to extract time information. Meanwhile,
long- and short-term memory (CNN-LSTM) and gated
recurrence unit (CNN-GRU) were used. On the emotion
data set, DEAP, CNN-GRU, and CNN-LSTM can realize
authentication in different emotional states, achieving an
average accuracy of 99.90-100% [71].

The RNN-based variants, such as LSTM and GRU, are
also commonly used to decode EEG signals. The spatial
resolution of the EEG signal is not high, and it is difficult to
be accurate to the level of a single neuron based on the
number of existing electrodes. However, the spatial rela-
tionship and mutual influence between the electrodes rep-
resent the inner neural characteristics of the brain area when
performing tasks. These features can be captured efficiently
with LSTM. Sun et al. [72] proposed a new 1D convolutional
LSTM network to extract the spatial and temporal charac-
teristics of EEG signals. Compared with CNN and LSTM
individual methods, the proposed method achieved a higher
accuracy of 99.58% on the PhysioNet data set [72]. Kumar
et al. [29] used a sequence classification based on a bidi-
rectional long- and short-term memory neural network
(BLSTM-NN) to model the recorded sequence on the vi-
sually evoked data of an online real-time system of 58
subjects for authentication. In the gamma band, the BLSTM-
NN achieved an accuracy of 97.57% [29].

(3) Graph Convolutional Neural Network (GCNN). GCNN
extends the CNN to the graph domain. Wang et al. [73]
proposed a model for recognizing the EEG biometric fea-
tures of different tasks. The EEG signal map was estimated
based on intra-frequency and cross-frequency functional
connectivity, and the GCNN was exploited to automatically
capture the deep internal structure representation of the
EEG signal map. The GCNN can generate a graphical
representation of EEG signals and automatically extract deep
structural features from the dynamic EEG signals for au-
thentication. Meanwhile, the functional coupling between
signals was adopted to solve the problem that relies on
univariate characteristics, which helps GCNN to extract
internal structural features. Based on this, an average ac-
curacy of 99.98% can be achieved on the PhysioNet data
set [73].

Although the EEG-based authentication method of deep
learning has great advantages, it can be seen that different
deep learning models have been used due to the difference in
data, such as a different number of electrode positions,
different data dimensions, different features, and different
frameworks. Also, deep learning requires a large amount of
data for model training, so a poor generalization may be
obtained on the data set of other tasks. The deep learning
methods for EEG-based authentication are listed in Table 4.
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Although deep learning performs very well, it also has
the same problems as other deep learning applications. One
is that it requires a lot of training data to train the model, and
the other is that training requires a lot of time and cost, and
even high-performance computers, the third is that the
problem of overfitting is serious. It is difficult for a model to
have good actual test performance in all databases or ap-
plication scenarios. The fourth is poor migration. This is also
the direction of deep learning. Researchers hope that a
model can better solve most of the same problems.

6.2. EEG-Based Biometric Cryptosystem Authentication.
The method of biometric classification treats the unique
characteristics corresponding to each person as a category
and distinguishes each individual through classification to
achieve the purpose of authentication. This authentication
process is actually the decoding process of EEG signals in the
brain-computer interface. However, authentication based on
feature classification is faced with some problems. For ex-
ample, the features extracted from the fake EEG signals
generated by the generative adversarial network (GAN) will
cause a misclassification. Adversarial sample attacks can also
lead to misclassification. It is unwise to rely solely on bio-
metric features for scenarios with high security levels, es-
pecially when the biometric features are mature and have
been widely used. Biometric cryptosystems are proposed.
Researchers hope to combine biometrics and cryptographic
technology to improve authentication security and effec-
tively resist existing attack methods [74].

