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Cervical cancer (CC) is one of the most common malignancy in women worldwide. It is
characterized by a natural continuous phenomenon, that is, it is in the initial stage of HPV
infection, progresses to intraepithelial neoplasia, and then develops into invasion and
metastasis. Determining the complexity of tumor microenvironment (TME) can deepen our
understanding of lesion progression and provide novel therapeutic strategies for CC. We
performed the single-cell RNA sequencing on the normal cervix, intraepithelial neoplasia,
primary tumor and metastatic lymph node tissues to describe the composition, lineage,
and functional status of immune cells and mesenchymal cells at different stages of CC
progression. A total of 59913 single cells were obtained and divided into 9 cellular clusters,
including immune cells (T/NK cells, macrophages, B cells, plasma cells, mast cells and
neutrophils) and mesenchymal cells (endothelial cells, smooth muscle cells and
fibroblasts). Our results showed that there were distinct cell subpopulations in different
stages of CC. High-stage intraepithelial neoplasia (HSIL) tissue exhibited a low, recently
activated TME, and it was characterized by high infiltration of tissue-resident CD8 T cell,
effector NK cells, Treg, DC1, pDC, and M1-like macrophages. Tumor tissue displayed
high enrichment of exhausted CD8 T cells, resident NK cells and M2-like macrophages,
suggesting immunosuppressive TME. Metastatic lymph node consisted of naive T cell,
central memory T cell, circling NK cells, cytotoxic CD8+ T cells and effector memory CD8 T
cells, suggesting an early activated phase of immune response. This study is the first to
delineate the transcriptome profile of immune cells during CC progression using single-cell
RNA sequencing. Our results indicated that HSIL exhibited a low, recently activated TME,
tumor displayed immunosuppressive statue, and metastatic lymph node showed early
activated phase of immune response. Our study enhanced the understanding of dynamic
change of TME during CC progression and has implications for the development of novel
treatments to inhibit the initiation and progression of CC.
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INTRODUCTION

Cervical Cancer (CC) is one of the most common malignancies in
women worldwide, accounting for 7.5% of all female cancer deaths
(1). A large majority (about 85%) of the global burden occurs in the
less developed regions, where it accounts for almost 12%of all female
cancers (2). The most common subtype of CC, especially in HPV
infection, is cervical squamous cell carcinoma (SCC) (3). CC is a
chronic complex disease, which is caused by genetic factors and
external environmental effects. Human papillomavirus (HPV) has
been identified as the main factor leading to CC (4). With the
continuous infection of HPV, various oncogenic genome,
transcriptome, and epigenetic changes accumulate in epithelial cells
in a stepwise manner, affecting various signal pathways driving CC
(5). Therefore, the range of continuous pre-invasive stages before CC
makes it a feasible model to study the early evolution of cancer.

Importantly,CCconsistsofisacomplextumormicroenvironment
(TME), including cells (tumor-infiltrating immune cells and stromal
cells), chemical (chemokines and cytokines), and physical
components (extracellular matrix) (6). The regulation of immune
response, remodeling of extracellularmatrix and tumor angiogenesis
essentially determine the invasiveness of cancer (7). Therefore, the
understanding of comprehensive tumor microenvironment
characteristics, can provide more accurate patient stratification.
Traditional bulk omics analysis has inherent limitations in
providing accurate information of individual cells in highly mixed
TME (8). Single-cell sequencing of patient tissues is becoming an
essentialtooltoevaluatetheclinicalrelevanceofindividualcell typesin
tumors (9). In the specific context of the CC, our prior study has
establishedthetranscriptionalprofilesofnormalandtumorcells types
inCCusing single-cell approaches (10).However, there is no study to
explore the change characteristic of TME during CC progression.

In this study, we first analyzed the changes of transcription
status of immune cells and stromal cells during CC progression
by single-cell RNA transcription, including normal, HSIL, tumor
and lymph node metastatic tumor tissues. This study will provide
a deeper understanding of the cellular characteristics of TME
during CC progression, and help to develop novel therapies to
inhibit the initiation and progression of CC.
METHOD

Enrollment of Patients
The study was approved by the ethics committee of our hospital.
We have complied with all relevant codes of ethics. Written
informed consent was obtained from all patients in this study. All
patients did not receive anti-tumor treatment before surgery.
Samples were collected from patients diagnosed with HSIL or
tumor. Finally, the tumor stages and grades were finally
determined by standard histopathology.

Tissue Processing for Single-Cell
Suspension
Tissue samples (2-3 mm3) from patients were rinsed with
phosphate-buffered saline (PBS) on ice. Subsequently, each sample
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was placed in the 500 µL dissociation medium containing 0.5 mg/
mL collagenase IV (Sigma) and 1 mg/mL DNAse I (Sigma) in
RPMI-1640 (ThermoFisher Scientifific). The samples were chopped
in dissociation medium and then incubated at 37°C for 30 min,
rotating manually every 10 minutes. Then, 1 mL cold RPMI-1640
containing 10% fetal bovine serum (FBS, ThermoFisher Scientifific)
was added and each sample was filtered using 70-µm nylon mesh
(ThermoFisher Scientifific). Followed by another filtration using 40-
µm nylon mesh (ThermoFisher Scientifific). Samples were
centrifuged with 300×g for 5 min, and the supernatant was
discarded. Single cells were resuspended in 1 mL ACK lysis buffer
(ThermoFisher Scientifific) and incubated for 5 min. 5 mL cold
RPMI-1640 containing 10% FBS was added and the cell mixture
was centrifuged at 300×g for 5 min at 4°C. Single-cell particles were
resuspended in PBS without calcium and magnesium ions to
achieve a density ≤1000 cells/µL.

Single-Cell Sequencing
Cell suspensions were loaded on a Chromium Single Cell
instrument (10x Genomics) to produce single-cell Gel Beads-in-
emulsion (GEMs). Then, the single-cell RNA sequence library was
estimated using version 1 Chromium Single-Cell 30 Library, Gel
Bead & Mutiplex Kit (10x Genomics). Sequencing was performed
on the Illumina NextSeq500, containing a length of 59 bp. Cell
Ranger (version 3.0.1) was used with default parameters to perform
sample multiplexing, barcode processing, and single-cell gene
unique molecular index counting (https://software.10xgenomics.
com/single-cell/overview/welcome) (11).

QC and Cell Type Identification
Seurat (version 3.0.1) was used for the procession QC (12). Cells
with < 200 unique molecular identifiers (UMIs) or mitochondrion-
derived UMI counts > 10% in a single cell were considered low-
quality cells and removed. The top 30 principal components, and
the first 2,000 variable genes, were used in this process. Then, the
inflow of UMI count and the percentage of mitochondrion-derived
UMI counts were regressed by the ScaleData function.
Subsequently, Seurat’s findclusters function was used to identify
the main cell clusters. The Louvain clustering algorithm embedded
in Seurat software was used for clustering, and the t-distributed
stochastic neighbor embedding (t-SNE) method was used to
visualize the clustering results. For any cell cluster, it was mainly
identified because of the differences of cell cycle and did not
participate in downstream analysis. To accurately annotate cell
types, we manually collated genetic markers for each cell type. In
particular, most of the markers used to distinguish different cell
types were retrieved from the Cell Markers database (https://www.
labome.com/method/Cell-Markers.html) (13). Other marker genes
came from published papers.

