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A B S T R A C T

The aim of this study was to investigate the long-range temporal correlations (LRTCs) of instantaneous ampli-
tude of electrocortical oscillations in patients with autism spectrum disorder (ASD). Using the resting-state
electroencephalography (EEG) of 15 patients with ASD (aged between 5˜18 years, mean age = 11.6 years, SD =
4.4 years) and 18 typical developing (TD) people (aged between 5˜18 years, mean age = 8.9 years, SD = 2.4
years), we estimated the LRTCs of neuronal oscillations amplitude of 84 predefined cortical regions of interest
using detrended fluctuation analysis (DFA) after confirming the presence of scale invariance. We found that the
DFA exponents of instantaneous amplitude of beta and low-gamma oscillations were significantly attenuated in
patients with ASD compared to TD participants. Moreover, the regions with attenuated DFA exponent were
mainly located in social functions related cortical networks, including the default mode network (DMN), the
mirror neuron system (MNS) and the salience network (SN). These findings suggest that ASD is associated with
highly volatile neuronal states of electrocortical oscillations, which may be related to social and cognitive
dysfunction in patients with ASD.

1. Introduction

The autism spectrum disorder (ASD) is a range of neurodevelop-
mental conditions characterized by challenges with social skills, re-
petitive behaviors, language and nonverbal communication (Lord et al.,
1994). This neuropsychiatric disorder is generally diagnosed in early
childhood and brings heavy burden to the affected individuals and their
caregivers (Leigh and Du, 2015). Recent advances in neuroimaging
techniques provided significant insights into the neurobiological me-
chanisms of ASD, which revealed that ASD is closely associated with
atypical functional connectivity or spatial dependency among certain
regions of interest (ROIs) (Belmonte et al., 2004). Using functional
magnetic resonance imaging (fMRI), altered functional connectivity
between default mode network (DMN) regions, which play crucial role
in mentalizing, self-reference and social cognition, is among the most
commonly reported findings in people with ASD (Padmanabhan et al.,
2017). Note that, most of these studies focused on the aberrant spatial
organization of large-scale brain networks and few studies were in-
volved in the temporal structure of the neuronal activities of autistic
brain.

Previous studies on the temporal dependency of neuronal activities
have consistently revealed that the fluctuations of neuronal signals at

many levels of nervous system are governed by power-law-form long-
range temporal correlations (LRTCs), which suggests that the brain
could operate near a critical state and may represent an optimal com-
promise for the competing demands of stability and information
transmission in neuronal networks (Beggs and Plenz, 2003; Hardstone
et al., 2012). The LRTCs in physiological signals can be assessed
through various methods, such as detrended fluctuation analysis (DFA)
(Peng et al., 1995). This temporal property of brain oscillations could
be modulated by several cognitive, demographic and pathologic vari-
ables, and is considered as a promising biomarker for pre-clinical stu-
dies (Hardstone et al., 2012; Linkenkaer-Hansen et al., 2005; Smit et al.,
2011). Since some of the aberrant functions commonly observed in ASD
(e.g., language, social cognition and communication) require sustained
cognitive operations, it’s necessary to explore the LRTCs of intrinsic
brain activities in these patients.

Using resting-state fMRI technique, Lai et al. (2010) provided pre-
liminary evidence that ASD is associated with significantly attenuated
LRTCs in regions previously reported to be involved in autism (Lai
et al., 2010). A recently study conducted by our team found that the
LRTCs of hemoglobin concentration signals within left temporal region
and bilateral temporo-occipital regions recorded via functional near
infrared spectroscopy (fNIRS) were also attenuated in ASD patients (Jia
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et al., 2018). However, building a neurophysiological model of ASD
requires that specific changes within different frequencies be in-
vestigated, which could not be accomplished with fMRI or fNIRS
technique.