Cryptography is considered as the foundation of in-
formation security, the key is the core foundation of au-
thentication in the cryptographic system, and the key
security is the dependence of the cryptographic system. In a
generic cryptographic system, the possession of the
decrypting key is a sufficient evidence to establish user
authenticity, but the key is not closely related to the user’s
identity, so it is easy to be stolen or lost. Whether it is a
legitimate user or an attacker, as long as the key is possessed,
it can be decrypted. Biometric effectively solves this problem,
but it is not flexible enough. Once biometrics is stolen, they
cannot be used forever. Therefore, the biometric crypto-
systems are proposed because cryptographic technology and
biometric technology have very good complementarity.
Biometrics closely related to identity information provides a
good identity dependence for cryptography, and cryptog-
raphy can protect biometric data while protecting user
privacy, or use biometric data as a source of key generation.
Biometric cryptosystems can be divided into key combining
biometric cryptosystems, key generation biometric crypto-
systems, and key binding biometric cryptosystems [59].

Compared with the traditional biometric authentication
technology, the biggest advantage of EEG-based biometric
cryptosystem authentication is its revocability. As for the
traditional biometric authentication technology, once the
user’s characteristic information is lost or stolen, the
characteristic can no longer be used. As for the EEG-based
authentication, because of the high dependence of EEG
signals on tasks [6] and the sensitivity to mental states such
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TaBLE 4: Deep learning methods for EEG-based authentication.

Research Tasks Number of subjects Number of electrodes Deep learning model Accuracy (%)
Sun et al. [72] Resting state 109 16 LSTM 99.58
Mao et al. [50] ERP 100 64 CNN 97.00
Wang et al. [24] Resting state 109 64 GCNN 99.98
Das et al. [37] MI 40 17 CNN 99.30
Wilaiprasitporn et al. [71] ~ ERP with emotion CNN + RNN 99.90
ERP 100 97
RSVP 10 99
Chen et al. [58] ERP with emotion 3 GSLT-CNN 99
Multiple data sets 157 96
Resting state 8 14 . 98.20
Zhang et al. [26] MI 3 64 Attention-based RNN 99.89
Wu et al. [34] RSVP with eye blinking 10 16 CNN 97.60
Kumar et al. [29] VEP 58 14 LSTM 97.57
Wang et al. [73] SSVEP 10 8 CNN 99.73

as emotions, the tasks that induce EEG signals can be
changed to extract the unique characteristics of individuals
corresponding to the tasks to generate different keys to
achieve biometric revocability. In comparison, it has higher
flexibility than the classification authentication method, and
its anti-attack ability is greatly improved due to its revo-
cability. It is difficult for an attacker to guess what state the
legitimate user was in when collecting EEG and what task
was performed. Even if it can be guessed, the features
extracted from the imitation EEG signal have individual
differences. In addition, revocability can also be achieved
through some algorithms in biometric cryptosystems, such
as fuzzy vault or BioHash.

6.2.1. Key Combining EEG-Based Biometric Cryptosystems.
The simplest way to realize a biometric cryptosystem is to
combine biometrics and cryptography. The user needs
biometric authentication and key authentication to succeed
[75]. Although this is more secure than a single authenti-
cation, it is obvious that the two have not been bound. The
shortcomings of these two are not removed. The system will
still be at risk of attack.

Bajwa and Dantu [76] first used traditional EEG bio-
metric classification authentication and used the key gen-
erated by EEG for authentication in the second phase. The
first data set is based on five mental activities by 7 subjects,
and the second is based on three visually evoked tasks by 120
subjects. In the traditional EEG-based biometric classifica-
tion stage, they obtained a mean subject classification of
98.46% and 91.05% for Data set I and Data set II, respec-
tively, using SVM and BN. In the key generation phase, they
use the same EEG as in the classification phase. According to
the similarity score, the feature vector is selected with the
highest degree of discrimination. Then, the feature vector
was binarized. The average key generated from EEG bio-
metric is 230 bits per activity. The length of the key can be
changed by combining different activities. After an appro-
priate choice of features, the mean half total error rate for
generating keys was 3.05% for Data set I and 4.53% for Data
set II. The keys generated from EEG biometric have been
verified by the NIST statistical suite of randomness tests. The

average entropy for their system was 82bits. If the user’s
biometric information is leaked, the task can be changed to
achieve revocability.