DEGs and GSVA
The specific markers for each cluster were identified by
performing the FindAllMarkers function on the standardized
expression data in the Seurat software package (only.pos =T,
min.pct = 0.25) (14). Genes with adjusted P-value < 0.05 were
considered statistical significance for KEGG and GO enrichment
analysis. The ClusterProfiler package (version 3.14.3) was used to
June 2022 | Volume 13 | Article 897366
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enrich and analyze cluster-specific biomarker genes (15). GSEA
was performed with MSigDB gene sets to determine the
differential pathways (16). The full gene lists of T cells
signature (including the cytotoxic, exhausted, regulatory, naive,
and costimulatory activity of T cells) were extracted from the
published report by Chung et al. (17).

Trajectory Analysis
Trajectory analysis of CD8+T cells, and M1 and M2-like
macrophages was performed, respectively using Monocle 2
(version 2.8.0) (18). We then performed differential gene
expression analysis using the differential Gene Test function to
identify significant genes (BH-corrected P < 0.01). Cellular ordering
of these genes was in an unsupervised manner. Trajectory
construction was then performed after dimensionality reduction
and cell sorting with default parameters.

Calculation of Functional Module Scores
To evaluate the potential functionality of the cell cluster of
interest, we calculated the scores of functional modules of the
cell cluster, using the AddModuleScore function in Seurat. The
gene lists for T cells signature and macrophages were listed in
Tables S1 and S2, respectively. The average expression levels of
the corresponding cluster were subtracted by controlling the
aggregated expression of the feature set. All analyzed genes were
binned based on average expression, and control characteristics
were randomly selected from each bin.

SCENIC Analysis
Analysis of transcription factors (TF) was implemented using the
Python package pySCENIC36 (version 0.9.19) (19) Co-
expression modules were constructed by GRNBoost, and motif
datasets (hg19-500bp-upstream-7species.mc9nr.feather,hg19-
tss-centered-10kb-7species.mc9nr.feather) were used to
construct regulons. The input data were normalized expression
matrices from Seurat (R package, version 3.1.1).

Cell-Cell Interaction Network Analysis
The ligand–receptor interactions among immune cells from the
HSIL, tumor and lymph node metastatic were mapped using the
CellPhoneDB algorithm (www.cellphonedb.org) (20). This
method determined the potential cellular ligand–receptor
interactions between the cell clusters based on the gene
expression level. The significance of the cellular interactions
was calculated based on the 1000 times permutation test. In
the current study, we performed the cellular interactions for the
ligands and receptors expressed in at least 25% of the cell subsets.
We excluded the cellular interactions within the identical cell
clusters, the interactions between the collagens and between the
cell subsets account for less than 0.1% of the total cells. Those
ligand–receptor interactions with p < 0.05 from the permutation
tests was considered statistically significant.

Correlation to Public Datasets
The TCGA-CESC data was used to evaluate the prognostic effect
of individual genes or gene sets originating specific cell clusters.
The patient cohorts was divided into high and low expression
Frontiers in Immunology | www.frontiersin.org 3
groups according to the median value of the normalized mean
expression of strong marker genes (logFC > 2). When there was
no significant difference in patients’ age, tumor stage and Grade
between high and low groups, we performed further analysis.
Kaplan–Meier survival curves and P values were generated by R
package “survminer”.

Statistical Analysis
Statistical analysis was performed using SPSS 20.0 (Chicago, IL,
USA), and statistical significance was determined with a t test.
The p values were calculated. Unless specifically stated, p < 0.05
was considered statistically significant.
RESULT

scRNA Sequencing Reveals the Unique
Immune Landscape During
CC Progression
In order to reveal the changing characteristics of immune
microenvironment during CC progression, we obtained 10 ×
Genomics scRNA sequencing datasets from fresh samples, which
spanned from normal cervix (n=3), HSIL (n=2), cervical tumors
(n=4), and metastatic lymph nodes (n=1) (Figure 1A). Then, we
used t-distributed stochastic neighbor embedding (t-SNE), an
unsupervised nonlinear dimensionality reduction algorithm, to
distinguish cell types according to the relative gene expression
values. Overall, after initial quality control, a total of 59913 cells
were retained and differentiated into 15 different clusters (clusters
1~15), which were visualized as a two-dimensional t-SNE map
(Figures S1A, B). Of these, 30968, 10944, 11660 and 6341 cells were
derived from normal cervix, HSIL, tumor and lymph node tissue
(Figure S1C). By comparing the gene expression characteristics of
epithelial/tumor cells, immune cells (T/NK, macrophages,
neutrophils, mast cells and B cells) and mesenchymal cells
(endothelial cells, fibroblasts and smooth muscle cells), these cell
clusters were sorted into several main cell types (Figures 1B, C, E).
The t-SNE plots showed the expression of cell type specific marker
genes. These cell populations were unevenly distributed in patients
or lesion sites (Figure S1D).

Then, we analyzed the changing trend of cell number in four
groups (N, H, T and L) (Figure 1D). In normal tissues, most cell
types were fibroblast (49.4%), endothelial cells (23.8%) and
smooth muscle cells (20.3%), while the number of immune
cells including (T/NK cells. Macrophages, B cells, plasma cells
and Mast cells) were 5.2% and neutrophils were scarce. In HSIL
tissue, the most types of immune cells were T/NK cells (49.4%),
macrophages (17.6%) and neutrophils (13.5%), while the
number of mesenchymal cells was decreasing. These results
indicated that there is significant immune infiltration in the
early stage of CC progression. Among the tumors, T/NK cells
(39.4%), endothelial cells (14.9%) and fibroblasts (15.6%) were
the most. However, the proportion of T/NK cells (61.6%) and
macrophages (25.8%) in metastatic lymph nodes was higher, but
the proportion of other types of cells was lower compared with
other groups.
June 2022 | Volume 13 | Article 897366
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Characterization of Single-Cell Expression
Profiles for NK/T Cells Across
Different Lesions
Given the central role of NK/T cells in tumor immunity, we
focused on the characterization of this cell type. We subclustered
the transcriptomic profiles of 15229 NK/T cells. A total of 12
stable clusters emerged (Figure 2A). Four clusters (C2, C4, C5,
and C8), showed high expression of CD8A and CD8B, defined as
CD8+ T, three clusters (C1, C6, and C12) exhibited high
expression level of CD4, and IL7R. defined as CD4+ T cells
and three clusters (C3, C9, and C10) exhibited high expression of
NKG7, and CD160, defined as NK cells. Cluster 7 with high
expression of S100A family was defined as C7-S100A2 T cell, and
cluster 11 with high expression of cycling-genes such as MKI67,
TOP2A, and STMN1, was defined as cycling T cells. Then, we
Frontiers in Immunology | www.frontiersin.org 4
compared the number of CD8, CD4, and NK cells between
different groups. The percentage of CD8 T cells in normal, HSIL,
tumor and lymph node were 9.3%, 32.0%, 38.1%, and 20.6%,
respectively. The percentages of CD4 T cells were 12.8%, 30.6%,
19.2%, and 38%, while the percentages of NK cells were 2.0%,
51.7%, 33.8% and 12.4% (Figures 2B, C). These results suggested
that lesion in HSIL stage can activate the immune response.
GSVA analysis showed high enrichment of T cell receptor
signaling pathway, leukocyte transendothelial migration, B/NK/
T cell activation in HSIL tissue. In tumor tissue, cells presented
high enrichment of antigen processing and presentation, NK cell
medicated cytotoxicity, and NK cell activation. In lymphoid
tissue, cells were related to the enrichment of dendritic cell
chemotaxis, mast cell activation and positive regulation of
chemotaxis. In addition, these cells also exhibited high
A