Here, using the resting-state electroencephalogram (EEG) datasets
of the Healthy Brain Network (HBN) (Alexander et al., 2017), we ex-
amined whether the LRTCs of electrocortical signals were attenuated in
patients with ASD, and determined the frequency bands in which re-
duced LRTCs occurred. We hypothesized that there would be attenua-
tion of LRTCs in these patients, especially within brain regions known
to be involved in autism, such as the DMN.

2. Material and methods

2.1. Participants

The resting-state EEG datasets of 15 patients with ASD and 18 ty-
pical developing (TD) people from HBN were selected here. All the
participants in both groups were male, aged between 5˜18 years (ASD:
mean age=11.6 years, SD=4.4 years; TD: mean age=8.9 years,
SD= 2.4 years) and right-handed, with IQ higher than 66. For the
participants in the ASD group, diagnosis was established by clinical
team based on a computerized web-based version of the Schedule for
Affective Disorders and Schizophrenia - Children’s version (Kaufman
et al., 1997) and Autism Diagnostic Observation Schedule (ADOS) (Lord
et al., 2012). No diagnosis was given to the participants in the TD
group. For more information about this database and its inclusion &
exclusion criteria, see http://fcon_1000.projects.nitrc.org/indi/cmi_-
healthy_brain_network/inclusion.html.

2.2. EEG recording

Spontaneous brain activities were measured with EEG for about
5min. In EEG collection, the participants were instructed to open or
close their eyes at various time points in a sound-shielded room. In the
eye-open periods, they were asked to view a fixation cross in the center
of computer screen. A 128-channel Hydro-Cel Geodesic system covering
the entire scalp (EGI Inc., Eugene, Oregon, USA) was used. During
online recording, the EEG data were referenced to an electrode over the
vertex of the head (i.e., Cz). The impedances of all electrodes were kept
lower than 40 kΩ. The sampling frequency was 500 Hz with a bandpass
filter of 0.1–100 Hz.

The data collection in HBN was conducted in accordance with the
Declaration of Helsinki and approved by the Chesapeake Institutional
Review Board. Written consent were obtained from their legal guar-
dians and written assent obtained from the participants.

2.3. EEG data preprocessing

EEG data were preprocessed using EEGLAB (Delorme and Makeig,
2004). Firstly, the electrodes located on the neck/face were excluded
from further preprocessing. Secondly, the “bad electrodes” (i.e., those
electrodes with large drift longer than 1min) were identified through
visual inspection and were interpolated using a spherical spline method
(Perrin et al., 1989). The mean and standard deviation of electrodes
interpolated across subjects were 9.2 and 1.5, respectively. Thirdly, we
scrolled through the EEG signals again. Data portions with drift could
be seen on other electrodes which were not interpolated in the previous
step. These data portions were deleted. The remaining segments were
stitched together. This operation should not significantly influence the
estimation of LRTCs, which has been proved by Chen et al. (2002).
Fourthly, EEG data were re-sampled to 250 Hz and band-pass filtered
between 0.5 and 80 Hz through a Hamming windowed finite impulse
response (FIR) filter. The order of the FIR was chosen so that it included
three cycles of the lower edge of the band considered (i.e., 1500). A
notch filter was used to eliminate 60 Hz line noise. Fifthly, the

independent component analysis (ICA) was applied to correct data
portions contaminated by eye movements & blinks, electromyography
(EMG), electrocardiography (ECG) and any non-physiological artifacts.
For more information about how to selection artifact-related in-
dependent components, see Chaumon et al. (2015). Lastly, the EEG data
were re-referenced to a common average reference.