6.2.2. Key Generation EEG-Based Biometric Cryptosystems.
One of the shortcomings of traditional cryptography keys is
that they cannot be clearly associated with personal iden-
tities. By contrast, the keys generated by encoding the EEG
signal characteristics directly correspond to personal iden-
tities. In recent years, the combination of traditional bio-
metric statistics and cryptography has been proposed to
generate cryptographic keys. This requires the extraction of
unique and repeatable biological information from the bi-
ological features. These biological features are limited by the
acquisition technology or environmental conditions, and
they are essentially noisy. Besides, the signal itself tends to be
different from the measured values of the same user. This
difference is caused by the inherent natural inconsistency of
human physiology or the behaviors exhibited by external
influences, but the key requirements must be correct and
repeatable. For example, the iris is considered to be the most
accurate feature of the traditional biometric features, but the
difference between two different images of the same iris may
be as high as 30% [77]. Therefore, overcoming the internal
differences in biometric features is the main challenge for the
use of biometric features in cryptographic systems. Also,
considering the issues such as the possible loss of biometric
features, it is desired that the key can be changed to avoid key
leakage and improve security so that the key can be used in
different encryption and authentication scenarios. However,
traditional biological features are usually unchangeable. For
example, fingerprints and iris hardly change in a person’s
life, which does not satisty the revocability. The concealment
of the EEG signal and the difficulty of forgery can improve
the security of the generated key. Besides, the randomness of
the EEG signal, the high dependence on the spirit, and the
time correlation [78] make the EEG signal in different tasks
generate different keys.

The key technology of key generation EEG-based bio-
metric cryptosystems is the use of EEG signals to generate a
unique and repeatable key. Some researchers have proved



12

that EEG signals can generate random numbers. And the
EEG signals can also be used as pseudorandom number
generators [79] to generate keys for encryption[80] or au-
thentication [81]. The measured EEG biometrics has a high
entropy across subjects. The amount of uncertainty in the
key from an attacker’s point of view is large. However, most
of the research still stays at the stage of generating keys, and
few studies use generated keys for authentication. However,
this does not affect the feasibility and broad application
prospects of EEG signals to generate authentication keys.
The EEG signal for key generation is listed in Table 5.
Another research focus of biometric cryptosystems is to
address the issue of how biometric-based key schemes
should handle the variability in the biometric representation.
To make the key generated by the EEG signal usable, re-
peatable features need to be extracted from the EEG signal to
accurately generate the repeated key. Therefore, it is nec-
essary to repeatedly generate sufficiently random keys for the
same individual. Essentially, the researchers are looking for
individual differences or task differences. To this end, they
extract the largest possible difference characteristics between
different individuals performing the same task and the
smallest possible difference characteristics between the same
individual performing the same task. To encode the different
features, some cryptographic protocols can be adapted to
make the authentication more secure than the classification
authentication. According to the chaos theory, the under-
lying subsystem of a nervous system that generates EEG
signals is considered a nonlinear dynamics system, so EEG
signals are chaotic [86]. Based on the nonlinear and chaotic
characteristics of EEG signals, the EEG signal can be
transformed into a random binary sequence through
mathematical transformation [78]. In this way, EEG signals
can be considered to be different from time to time. To
generate duplicate keys during the authentication phase,
quantization method and fuzzy extractor are used to pro-
duce the same results with slightly different input signals.

(1) Quantization Method. The quantization method is an-
other commonly used method for generating keys from EEG
signals, and it sets a global threshold for each feature. Using
the quantization method, the key can be obtained through
the modulus, difference [87], or XOR between the user’s
measured value and the threshold. Ravi et al. [85] extracted
the event-related EEG signals in 61 electrode channels that
were evoked by a single stimulus from 10 subjects. Then, an
elliptical finite impulse response bandpass filter was used to
filter the EEG signal from 30 to 50 Hz. Next, the energy of the
filtered EEG signal was calculated and divided by the total
energy from all the channels. These values were then nor-
malized, and the positive normalized values are converted to
a binary digit 1, while the negative values are converted to a
binary digit 0. Since each channel corresponds to a binary
character, the 61 channels of electrode data generated a 62 bit
key [85]. Nguyen et al. [30] first performed frequency band
filtering on the EEG signal. Then, the filtered signal was
divided into several subsegments, and the average power was
estimated from the output of the power spectral density
estimation of each subsegment. Next, a key for each band
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was generated. Subsequently, 32 channels were randomly
selected from the GrazIIla data set, and the random selection
was repeated 10 times to obtain the result as the average
power value. In this way, a 256 bit key was generated, and the
randomness of the key was proved by the NIST test [30].
Akhila et al. [88] collected EEG signals through specific
tasks, and they used PCA to extract relevant feature vectors
to quantify the key generation [88]. Similar to the cryp-
tography of iris images [77] and the cryptography of face
images [89], the topographic map images of EEG were
converted into binary 0 and 1 to generate the key, but the
reliability of this method has not been verified yet.