B C D

E

FIGURE 1 | Single-Cell profiling of diverse immune cells from four groups (Normal cervix, HSIL, tumor and metastatic lymph nodes). Overview of the study workflow
(A). t-SNE plot and proportions of all cells annotated by the ten patients from four groups (B). t-SNE plot of all cell types across samples from four groups
(C). Proportions of all cell types in each group (D). Expression of cell-type-specific marker genes illustrated in t-SNE plots (E).
June 2022 | Volume 13 | Article 897366
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enrichment of ECM-receptor interaction, TGF-beta signaling
pathway and ABC transporters (Figure 2D and Figure S2).
We also found that high expression of immune-related genes in
HSIL exhibited a protective function, while was associated with
worse prognosis in tumor tissue (Figure S3).

Then, we analyzed each cluster with specific characteristics
(Figure 2E). The cells of the first CD8 clusters (cluster 2)
expressed resident marker genes such as CD69, EGR1 and
RUNX3 and were defined as tissue-resident CD8 T. Cluster 4,
exhibited high expression levels of exhaustion markers CTLA4,
PDCD1, LAG3, and HAVCR2. Meanwhile, they also presented
high expression of antigen presentation genes, such as HLA-
DPA1, HLA-DPB1 and HLA-DRA, and was defined as
exhausted CD8 T cells. Cluster 5 uniquely expressed a variety
of heat-shock proteins (HSPA1B, HSPB1, and HSPA1A), and
Frontiers in Immunology | www.frontiersin.org 5
cytokines. (CD52, CCL5, and IL32), and was resemble with a
group of dysfunctional CD8 T cells recently identified in
melanoma, esophageal squamous cell cancer and liver cancer
(21–23). It is reported that extracellular HSPs can trigger
immune responses. Some studies have reported that GRP94, a
member of HSP90, can selectively enhance the production of
cytokines through the indirect action of antigen presenting cells
(APCs) (24). Earlier studies have also shown that HSPs can carry
tumor-derived peptides that may induce T-cell mediated
immune response, and can stimulate NK cells in the absence
of antigenic peptides (25). Recently, some studies have reported
that these cells may be situated between effector function and
exhausted function (26). Cluster 8 displayed high expression of
effector genes (GZMK, GZMH, NKG7 and CST7), which were
defined as cytotoxic T cells.
A B C

D E

F

FIGURE 2 | Identifying distinct NK/T cell clusters in all samples. t-SNE projection of 12 subsets of NK/T cells (each dot corresponds to one single cell) (A). Proportions
of all cell types clusters in each group (B). Violin plots presenting the distribution module score for selected genes for each group (C). Heatmap indicating the expression of
selected gene sets in NK/T subtypes (D). Heatmap indicating the enrichment of signaling pathway in four groups (GSVA KEGG) (E). Violin plots showing the scores of
functional modules for four groups, using the AddModuleScore function. Error bars indicated the means ± SD. (***P < 0.001). NS, no significant (F).
June 2022 | Volume 13 | Article 897366
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Cells in cluster 1 exhibited high expression of naive-related
genes such as CCR7, TCF7, LEF1, and SEEL, which were defined
as naive CD4 T cell. Cluster 6 highly expressed CD4, IL2RA, and
FOXP3 and was defined as regulatory T cells. Cluster 12 showed
high expression of LTB and IL7R, which was defined as central
memory T cells. Then, we analyzed the specific characteristics of
three NK clusters. Cluster 3 exhibited high expression of effector
genes (GZMA, GZMB, GNLY and CD160), as well as
chemokines (XCL1, XCL2 and CCL3), defined as effector NK
cells. Cluster 10, had high expression of FGFBP2, CX3CR1 and
FCGR3A, but low expression of resident genes. Due to the high
expression of FCGR3A, these cells may be recruited from
peripheral blood, suggesting that peripheral NKs are the main
source of tumor-infiltrating NKs. Cluster 9 presented high
expression of resident genes (NR4A1, RUNX3 and CD69) and
secreted different cytokines, which were defined as tissue-
resident NK cells. Meanwhile, cluster 10 cell highly expressed
CD63, CD247 and MIF, indicating that these cells were related to
the function of macrophages. Cluster 7 cells presented a high
expression of the S100A family. The S100A family plays an
important role in the formation and organization of
immunological synapse between T cells and antigen-presenting
cells, which are formed through intercellular binding and
intracellular signaling transduction (27). Cluster 11 presented
high expression of MKI67, TOP2A, and STMN1, indicating the
enrichment of proliferative immune cells (Figure 2E).

In order to evaluate the potential function of each cell cluster
and confirm the immune state of each stage during CC
progression, we calculated the scores of functional modules for
the cell cluster, using the AddModuleScore function. It is worth
noting that cluster 4 exhibited higher pre-exhausted and
terminally exhausted scores and cluster 2 exhibited higher
effector memory score. Cluster 3, 5, 8, and 10 presented higher
cytotoxic scores, while cluster 1 exhibited higher naive scores.
Cluster 6 was associated with a high regulatory score and cluster
11 exhibited higher proliferative scores (Figure S4). According to
the distribution of cell number, we found that HSIL tissue had
high enrichment of cluster 2, 3, and 12, indicating the low
activation of adaptive or innate immunity, which may be
related to persistent HPV infection and abnormal cell
infiltration. The tumor tissue exhibited high infiltration of
cluster 4, 5, and 9, which was related to the state of
immunosuppressive. However, metastatic lymph node was rich
in naive and effective memory cells, which represented the early
stage of immune activation (Figure 2F).