2.4. Source localization

The exact low resolution brain electromagnetic tomography
(eLORETA) was used to calculate the intracerebral electrical source
activities from the scalp electrical potentials measured at the electrode
sites (Pascual-Marqui et al., 2011). It has been proved that the
eLORETA provides a weighted minimum norm inverse solution and has
correct localization even in the presence of structured noise, albeit with
low spatial resolution (Aoki et al., 2015). Through the LORETA soft-
ware (http://www.uzh.ch/keyinst/loreta.htm), the neuronal activities
in current density (A/m2) of 6239 cortical gray matter voxels with
5mm spatial resolution using the MNI152 template were obtained for
each participant (Hata et al., 2016). Then, the time-series of current
density were extracted for all cortical ROIs and six frequency bands:
delta (2˜4 Hz), theta (4˜8 Hz), alpha (8˜13 Hz), beta (14˜30 Hz), low-
gamma (30˜55 Hz) and high-gamma (65˜80 Hz). The cortical ROIs here
were defined as the 84 Brodmann areas listed in Table 1 (Mohan et al.,

Table 1
The 84 ROIs defined in the current study. R: right hemisphere; L: left hemi-
sphere.

ROI Brodmann area Abbrev. Brain regions

1/43 1L/1R S11 Primary somatosensory cortex1
2/44 2L/2R S12 Primary somatosensory cortex2
3/45 3L/3R S13 Primary somatosensory cortex3
4/46 4L/4R M1 Primary motor cortex
5/47 5L/5R SPS Superior parietal sulcus
6/48 6L/6R SMA Supplementary motor area
7/49 7L/7R PC precuneus
8/50 8L/8R Pre-SMA Pre-supplementary motor area
9/51 9L/9R DLPFC Dorsolateral prefrontal cortex
10/52 10 L/10R FPC Fronto-parietal cortex
11/53 11 L/11R OFC Orbital frontal cortex
12/54 13 L/13R Insula Insula
13/55 17 L/17R V1 Primary visual cortex
14/56 18 L/18R V2 Secondary visual cortex
15/57 19 L/19R Cuneus Cuneus
16/58 20 L/20R ITG Inferior temporal gyrus
17/59 21 L/21R MTG Medial temporal gyrus
18/60 22 L/22R STG Superior temporal gyrus
19/61 23 L/23R PCC1 Posterior cingulate cortex1
20/62 24 L/24R dACC Dorsal anterior cingulate cortex
21/63 25 L/25R sgACC Subgeneual anterior cingulate cortex
22/64 27 L/27R PHG1 Parahippocampal gyrus1
23/65 28 L/28R HIP1 Hippocampal area1
24/66 29 L/29R RSC1 Retrosplenial cortex1
25/67 30 L/30R RSC2 Retrosplenial cortex2
26/68 31 L/31R PCC2 Posterior cingulate cortex2
27/69 32 L/32R PrACC Pregeneual anterior cingulate cortex
28/70 33 L/33R rACC Rostral anterior cingulate cortex
29/71 34 L/34R PHG2 Parahippocampal gyrus2
30/72 35 L/35R HIP2 Hippocampal area2
31/73 36 L/36R PHG3 Parahippocampal gyrus3
32/74 37 L/37R OTC Occipital-temporal cortex
33/75 38 L/38R TP Temporal pole
34/76 39 L/39R AG Angular gyrus
35/77 40 L/40R IPS Intra-parietal sulcus
36/78 41 L/41R A1 Primary auditory cortex
37/79 42 L/42R A2 Secondary auditory cortex
38/80 43 L/43R PCG Postcentral gyrus
39/81 44 L/44R OIFG Opercular part of inferior frontal gyrus
40/82 45 L/45R IFG Inferior frontal gyrus
41/83 46 L/46R MPFC Medial prefrontal cortex
42/84 47 L/47R VLPFC Ventrolateral prefrontal cortex
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2016). The source activities of each frequency band were extracted
through Hamming windowed FIR filters. The order of the FIR was
chosen so that it included three cycles of the low-frequency component
of the band considered (i.e., 375 for delta, 188 for theta, 94 for alpha,
54 for beta, 25 for low-gamma and 12 for high-gamma), in order to
accurately detect the oscillations while also limiting the temporal in-
tegration caused by FIR.