It is worth mentioning that classification methods are
used to generate keys. Tuiri et al. [84] extracted the features
of the EEG signals of eight subjects. The features were
classified by SVM. Then, the classified features generated a
230 bit key by binarization. The key was used to encrypt and
decrypt the data between two users. In essence, authenti-
cation determines the identities of the communicating
parties [84].

(2) Fuzzy Extractor. To handle the inconsistency of the
generated keys that may be caused by the internal differences
in the same individual, the fuzzy extractor is used to make
the output results consistent with the input data with a
certain deviation. The fuzzy extractor requires a high
minimum entropy value of the biometric features. Although
the EEG signals generated by the same individual per-
forming the same task at different times are different, the
fuzzy extractor can extract the same uniform random string
from similar input features within the allowable range of
differences.

He and Wang [81] exploited a fuzzy extractor to generate
a key and an auxiliary random string for a given EEG signal
feature. When the user is authenticated, this random string
and the EEG signal feature of the user under the same task
can be used. The fuzzy extractor generates the same key as
before, realizing the repeatability and accuracy of the key.
Using BAN logic, the proposed authentication scheme was
proved to be effective and practical [81]. Singandhupe et al.
[80] used a fuzzy extractor to generate a 128 bit AES en-
cryption key from the EEG signal in the beta band.

6.2.3. Key Binding EEG-Based Biometric Cryptosystems.
This scheme is based on error correction code. Error cor-
rection code is used to recover mistaken key’s bit. EEG
biometrics will be firstly quantified and then bound with the
key held by the user through some algorithms. This scheme
is very flexible. Researchers can use mature schemes (e.g.,
tuzzy commitment and fuzzy vault) or design schemes in-
dependently for authentication. The key can be personally
held by the user or generated by EEG. Nguyen et al. [30]
developed a multi-threshold error correction technique that
can handle EEG signals with individual internal differences.
Meanwhile, a biometric template was designed, and the
template requires a user password, a specific task-specific
EEG signal feature set, and a random string. During au-
thentication, predefined tasks were performed to generate
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TaBLE 5: EEG signal generation key.

Researchers Methods

Key length (bits) Number of subjects

Singandhupe et al. [80]
Damasevicius et al. [82]
Yang et al. [83]

Fuzzy extractor
Fuzzy commitment
Fuzzy commitment

Tuiri et al. [84] Quantization
Bajwa and Dantu et al. [76] Quantization
Nguyen et al. [30] Quantization
Ravi et al. [85] Quantization

128

400 42
21 10

230 8
230 120

256 3
62 10

EEG signals, and the Berg method was used to perform AR
analysis on short data segments to obtain the average power
spectral density characteristics of the signal. This feature is
one of the features set in the template, which can increase the
complexity of the attackers guessing the correct key and
reduce the recognition error to a certain extent. After a user
enters the password into the template, the password is
combined with the key generated by the feature quantization
and the random string for authentication [30].