Different Immune Status of NK/T Cells in
HSIL, Tumor and Metastatic Lymph
Node Tissue
Immune cell types exhibited different tissue preferences. We
quantified tissue enrichment based on the cell numbers in each
stage and explored the dynamic immune states and cell
transitions in tumor-infiltrated CD8+ T cells. C2-tissue
resident memory CD8 T cells, were mainly enriched in HSIL,
and exhibited high expression level of IL2, IL7R, IL4 and CD69,
which represented inactivate status of immune response
Frontiers in Immunology | www.frontiersin.org 6
(Figures 3A, B). Similarly, these cells showed higher effector
memory, recently activation, and naive score compared to other
groups (Figure 3C and Figure S4). Various studies have
reported that tissue-resident memory CD8+T cells are an
important first line of defense from infection in peripheral
non-lymphoid tissues, such as the mucosal tissues of the
respiratory, digestive, and urogenital tracts (28). This memory
T cell subset is established late during resolution of primary
infection of those tissues, has a distinct genetic signature (29).
C4-exhausted CD8 T cells, were enriched in tumors, and
exhibited high expression levels of immune checkpoint genes,
antigen presentation and co-stimulatory factors. Meanwhile,
these cells exhibited high exhausted score than other groups
(Figure 3C and Figure S4). C5-effector memory CD8 T cells,
were mainly derived from tumors, and exhibited high expression
of CCL1, CCL11, NKG7, GZMB, PRF1, TNFSF10 and KLRB1.
They also had high effector and cytotoxicity scores, indicating
that effector memory CD8 T cell were the main effector cell type
in tumors (Figure 3C and Figure S4). C8-cytotoxic CD8 T cells
exhibited high expression of GZMA, and CX3CR1 as well as
immature genes (CCR7, LEF1, SELL and TCF7) and had higher
naive scores than other groups, suggesting the early stage of
immune response (Figure 3C and Figure S4). Meanwhile, GSVA
further identified the biological functional differences of NK/T
cells among different clusters (Figure 3D and Figure S5).

Then, we performed pseudotime trajectory analysis using
Monocle2 to order each CD8+ T cell along trajectories
according to their expression and transition profiles
(Figure 3E). C2 cells were at the beginning of the trajectory,
and differentiated into two directions characterized by C4 cells,
or C5/C8 cells, respectively. C4 (fate 1) represented an exhausted
cell cluster. GSVA analysis showed high enrichment of immune
activation signaling pathways, such as T cell-mediated immune
response, positive regulation of killing of cells, protection of
complement activation, and immune response to tumor cell
(Figure 3F). Interestingly, about 43.1% of CD8 T cells in
tumors were located in the branch. These outcomes indicated
that CD8 T cells in tumors underwent an exhausted procedure.
C5 and C8 cells represented another fate state (fate 2). C5 cells
presented highly expressed chemotactic genes, which can attract
NK cells, T cells and immature DCs. GSVA analysis showed high
enrichment of immune cells-related signaling pathways, such as
regulation of NK cell chemotaxis, mast cell chemotaxis, and
T cells chemotaxis. Meanwhile, these cells were associated with
NK cell activation, CD8 positive alpha-beta T cell activation and
T cell apoptotic process. These outcomes indicated that these
cells can regulate other immune cells function by secreting
various cytokines. Thus, cells in cluster 5 can be considered as
a transient state between effector function and exhausted
function. Meanwhile, we found that about 36.3% of CD8 T
cells in tumors were included in cluster 5. C8 presented a high
expression of cytotoxic genes such as GZMH, GZMK and
TNFSF10, but low expression of immune checkpoint genes and
antigen-presentation genes. Meanwhile, it also presented high
expression of naive genes. Interestingly, the majority of CD8 T
cells in lymph node were located in the branch.
June 2022 | Volume 13 | Article 897366
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Overall, our study first demonstrated that HSIL was a low
activated immune state (innate immunity), which is
characterized by high infiltration of tissue resident memory
CD8 T cells. Tumor presented an immunosuppressive state,
which was characterized by infiltration of exhausted CD8 T
cells. Metastatic lymph nodes had low activation of immune
response, which was characterized by effector memory CD8 T
cells and cytotoxic CD8 T cells, indicating early activate stage of
immune response.

Characterization of Myeloid Cells Across
Different Lesions
Next, we performed unsupervised clustering of all myeloid cells.
A total of 10 clusters emerged within the myeloid lineage,
including seven clusters (C1, C2, C4, C5, C6, C7, C8) of
macrophages (CD163, MRC1 and CD14) and three clusters
(C3, C9, C10) of DCs (CD1C, LILRA4 and CLEC10A)
Frontiers in Immunology | www.frontiersin.org 7
(Figure 4A). Then, we compared the number of DCs and
macrophages in different lesions. The number of myeloid
cells in normal tissue was less than that in other groups.
Then, we found that HSIL presented a high percentage of
macrophages (35.5%) and DCs (47.5%), suggesting the
activation of immune response in HSIL phase. Notably, the
percentage of macrophages (33%) and DCs (29.4%) in lymph
node were also higher than that in tumors (Figure 4B). GSVA
showed that HSIL was related to high enrichment of TNF
signaling pathway, VEGF signaling pathway, T/B cell receptor
signaling pathway and T cell cytokines production. In tumors,
immune activation-related signaling pathway (innate and
adaptive immunity) had been highly enriched, including NK
cell medicated cytotoxicity, B/T/mast cell activation, toll-like
receptor signaling pathway and antigen presentation. Lymph
node exhibited high enrichment of Th17 cell commitment,
IL5 production, Th1 cell cytokines production and ECM
A B C

D E

F

FIGURE 3 | Difference of immune state among four groups (N, H, T, and L). Proportions of each CD8+ T cell cluster among four groups (A). Violin plots showing the
distribution module score for selected genes for each CD8+ T cells cluster. Error bars indicated the means ± SD (B). Violin plots showing the scores of functional
modules for each cell CD8+ T cluster, using the AddModuleScore function. (*P < 0.05; ***P < 0.001) (C). Heatmap indicating the enrichment of signaling pathway
among four CD8+ T cells cluster (GSVA GO) (D). Trajectory of all CD8+ T cell clusters from all group along pseudotime in a two-dimensional state-space defined by
Monocle2. Each point corresponds to a single cell, and each color represents a CD8+ T cell cluster (E). Heatmap indicating the differentially expressed genes (rows)
along the pseudotime (F). NS, no significant.
June 2022 | Volume 13 | Article 897366
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receptor interaction, suggesting immune reconstitution
(Figures S6A, B).