The frequency limits of alpha band were determined by the results
of power spectra analysis conducted over each ROI and each subject
using fast Fourier transformation (FFT). We found that alpha peak in
power spectra could be clearly seen in the occipital regions for all
subjects except three ASD patients and five TD subjects. Observing the
power spectra, we found that the alpha peak was located between 9 and
11 Hz. Thus, the alpha band limit was set to be 8–13 Hz in the current
study.

2.5. DFA on the instantaneous amplitude of neuronal oscillations

The LRTCs of source activities were quantified through DFA (Peng
et al., 1995). As has been illustrated in Hardstone et al. (2012), the
procedures of DFA for each frequency band, each cortical ROI and each
participant could be summarized as follows:

1 Extract the instantaneous amplitude of neuronal oscillations
through the Hilbert transform. The band-pass filtered source activ-
ities should not be directly used in DFA, since they are strongly anti-
correlated. Assuming X(t) and X t( )H are the band-pass filtered
source activity and its Hilbert transform at sampling time t (i.e.,
starting from 4ms with step 4ms) respectively, we could obtain the
analytic signal X t( )an via the following equation: Xan(t) = X(t) +
iXH(t). The instantaneous amplitude of X(t) is computed as the
modulus of X t( )an . Fig. 1 shows examples of 20 s of neuronal os-
cillations from ROI #43 (Primary somatosensory cortex1) filtered in
the beta-frequency range (13˜30 Hz) of an ASD patient (panel a) and
a TD subject (panel b).

2 Compute the signal profile of instantaneous amplitude. Assuming
the instantaneous amplitude of X(t) is A(t), the signal profile S(t) is
calculated as the cumulative sum of A(t), i.e.,

= ∑ − 〈 〉
=

A k AS(t) ( )k
t

1 , where 〈∙〉 represents the time-average of a
time series.

3 Define a set of window lengths and compute the average fluctuation
for each window length. The whole length of signal profile S(t) was
divided into 50% overlapping windows of size τ with a length be-
tween 1–15 seconds (for alpha, beta, low-gamma and high-gamma
bands) or a length between 2–15 seconds (for delta and theta bands)
equidistantly on a logarithmic scale. The standard deviation of each
segmented signal profile with length τ was evaluated after linear
detrending by least-squares fit. Then the average fluctuation for
window length τ, 〈 〉F τ( ) , was computed as the mean standard

deviation of all segmented signal profiles with length τ.
4 Plot the average fluctuations for all window lengths on double
logarithmic axes and compute the slope of the least-squares line
over all window sizes. The power-law or scale-invariance behavior
of underlying neuronal oscillations is characterized in terms of the
linear scaling between the average fluctuations and window lengths
in a double logarithmic coordinate system. This plot was named as
DFA fluctuation plot in some literatures (Hardstone et al., 2012). The
slope of the least-squares line in this graph was termed as the DFA
exponent, α, which could be used to quantify the LRTCs. If
0 < α<1, then the time series is stationary signal and can be
modeled by a fractional Gaussian noise (fGn) (Hardstone et al.,
2012). More specifically, 0 < α<0.5, α ≈ 0.5 and 0.5 < α<1
imply the time series is anti-correlated, uncorrelated random pro-
cess with no LRTCs, and positive correlated respectively (Gao et al.,
2017). If 1 < α<2, the time series is non-stationary and can be
modeled by a fractional Brownian noise (fBn). For the current study,
the linear scaling was confirmed by both a high value of coefficient
of determination (i.e., >R 0.92 for most neuronal oscillations) of the
least-squares line and stringent validation tests shown below.

2.6. Validating the presence of scale-invariance

Power law (or scale invariant) decay of the auto-covariance function
will result in linear scaling in the DFA fluctuation plots (Hardstone
et al., 2012). However, we have no prior knowledge as to whether the
signals exhibit such scale invariance. The DFA conducted on in-
stantaneous amplitude will provide the slope of the fluctuation plot as
DFA exponent with no check as to whether the fluctuation plot is
genuinely linear.