This scheme is not only more secure, but also can ef-
fectively protect EEG biometric. If an attacker can access the
stored templates, the security of the EEG biometrics used
will be compromised. Therefore, it is very important to
design a suitable template protection scheme to generate
revocable biometrics. In this scheme, the key and EEG are
bound as a secure template. When any of the key and EEG
biometrics are potentially vulnerable, any one or all of them
can be revoked. BioHash is a technology that binds random
numbers and biometric feature vectors for authentication
with revocability. The random numbers can also be a key.
The threshold is set to quantify the inner product value of the
biometric feature vector and the random matrix, and au-
thentication is achieved by comparing the quantified value
during registration and authentication. Revocability can be
achieved by updating the random matrix or the EEG bio-
metric features. It enhances interclass changes while
maintaining intra-class changes. When dealing with high-
dimensional and large amounts of data, it has a faster cal-
culation speed than traditional algorithms and is widely used
in various security systems, but as far as we know, this al-
gorithm has not been applied to EEG biometric.

(1) Fuzzy Commitment. The difficulty of binding cryptog-
raphy with biometrics is that the digital key is accurate, while
biometric technology is fuzzy, and fuzzy commitment is the
way to solve this problem. In general, biometric sequences
are nonbinary, and to apply fuzzy commitment, quantiza-
tion has to be done firstly. The key K is a binary EEG
biometric feature vector corrected by an error check code.
The use of the error correction code can correct the bit error
caused by the inaccuracy input EEG biometric and over-
come the variability of EEG biometric. In this way, even
though subjects are performing the same required tasks in
different scenarios and emotions, they can still be success-
fully authenticated. The user selects a secret message C. The
difference vector is denoted between the key K generated
from user’s biometric and C as d. The encrypted message
consisted of d and y=hash (C). When decrypted, the

biometric template is used to decode. In this scheme, both
the revocation of C and the EEG evoked by the different
tasks can realize the revocability of the system.

By combing fuzzy commitments with the Bose-
Chaudhuri-Hocquenghem (BCH) error correction codes,
Damasevicius et al. [82] generated a 400 bit key from the
covariance matrix of 42 subjects’ EEG signals for authen-
tication. The performance of the biometric cryptosystem is a
true-positive rate (TPR) of 0.9974. Yang et al. [83] used the
two MI activity EEG signals obtained by the C channel from
10 subjects, filtered them with CAR to remove the average
potential of all electrodes, and further normalized them to
obtain the original EEG data. Feature vectors are obtained
with AR. They believed that the binary quantification of
biometric features is a hard decision, which will lose features’
details, so they use equiprobable quantization, which is a
multilevel quantization scheme. The result was encoded into
a binary string. They used the method of fuzzy commitment
to achieve a performance of around EER =1.87% with ef-
fective key size of 21 bits.

However, one of the major shortcomings of the fuzzy
commitment scheme is that it requires the biometric rep-
resentation correspondence that is obvious. For a desired
code length, optimal error correction codes are hard to
acquire. The use of error correction codes may increase the
possibility of successful authentication of illegal users. Using
this code, the attacker also would have true match.

(2) Fuzzy Vault. The fuzzy vault based on biometrics is the
most classic practical scheme in the field of biometric
cryptosystem. A fuzzy vault scheme is an improvement of
fuzzy commitment. In the lock phase (registration phase), it
uses secret information to construct a characteristic poly-
nomial p(x), then forms a disordered set F of EEG biometric
points, which is mapped to a real characteristic point set V
through the characteristic polynomial, and then randomly
adds hash points. It binds the user’s EEG biometric and
secret information to generate real points and generates a
vault database by adding a large number of hash points.
When unlocking (authentication stage), the matching bio-
metric reconstruction polynomial is required to recover the
secret information. If the EEG features do not match, then
the polynomial cannot be reconstructed. This scheme is
widely used in biometric template protection and authen-
tication. The biometric template is used to construct a fuzzy
vault, and the vault is revocable by updating the random
matrix, making it difficult for an attacker to obtain the true
point information in the vault through related attacks,
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improving the reliability of the system and the security of the
biometric template.

Albermany and Bager [90] choose the C3, CZ, and C4
three channels of the left-hand and right-hand MI data from
BCI Competition 2008—Graz data set A as their EEG data
set. EEG signals were filtered between 8 and 30 HZ. PSD
estimation using the Welch method is calculated to extract
features. Five of the features are selected and quantized as
integers. They select characteristic polynomial p(x)=
5X*+2X + 1 to map feature value, using the tent chaff points
as random points to build the vault. The true-positive rates
are up to 99% among 9 subjects, and the false-negative rates
are up to 9%.