Seven macrophage clusters were identified in our data
(Figures 4C, D), of which cluster 1 had high expression levels
of C1QA, MARCO, APOE, and CXCL10, and was enriched in
tumors and lymph nodes, defined as C1-Ma-C1QA. Meanwhile,
we found that the up-regulated genes (CD163 and CD68) in C1-
Ma-C1QA, were similar to the signatures of TAM, M1 and M2
macrophages. The co-existence of M1 and M2 signatures
indicated that TAMs was more complex than the classical M1/
M2model. Cluster 2 had high expression levels of THSB1, FCN1,
VCAN and S100A12, which was defined as C2-Ma-THBS1.
Meanwhile, we found that pro-inflammatory cytokines
(NLRP3 and IL1B), were expressed in almost all macrophage
subpopulations, and the C2-Ma-THBS1 was the highest, which
was consistent with the role of the NLRP3 inflammasome in
Frontiers in Immunology | www.frontiersin.org 8
activating IL-1B and regulating the balance of intestinal
environment. GSVA showed that C1 and C2 were the main
cell type of macrophages that played an immunomodulatory role
(Figure S7A). C6-Ma-MAFB intriguingly expressed a number of
classical monocytic genes such as transcription factors KLF2/4
and NR4A1/2 as well as heat-shock proteins (HSPH1). These
macrophages specifically expressed lymphatic vessel endothelial
hyaluronan receptor 1 (LYVE1) and VEGFA, but the expression
level of HLA-related genes was low (Figure 4E), which is similar
to the recently reported LYVE1highMHCIIlow tissue-resident
macrophages. Most of these cells resided alongside blood
vessels and played a critical role in restraining inflammation.
C7-Ma-MKI67 highly expressed cell cycle-associated genes,
including STMN1, TOP2A, and MKI67. These cells also
specifically expressed the minichromosome maintenance
(MCM) protein family genes, including MCM4, MCM5, and
A B C

D

E

F

FIGURE 4 | Identifying distinct myeloid cell clusters in all samples. t-SNE projection of 10 subsets of myeloid cells (each dot corresponds to one single cell) shown in
different colors (A). Proportions of all cell types clusters among four groups (B). Violin plots representing the distribution module score for selected genes for each
cluster. Error bars indicated the means ± SD (C). Heatmap indicating the expression of selected gene sets in myeloid cell subtypes (D). Heatmap indicating the
differentially expressed genes in seven macrophages subtypes (E). Violin plots showing the scores of functional modules for each macrophages cluster, using the
AddModuleScore function. (**P < 0.01; ***P < 0.001) (F). NS, no significant.
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MCM7. It is reported that MCMs are mainly expressed in all
cycling cells throughout the cell cycle, although they are lost in
quiescent and differentiated cells (30). GSVA confirmed that C7
cells also played an important role in regulating immune
activation (similar to C1). C5-Ma-S100A8, expressed cathepsin
genes (CSTA, and CSTD) and calcium-binding proteins
(S100A8, S100A2 and S100A6) in a tumor-specific manner,
which were important for ECM remodeling. In fact, cathepsin-
secreting macrophages have the characteristics of promoting
tumor cell migration and invasion (31). Interestingly, most of
C5 macrophages were derived from lymph nodes. In addition,
we found that C5-Ma-S100A8 also exhibited specifically express
the genes of plasma cell markers (IGHG1, IGHG2, IGHG3,
IGHG4 and MZB1), indicating C5 cells and plasma cells play a
synergistic role in regulating the TME in lymph node. C8-Ma-
SPP1 expressed high levels of TMSB4X, TMSB10 and CSTB. It is
reported that TMSB10 has recently been recognized as being an
important player in the metastatic cascade including tumor
angiogenesis, invasion, and metastasis in papillary thyroid
carcinoma (32). CSTB can regulate the polarization of
macrophages in the process of proliferation, migration,
invasion and epithelial-mesenchymal transition (EMT) of HCC
cells (33). C4-Ma-GZMA also expressed high level of cytotoxicity
genes such as GNLY, FING, NKG7 and GZMA, indicating that
these cells had cytotoxicity (Figure 4D). Macrophages were
significantly enriched in HSIL, tumors and lymph node and
displayed different proportions. We could not clearly distinguish
M1 and M2 macrophages using known marker genes such as
FCGR3A (M1) and CD163 (M2), as they were both expressed in
those cells (Figure 4D), consistent with a previous report (26).
However, by calculating M1 and M2 signatures and pro- and
anti-inflammatory scores as well as immune surveillance and
immune escape using related gene sets, we observed a dominant
M2-like phenotype (thought to have a pro-cancer role) in tumor
tissue, and a M1-like phenotype in HSIL (thought to have an
anti-cancer role). Notably, macrophages in HSIL exhibited
higher anti- and pro-inflammatory score compared with those
in tumor, indicating the complexity of TME. Importantly, tumor
tissue exhibited an immune surveillance and escape scores, which
further explained the adverse effects of immunotherapy (Figure 4F).

Then, we defined the DCs subcluster (Figures 4C, D). Three
DC subsets, including plasmacytoid DC (pDC), cDC2, and cDC1
cells, were characterized by high expression of HLA-DRs and low
expression of CD14. These cells were further distinguished by
specific expression of LILRA4/BCL11A, CD1C/FCER1A, and
XCR1/BATF3, respectively. C9-DCs expressed the classical
DC1 marker genes (XCR1 and CLEC9A), representing mature
DCs (CCR7 and LAMP3). Compared with DC1 cells, C3-DC
(CD1C and FCER1A), also had the unique signatures of DC2.
C3-DC cells also showed a high expression of CD1E in the
absence of CCR7, HLA-DRA, and CCL19. C10-DC did not
correspond to any classical DC subset in vivo. They presented
a high expression of CLEC4C, LILRA4, and LILRA5, namely
plasmacytoid DC (pDC). Traditional DCs are classified into two
subsets: cDC1 and cDC2. Their main function is to obtain tumor
Frontiers in Immunology | www.frontiersin.org 9
antigen, migrate to lymph nodes, prime to T cells (Figure S7B).
In addition, we found that most of DC1, DC2 and pDC were
from HSIL tissue or lymph node. cDC1 and cDC2 have been
used as sources for vaccine immunotherapy and have shown
encouraging immunological and clinical outcomes. Thus, the
infiltrated DCs in HSIL or metastatic lesions may become the
target of immunotherapy in the future.