The EEG-based biometric cryptosystems have higher
security, but we have to admit that there is still relatively
little research in this area, which will be the focus of future
research. It also has certain limitations. Although it is
theoretically believed that the EEG signals generated by
different people performing the same task are different, that
is, the extracted task-related features are individual dif-
ferences. Therefore, the feature code can be used as a
unique key for identity authentication. However, the ex-
periments conducted by Chiu et al. [91] show that attackers
can perform impersonation attacks by imitating the tasks of
legitimate users [91]. This indicates that the relevant
characteristics of the same task between different people are
very similar, so the uniqueness of the keys generated by
different people on a large data set still needs to be proved.
In addition, the key must be accurate, and legitimate users
who want to generate repeated and accurate keys face some
problems. Every time the user wears the collection device,
the position of the electrode may not be exactly the same as
before, which may cause input deviation. Even if the user
performs the same task, the user’s current state, such as
psychological conditions (e.g., horror, pressure) and
physiological conditions (e.g., inebriation, cold), may also
cause input deviations [75].

7. Existing Problems and Development
Direction of the EEG-Based Authentication

7.1. Uniqueness. According to the existing research, the
current data set is generally small and few subjects are
involved in the data set (usually dozens of subjects). Al-
though each subject can be distinguished well on the data
set, the authentication accuracy decreases as the number of
subjects increases [92], which may be related to the
classification and feature extraction methods. Also, it may
be because no experiment or theory has yet proved that
EEG signals have enough distinctive features (e.g., fin-
gerprint signatures are distinctive in 7 billion people) to
distinguish humans from each other. Tangkraingkij et al.
[93] showed that the accuracy of the system could even be
reduced by as much as 9% by only adding 10 subjects.
Although it is theoretically proven that each person’s EEG
signal is different, it remains a question whether the EEG
signal can be used for authentication on a large scale or
even in humans [93].
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7.2. Stability. The state of the human brain changes all the
time, and it is affected by cognitive ability and mental state. It
is still uncertain whether the EEG signal is as stable as other
biological characteristics. Das et al. [37] collected two dif-
ferent data sets at an interval of one week for the same group
of subjects, and CNN was used for training and testing. The
obtained results confirm the hypothesis that EEG data have
permanent distinguishing characteristics, providing the
foundation for the future use of brain signals in biometric
authentication systems [37]. Ruiz-Blondet et al. [39] have
shown that after six months, some individuals can still be
accurately identified by the authentication system. The ex-
periment conducted by Wu et al. [34] found that the EEG
signal induced by the face is relatively stable after 30 days.
However, the stability of the EEG signal for a longer period
and the stability of the individual differences with people’s
cognition cannot be guaranteed. Therefore, stability still
needs to be proved.

7.3. Data Enhancement. It is costly and difficult to collect
high-quality EEG signals, but a large amount of data is es-
sential to training models, especially deep learning models.
The result of the small amount of data is the poor general-
ization ability of the model. Therefore, data enhancement can
increase the training data by generating artificial data that are
not included in the original data set but has the data dis-
tribution characteristics of the original data set. There is
growing evidence that the synthetic data extracted from
generative models can be used for data enhancement to
improve the performance of later classification tasks [94].
Abdelfattah et al. [95] proposed a new GAN model to learn
the deep statistical characteristics of EEG signals, and they
used the generated samples to expand the data set to improve
the performance of the classification model [95]. Hartmann
et al. [96] demonstrated that it is possible to generate artificial
brain electrical signals with a GAN. By the improved Was-
serstein GAN training [97], GAN can be trained gradually to
generate artificial signals stably. The generated artificial sig-
nals are similar to the single-channel EEG signals in the time
and frequency domains [96]. Aznan et al. [98] exploited a
limited amount of EEG data collected from different subjects
to train modern neural-based generative models to generate
supplementary synthetic EEG signal vectors. The generated
vectors were then used to train SSVEP classifications. Ex-
tensive experimental analysis shows that the generated data
can improve the classification of real-world EEG data that are
obtained from multiple topics and recorded under various
conditions and sessions. Also, the analysis indicates that the
use of synthetic EEG data can improve the convergence speed
of the classification model. In this way, only a smaller amount
of real training data is needed [98]. At the same time, it is
desired to find a general learning model that can achieve high
authentication accuracy on different task data sets.

7.4. Security Issues. Unforgeability is one of the advantages
of EEG signals. However, in recent years, with the devel-
opment of GAN technology, non-real data can be artificially
generated, such as images, sounds, and EEG signals. Some
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researchers have used GAN to generate fake EEG data. The
generated fake EEG signal can be successfully recognized by
the system as the real EEG signal. Piplani et al. [99] proved
that the fake EEG signals generated by GAN can deceive the
system to recognize the signals as real signals of legitimate
users. To mitigate this security vulnerability, the researchers
used fake data together with real data as training data to train
the classification model to make it more robust to this attack,
and the classification accuracy of the model is higher than
before [99]. By adding adversarial disturbance, Zhang et al.
[100] controlled the brain-computer interface typewriter to
tamper the characters desired by the subject to the characters
desired by the attacker. This shows that artificially increasing
adversarial disturbances can make the original EEG signals
have the characteristics expected by the attacker [100].
Adding some confrontational disturbances to the EEG
signals of legitimate users or intruders may result in the
legitimate users being unable to successfully authenticate or
the intruders being able to successfully authenticate.
Besides, EEG signals may be stolen [14] because EEG
signals contain a large amount of personal identification
information. Much of the information is private information
that people do not want others to know, such as age, gender,
and disease cognitive ability. If the EEG signal acquisition
channel is attacked and stolen, the user’s original EEG signal
may be stolen through the transmission channel [101]. In this
case, the signal obtained can be used to attack the system
directly. Although liveness testing can be used to verify
whether it is a copied or forged EEG signal, there is currently
no specific and feasible method available. Therefore, it is
necessary to encrypt the transmission channel and the storage
of EEG signals to prevent attackers from stealing the EEG
signals of legitimate users. For the purpose of solving the
defects such as low accuracy, high time complexity, or slow
processing speed, Liu et al. [102] used the Paillier encryption
algorithm to encrypt EEG data. The neural network is used for
the classification and recognition of encrypted EEG data
[102]. Meanwhile, the EEG signals stored locally should be
encrypted to prevent attackers from stealing [103].

7.5. Multimodal. Compared with a single-modal biometric
authentication system, a multimodal system can provide
better security. In such a system, it is difficult for the attacker
to forge more than one biological feature at the same time,
thus increasing the security of system. A multimodal system
that performs authentication by combing EEG signal
characteristics and other authentication methods can im-
prove the system’s anti-attack ability effectively. When other
biometric features are combined for authentication, the
unique characteristics of the EEG signals make up for the
security loopholes of other biometric features for authen-
tication, thus improving the authentication security level.
Zhang et al. [26] exploited the dual authentication
system based on EEG signals and gait signals to overcome
the limitations of the traditional single-modal biometric
authentication system, which improves the accuracy of
biometric authentication and risk prevention to a greater
extent. After the user signal is received, the system only takes
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0.39 seconds to complete authentication, fully meeting the
requirements of practical applications in terms of system
delay [26]. Studies show that although electrooculogram
artifacts can affect the authentication accuracy of EEG
signals, electrooculogram signals also have individual dif-
ferences. Thus, electrooculogram features and EEG features
can be exploited by multimodal authentication systems
effectively [34]. Kumar et al. [29] proposed a multimodal
system that can simultaneously capture dynamic signatures
and EEG signals to develop a mobile user authentication
system. Dynamic signatures are widely used for authenti-
cation based on behavioral attributes. Using the bidirec-
tional long- and short-term memory neural network
(BLSTM-NN) classification, single-modal and multimodal
methods have been proposed for authentication [29]. Klo-
novs et al. [104] used the EMOTIV EPOC EEG signal ac-
quisition equipment and facial detection to ensure that
subjects are in a relatively quiet state to collect ERP EEG
signals. Also, mature technologies such as the RFID identity
cards based on near-field communication (NFC) were
adopted to achieve real-time mobile biology authentication
[104]. Rahman et al. [69] combined EEG and keystroke
dynamics at signal level to authentication. Their data set was
created by acquiring both keystroke dynamics and EEG
signals simultaneously from 10 users. An accuracy of 99.6%
is achieved using random forest classifier. Moreno-Rodri-
guez et al. [105] fused voice and EEG using a mixed signal-
level-decision-level fusion scheme, with HMM on the first
classification stage and majority vote for the final classifi-
cation result, considering 50 users. An accuracy of 83.43% is
achieved with an 80% voice-20% EEG mixed signal.