Difference of Macrophage Types Between
HSIL and Tumor
C1-Ma-C1QA and C2-Ma-THBS1 macrophages are the main
enriched cell types in tumor/lymph node and HSIL, respectively.
Then, we compared the difference between the two macrophages.
C1-Ma-C1QA highly expressed MRC1, APOC1, GPNMB and
CTSD, while C2-Ma-THBS1 highly expressed VCAN, TIMP1,
IL1B, EREG, and FCN1(Figures 5A–C). In addition, C1 cells also
presented high expression of antigen-presentation genes such as
HLA-DQB1, HLA-DQA1 and HLA-DQA2, indicating the
subpopulation was related to immune activation. C2 cells were
associated with adhesion molecular, such as S100A4, S100A9 and
S100A8. GO analysis confirmed that C1 cells had high enrichment
of immune effector process, neutrophil activation, cellular
response to IF-gamma, and neutrophil activation (Figure S8A),
while C2 cells were associated with lipopolysaccharide response,
neutrophil migration, granulcyte chemotaxis and neutrophil
chemotaxis (Figure S8B). Then, we found that C1 cells were the
main macrophage type in tumor/lymph tissue, while C2 cells were
the main type in HSIL (Figure 5D). Interestingly, high expression
of C1QA had a better prognosis, but high expression of THBS1
was related to worse prognosis (Figure 5E). Then, we found that
C2-Ma-THBS1 macrophages showed high score of M1 signature
and anti-inflammatory score, while C1-Ma-C1QA had high score
ofM2 polarization signature and pro-inflammatory score (Figures
S9A–D). Meanwhile, we also showed that C1-Ma-C1QA was
associated with high immune surveillance and immune escape
score (Figures S9E, F). Thus, C1-Ma-C1QA and C2-Ma-THBS1
also could be defined as M2-like macrophage and M1-like
macrophage, respectively.

Then, we used Monocle2 for pseudotime trajectory analysis
according to their expression and transition profiles. We
observed C1-Ma-C1QA and C2-Ma-THBS1 cells were located
at the two ends of trajectory and showed that C2-Ma-THBS1 and
C1-Ma-C1QA formed a continuum, but had different expression
features (Figure 5F). We observed that C2-Ma-THBS1 cells
presented high enrichment of translation initiation, viral
transcription, IL-1 signaling pathway, NK-kB signaling
pathway, and cytokine-mediated signaling pathway. These
results indicated that the activation of these signaling pathways
imply a progression of tumor. C1-Ma-C1QA presented high
enrichment of neutrophil activation, T cell activation, antigen
processing and presentation and IF-gamma mediated signaling
pathway (Figure 5G). In conclusion, these results suggested that
when lesion progressed from HSIL to invasive tumor, the TME
underwent a transition from pro-inflammatory (M1 signature)
to anti-inflammatory (M2 signature).
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The Transcription Characteristics of
B Cells Among Different Lesions
Some studies have shown that B cells have been a great impact on
the immune regulation of TME and are closely related to the
overall survival rate of tumor patients (34, 35). In this study, a
total of 880 B cells were identified for further analysis. We re-
clustered B cells and identified six sub-clusters (Figures 6A, B).
Then, based on specific cell markers, we defined clusters 1 as
follicular B cells (marked by MS4A1 and CD19), and cluster 2-5
as plasma B cells (marked by IGHG4 and MZB1) (Figure 6C).
Frontiers in Immunology | www.frontiersin.org 10
Low quality cluster (C6) will not be discussed further in this
article. Notably, we found follicular B cells were mainly
distributed in lymph node (357/518) and plasma B cells were
distributed in tumor (Figure 6B). Cell reprogramming analysis
at the single-cell level revealed the transition path of B cells from
follicular B cells to plasma cells; this demonstrated the complex
functions of B cells in tumor progression (Figure 6D). In
addition, we also explored the two types of B cells, and their
characteristics and functions during tumor progressive.
Differential expression analysis revealed high expression of
A B C

D E

F G

FIGURE 5 | The transition of two types of macrophages during tumor progression. Volcano plot showing the top differently genes between two types of
macrophages (A). Heatmap indicating differently genes between two types of macrophages (B). Violin plots showing the distribution module score for selected
genes for each cluster. Error bars indicated the means ± SD (C). Pie graph showing the proportions of cells among four groups (D). Kaplan–Meier curve showing
survival of C1QA, and THBS1 genes in TCGA-SCC patients (E). Trajectory of both two macrophage clusters along pseudotime in a two-dimensional state-space
defined by Monocle2. Each point corresponds to a single cell, and each color represents a macrophage cluster (F). Heatmap indicating the differentially expressed
genes (rows) along the pseudotime (G).
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MS4A1, BANK1, CD22, BLK, ARHGAP24, SCIMP, PAX5 and
FCRL1 in follicular B cells (Figure 6E). Plasma cells were related
to high expression of IGHG4, XBP1, FKBP11, DERL3 and
PRDX4. GSVA showed that follicular B cells were associated
with immune cells activation and immune effector response.
However, plasma cells were related to chemotaxis and cytokines
production and Toll-like receptor signaling pathway
(Figures 6F, G).

Then, we compared the specific functional characteristics of
follicular B and plasma cells in different lesions. Notably, in HSIL
tissue, follicular B cells exhibited high functional enrichment of
chemical carcinogenesis, natural killer cell-medicated cytotocity
Frontiers in Immunology | www.frontiersin.org 11
and B cell receptor signaling pathway (Figure S10A).
Meanwhile, we found that follicular B also exhibited specific
functional enrichment in tumors, including TNF-signaling
pathway, IL17 signaling pathway and toll-like signaling
pathway, which demonstrated the activation of the natural
immune system. Importantly, follicular B, was mainly enriched
in lymph node, and exhibited chemokine signaling, T cell
receptor signaling pathway and PPAR signaling pathway and
antigen presentation, which can activate adapt immune. These
results indicated that follicular B mainly came from lymph node.
Similarly, plasma cells among different lesions had distinct
expression programs (Figure S10B). In normal tissue or lymph
A B C
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FIGURE 6 | Identifying distinct B cell clusters in all samples. t-SNE projection of three cell types of B cells (each dot corresponds to one single cell) shown in
different colors (A). Proportions of all cell types clusters among four groups (B). Violin plots representing the distribution module score for selected genes for each
cluster. Error bars indicated the means ± SD (C). Trajectory of all B cell clusters along pseudotime in a two-dimensional state-space defined by Monocle2. Each
point corresponds to a single cell (D). Heatmap indicating differently genes among six clusters (E). Heatmap showing the enrichment of biological function in six B
cell clusters (GSVA GO) (F). Heatmap showing the enrichment of biological function in six B cell clusters (GSVA KEGG) (G).
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node, plasma B presented high enrichment of IL-17 signaling
pathway, B cell receptor signaling pathway, TNF signaling
pathway, and antigen presentation. However, in HSIL or
tumors, plasma B showed notable complement and
coagulation cascades, chemical carcinogenesis and chemokine-
cytokine receptor interaction.

Complex Intercellular Communication
Networks in HSIL, Tumor and Lymph Node
In order to systematically elucidate the complex cellular
responses, we attempted to map the ligand-receptor
communication network to better understand the cellular
behaviour and the response to neighbouring cells in HSIL,
tumor and lymph node, respectively. We considered the
expression levels of ligands and receptors in each cell type and
predicted the molecular interactions between cell populations
through specific protein complexes. We then generated a
potential intercellular communication networks among all cells
in the three groups (Figure 7A).