The multimodal authentication system can effectively
overcome the limitations of an authentication method and
improve the security and anti-attack ability of the system.
However, the fusion of multimodality also decreases the
efficiency of authentication and increases the redundancy of
the system.

7.6. User-Friendly. The data collection device for authenti-
cation should be portable [49] and has high fault tolerance
and anti-interference ability. Also, it is usually required to be
nonintrusive. The existing data collection methods are often
task-based that require subjects to perform tasks for a long
time to obtain enough data to train the model. For some
subjects, the tasks may not be pleasant, which can lead to
mental fatigue of the subjects and even conflict with the
experiment itself. In this case, the application of the au-
thentication technology based on EEG signals is severely
limited. Therefore, it is necessary to design a reasonable,
efficient, and user-friendly experimental paradigm. Another
consequence of an unfriendly experimental paradigm is that
the subjects may produce data that are not useful to the
experiment or even seriously affect the experimental results
due to psychological factors. Therefore, the EEG signals
collected for specific tasks are not completely credible. If the
subjects do not follow the tasks required by the experimental
paradigm, the collected data will affect the accuracy of the
experimental results significantly. Therefore, the emotional
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teedback of the subjects on the experimental paradigm should
be considered to design tasks that users are interested in.

For signal acquisition, the cumbersome wearing and
adjustment of acquisition equipment are also intolerable to
the subjects. Researchers have achieved high-accuracy au-
thentication for a few electrodes or even a single electrode
[5]. In this case, it is convenient to collect signals from
subjects [44], reducing the cost and the complexity of EEG
signal analysis and decoding. By reducing the number of
brain electrical channels, Zeynali and Seyedarabi [67]
achieved a high performance and determined the best
electrode arrangement for different mental activities. The
neural network classification achieved an average accuracy
of 97-98% for the single-channel authentication system with
the best placement of brain activity electrodes. Chuang et al.
[55] exploited single-channel EEG signals to achieve an
authentication accuracy of 99%.

8. Conclusions

This review analyzes the physiological characteristics of EEG
signals and demonstrates their effectiveness and advantages
as an authentication feature. According to the authentication
steps of EEG signals, different task collection paradigms of
EEG signals are first introduced. Then, in terms of EEG
signal decoding, the commonly used data preprocessing and
feature extraction methods are analyzed. Similar to the
frequency band selection, the choice of electrode position is
also highly dependent on the stimulation task. Next, the
authentication methods are summarized, including EEG-
based biometric classification authentication and EEG-based
biometric cryptosystem authentication. It is worth men-
tioning that researchers can use a combination of methods in
different steps for authentication. The current research on
biometric cryptosystems is relatively small, but this is a very
valuable research direction. Finally, the problems existing in
authentication are proposed, and the solutions and devel-
opment directions are discussed.

We found that in the EEG-based biometric cryptosystems,
whether they are key combining EEG-based biometric
cryptosystems, key generation EEG-based biometric crypto-
systems, or key binding EEG-based biometric cryptosystems,
key generation from EEG biometric is involved. We consider
using deep learning to extract deep features and use multilevel
quantization to minimize the loss of feature details to generate
cryptographically required keys in our future work. Once we
have the key, we can implement biometric cryptosystems or
use the key in other encryption scenarios.
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