Then, we compared the interactions of MHC molecules,
chemokines, immune receptors, immunostimulators and
immune checkpoints among three groups (Figures 7B–D).
The results showed that MHC molecules, MIF-CD74/CXCR4,
and MIF-CD74/CD44 in HSIL and lymph nodes were higher
than those in tumor tissue. However, tumor tissue exhibited
higher levels of immune checkpoint-related ligand-receptors,
such as LGALS9-HAVCR2, LAGALS9-CD44, ICOSL-ICOS,
ICOSL-CTLA4, and ICOSL-CD28. These results further
proved the existence of immunosuppressive TME of tumor
tissue. Then, we found that CLEC2D/C/E-KLRB1 exhibited
strong communication among CD4 T cells, CD8 T cells and
NK cells in HSIL, indicating potential immune activation. Last,
we compared the differences between various signaling pathways
(Figure 7E). The results showed that HSIL and lymph node
tissue had strong communication in MHC, complement
activation, and CD46 signaling pathways, which were related
to immune regulation and activation. However, tumor tissue
exhibited strong communication in CCLs, CXCLs, and TIGIT
signaling pathways. These data further demonstrated different
immune states in the process of CC development.
DISCUSSION

Recently, CC is considered as a preventable malignant disease,
due to the clear etiology of HPV infection and the application of
HPV vaccine (3, 4) With the continuous infection of HPV, various
oncogenic genome, transcriptome, and epigenetic changes
accumulate in epithelial cells in a gradual manner, affecting
various signaling pathways driving CC (3, 4). TME targeting
strategy provides a novel treatment option for cancer treatment
(36); however, because the immune microenvironment of CC is
largely unknown, these protocols have yet been widely applied in
CC patients. For example, how HPV infection induces the
occurrence of HSIL, why HSIL can progress to invasive tumor,
and why cervical cancer occurs easily lymph node metastasis. No
Frontiers in Immunology | www.frontiersin.org 12
studies have addressed these questions of how TME affects the
cancer cell during this process. Across multiple studies conducted
over the years, including a tentative exploration of chromatin
accessibility during HPV-derive CC, the best description for
understanding CC transcriptome diversity at the single-cell level
has not been determined. In this study, we first depicted the single-
cell transcriptomic profiling of normal cervix, premalignant lesion
(HSIL), primary cervical tumors, and metastatic lymph node, to
reveal the dynamic change of TME subpopulations. Our results
showed that there are significant differences in the infiltration level
of immune cells at different stages of tumor progression. We then
found that HSIL exhibited a low, recently activated TME,
characterized by an infiltration of tissue resident CD8 T cell,
effector NK cells, Treg, DC1, pDC, and M1-like macrophages.
Tumor tissue showed a notable immunosuppressive TME with
high infiltration level of exhausted CD8 T cells, resident NK cells
and M2-like macrophages. Interestingly, early immune response
were observed in metastatic lymph node, characterized by a high
infiltration of CD4 T cells (naive T cell, and central memory T cell),
cytotoxic CD8+ T cells, circling NK cells and effector memory CD8
T cells (Figure 8). These results deepen our current understanding
of CC development and progression, and provide a novel
therapeutic model for CC in the future.

Cervical HSIL is a precursor of HPV-associated CC and the
basis of cancer progression, which has not been fully determined.
Growing evidence indicates that the impaired local, rather than
systemic immune functions plays a key role in the occurrence of
cervical carcinogenesis (37). We found a low, recently activated
TME in HSIL. Dendritic cells are the most effective antigen-
presenting cells, which have the unique effect of initiating naive T
cells and inducing their functional polarization. Importantly,
HSIL tissue exhibited high enrichment of DC1 and pDC. It is
reported that cDC1 excelled in the activation of CTL, which is a
critical effector cell type of anti-tumor immunity. Regulatory T
cells (CD4+ FOXP3+) are an essential part of balancing the
effects of the immune system, so they are very important for
immune homeostasis. They can suppress immune responses by
fighting various infections and abnormal cells (38). The local
accumulation of activated Tregs in vitally infected tissues has
been shown to support immune evasion, resulting in the
persistence of infection (39). Meanwhile, we found HSIL
exhibited high infiltration of naive CD4+ and tissue resident
CD8+ T cells. These cells were not anergic, but were inhibited by
infiltrated Tregs by secreting IL-10 and TGF-b1. Thus, we
speculated that HSIL tissue constructed an immune privilege,
which is related to persistent HPV infection and lesion
progression. Similar to lymphocytes, multiple myeloid cell
subsets were found in the TME of HSIL, and pro-
inflammatory and anti-tumor macrophages (M1-like
macrophages) were the dominant cell subpopulations, which
were also suppressed by Tregs. In fact, the outcome of lesion
regression or progression will depend on which of two forces
dominate the dialogue.

Different from immune microenvironment in HSIL tissue,
tumor tissue exhibited a notable immunosuppression with high
infiltration of exhausted CD8 T cells, resident NK cells and M2-
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FIGURE 8 | Summary of conclusion.
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FIGURE 7 | The dense network and multiple cellular connections. Circos plot showing the interactions between ligands and receptors across cell types in HSIL(left),
tumor (middle), and lymph node (right) (A). Bubble diagram showing MHC moleculars, immune receptors, chemokine and immune checkpint among different
immune cells in HSIL (B), tumor (C) and lymph node (D). The association of different signaling pathways among different immune cells in HSIL, tumor and lymph
node group (E).
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like macrophages, which was consistent with other studies of
lung cancer and liver cancer (40, 41). CD8+ T cells are the most
impor tant immune ce l l s tha t regu la te the tumor
microenvironment (42). We observed the continuous evolution
of CD8+ T cells in CC at different stages. Unlike the high
infiltration of tissue-resident CD8+ T cell, tumors exhibited the
most high infiltration of exhausted CD8+ T cells, which
represented a dysfunction. Similar to our results, recent studies
by Gu et al. reported that tumor tissue exhibited high enrichment
of CD8 T cells with high expression level of immune checkpoint
genes such as LAG3, PDCD1 and HAVCR2/TIM3 in CC tissue
(43). In this study, we found that these cells also exerted indirect
cytotoxicity by secreting chemotaxis, such as CCL1, CCL5,
CLL11 and CX3CR1, which can attract NK cells, T cells and
immature DCs to TME lesion. This is partly due to the chronic
stimulation of tumor antigens and the continuous remodeling of
TME, which may eventually alter the phenotype and function of
immune subsets. Similar to previous studies, tumor tissue had
more infiltration of M2-like macrophages, and it has anti-
inflammatory and tumor promoting effects, which will further
dampen the anti-tumor ability of cytotoxic CD8+ T cells (44, 45).
In this study, we found that macrophages enriched in tumor
tissue exhibited high expression of CD163 and CD68 (M2-like
macrophages). It is reported that the intraepithelial filtration of
CD68 + and CD163+ macrophages will increase, as the disease
evolves from HPV infection and CIN to invasive disease (46). In
addition, these cells contribute to the immune escape of tumors,
and are thus related to tumor progression (46). A recent study
found that CC expressing higher CCL22, and Foxp3 markers was
more aggressive, resulting in poor overall survival, regardless of
FIGO stage or disease subtypes (47). Further, the study also
showed that the expression of CCL22 was mainly localized
majorly to M2-like macrophages carrying CD163 positive (47).
Meanwhile, these macrophages have regulatory, and can
promote Tregs migration and differentiation.

Interestingly, metastatic lymph node exhibited the early stage
of immune response, characterized by the infiltration of naive
CD4 T cell, central memory CD4 T cell, circling NK cells,
cytotoxic CD8+ T cells and effector memory CD8 T cells. In
addition, macrophages with high expression of IGHG1 and
IGHG2 (cluster C5-Ma-S100A8) were enriched in lymph node.
Notably, the early activation marker of immune response CD25
was highly expressed in lymph nodes. Cytotoxic CD8+ T cells are
a type of immune cell type that can kill abnormal cells. In lymph
node, cluster 8 was the main CD8+ T cell type, and showed high
expression of GZMK and KLRG1, which appeared to be distinct
from conventional T cell subtype. Compared with conventional
effector T cells, these cells expressed lower levels of cytotoxic
markers (GZMB, GZMB, and GNLY) and high levels of naive
markers (CCR7 and LEF1), and thus may possibly represent cells
in a transition state from naive to effector T cells. Meanwhile, we
also found that naive CD4 T cells were mainly cell types in
metastatic lymph node, indicating that these cells were the source
of cytotoxic CD8+ T cells. The adaptive immune response of
effector memory CD8+ T cells (Tem) is considered to be a central
Frontiers in Immunology | www.frontiersin.org 14
component of the immune response to disseminated disease
(48). However, despite the significant enhancement of effector
memory CD8 T cells infiltration, the tumor developed, indicating
that these T cells could not prevent the spread of CC.

Different immune microenvironment means different
immunotherapy strategies. When the lesion develops to the
HSIL stage, the tumor environment showed a low, and recently
activated state. It is well known that cytokines can be used by
tumors to suppress the immune response, or the immune system
to induce immune response (49). Therefore, the addition of
exogenous cytokines is conducive to the clarity of the abnormal
cells or HPV infection. Among a variety of cytokines, ILs and
IFNs have been the most widely and efficiently used in cancer
treatment (50). In addition, we found that both HSIL and lymph
nodes presented high infiltration of DCs. DCs vaccine is
composed of powerful antigen-presenting cells (APCs) (51),
which can induce effective immune responses, and may be a
potential method for the treatment of HSIL or metastatic CC.
Tumor-associated macrophages (TAMs), are an important
component of tumor microenvironment in tumor tissue, which
can regulate immune response and promote tumor progression
(52). The researchers also pointed out that macrophage colony-
stimulating factor (M-CSF) is vital for the shift of microglia/
macrophage to M2 subtype, and induces tumor proliferation
(51). BLZ945, a CSF inhibitor, has been tested to target TAMs
with satisfactory survival with elimination of tumor cells and
decrease of M2 in TAM (53). Thus, therapies targeting the
transformation of macrophage may be effect to inhibit lesion
from HSIL to tumor. Immunotherapy with immune checkpoint
inhibitors (ICIs) has changed the treatment paradigm for various
cancer types and improved outcomes for patients with advanced
or metastatic cancer (54). In this study, we found that some CD8
T cells expressed high levels of immune checkpoint genes in
tumor or metastatic lymph node, such as PD-1, PD-L1 and
CTLA4, suggesting that ICIs can be effective for CC treatment.
However, our study also had some limitations, such as the
relatively low coverage of 3’ end sequencing and limited
sample size. Furthermore, similar to most single-cell studies of
observational nature, this hypothesis should be tested with more
research. Regarding the cellular changes found in this study,
RNA in situ hybridization and immunohistochemistry can help
identify changes in specific cell subsets. Biological functional
validations, such as cytokine measurements or cytotoxicity
assays, was awaited to explore the underlying mechanisms.
Therefor, the results should be interpreted with caution.
Nevertheless, unlike published studies (43, 55), to the best of
our knowledge, this study first provided an important
understanding of TME at different stages of CC progression.

In conclusion, we analyzed the single-cell atlas of normal
cervix, premalignant lesion (HSIL), primary cervical tumors, and
metastatic lymph node. Our results elucidated the characteristic
of TME changes from precancerous lesions to invasive tumor, to
metastatic lymph node. These findings provide in-depth insights
into the characteristics of CC and potential therapeutic methods
in the future.
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Supplementary Figure 1 | The distribution of cells in different groups. t-SNE
projection of 15 cluster of all myeloid cells (each dot corresponds to one single cell) (A).
t-SNE showing the distribution of cells in four groups (B). The proportions of all cells
annotated in each group (C). t-SNE plot of all cell types annotated in each groups (D).

Supplementary Figure 2 | The functional enrichment of NK/T cells among
different groups (N, H, T, and L).

Supplementary Figure 3 | Violin plots showing the scores of functional modules
for each cell cluster, using the AddModuleScore function.

Supplementary Figure 4 | Kaplan–Meier curve showing survival of selected
immune-related genes expressed in H (A) and T samples (B). All patients were from
TCGA database.

Supplementary Figure 5 | The difference of functional enrichment among
different clusters (C2, 4, 5, and C8).

Supplementary Figure 6 | Biological difference of all myeloid cells among four
groups (N, H, T, and L). Heatmap showing the enrichment of biological function in
four groups (KEGG) (A). Heatmap showing the enrichment of biological function in
four groups (GO) (B).

Supplementary Figure 7 | The function of macrophages and DCs among different
clusters. Heatmap showing the enrichment of biological function (GO) and (KEGG)
among seven macrophage clusters (A). Heatmap showing the enrichment of
biological function in three DC clusters (GO) an (KEGG) among three DCs clusters (B).

Supplementary Figure 8 | The functional difference between C1-Ma-C1QA and
C2-Ma-THBS1 macrophages. Circle map showing the GO biological function with
corresponding genes in C1-Ma-C1QA macrophage (A). Circle map showing the GO
biological function with corresponding genes in C2-Ma-THBS1 macrophage (B).

Supplementary Figure 9 | Comparison of immune function between C1-Ma-
C1QA and C2-Ma-THBS1 macrophages. Violin plots showing the
AddModuleScore differences of M1-polarization (A), M2-polarization (B), pro-
inflammatory (C), anti-inflammatory (D), immune surveillance (E), and immune
escape (F) between C1-Ma-C1QA and C2-Ma-THBS1 macrophages.

Supplementary Figure 10 | The function of follicular B cells and plasma cells
among four groups (N, H, T and L). Heatmap showing the enrichment of biological
function in follicular B cells among four groups (A). Heatmap showing the
enrichment of biological function in plasma cell among four groups (B).
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