Here, a maximum likelihood based model selection technique, so
called ML-DFA, was used to assess the validity of the assumption of
linearity in DFA fluctuation plots (Botcharova et al., 2013). Briefly
speaking, this technique fits these log-log plots with a set of alternative
models. Then, the Akaike Information Criterion (AIC), which takes into
account both the number of parameters involved and the over-fitting
problem, is estimated for each model (Botcharova et al., 2015). The
scale-invariance is validated only if the linear model has the lowest
value of AIC, compared to other models. Only those time series that
were not rejected for not being linear contributed to our results.

After the presence of scale-invariance had been evaluated, the
percentage of participants for which power-law scaling was accepted
was calculated for each ROI, each frequency band and each group re-
spectively.

2.7. Statistical tests

In order to test whether the DFA exponents were significantly al-
tered in patients with ASD, independent-samples t-test was conducted

Fig. 1. Examples of 20 s neuronal oscillations from ROI #43 (Primary somatosensory cortex1) within beta band of an ASD patient (panel a) and a TD subject (panel
b). Amplitude of beta oscillations is shown in blue and the amplitude envelope in red. Color should be used for this figure in print.
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for each ROI and each frequency band respectively. Since age may
modulate the DFA exponent of brain oscillations (Smit et al., 2011), the
age of each participant was included as a covariate. The statistical tests
were done through the MATLAB function “gretna_GroupAnalysis” in
the GRETNA software (Wang et al., 2015). In order to control multiple
comparisons, the significance level (p value) was corrected using false
discovery rate (FDR) procedure (Benjamini and Yekutieli, 2001). The
threshold for significance was p < 0.05 for the statistical tests and the
alpha value for FDR procedures was 0.05.

3. Results

3.1. The presence of scale-invariance

The results of ML-DFA conducted on the instantaneous amplitude of
neuronal oscillations are shown in Fig. 2.

In the delta and theta bands, this percentage was relatively high,
i.e., larger than 80% for most of the ROIs in both groups. When ob-
serving the higher frequency bands (i.e., alpha, beta, low-gamma and
high-gamma), this percentage nearly reached 100%. Specifically, in the
TD group, this percentage reached 100% for all ROIs and all the four
higher frequency bands. In the ASD group, this percentage was also
100% for beta and high-gamma bands, whereas this percentage was
93.3% for alpha and low-gamma bands (i.e., the instantaneous

amplitudes of source activities of one ASD patient were not found to be
scale-invariant in these two bands).

3.2. The group effect on DFA exponent of instantaneous amplitude

The statistical tests showed that the DFA exponents of certain ROIs
in the TD group were significantly larger than those in the ASD group
for the beta band (Fig. 3) and the low-gamma band (Fig. 4). Significant
results were not found in other frequency bands.

For beta band, significant group effects (TD > ASD) were found in
the following cortical ROIs: 20 L (inferior temporal gyrus), 21 L (medial
temporal gyrus), 22 L (superior temporal gyrus), 34 L (para-
hippocampal gyrus2), 38 L (temporal pole), 1R (primary somatosensory
cortex1), 2R (primary somatosensory cortex2), 3R (primary somato-
sensory cortex3), 4R (primary motor cortex), 11R (orbital frontal
cortex), 13R (insula), 38R (temporal pole), 43R (postcentral gyrus),
44R (opercular part of inferior frontal gyrus) and 47R (ventrolateral
prefrontal cortex).

For low-gamma band, significant group effects (TD > ASD) were
found in the following brain regions: 20 L (inferior temporal gyrus),
21 L (medial temporal gyrus), 22 L (superior temporal gyrus), 34 L
(parahippocampal gyrus2), 38 L (temporal pole), 1R (primary somato-
sensory cortex1), 2R (primary somatosensory cortex2), 3R (primary
somatosensory cortex3), 11R (orbital frontal cortex), 13R (insula), 21R

Fig. 2. The results of ML-DFA. The percentage of participants for which the presence of scale-invariance was accepted within each ROI, each group and each
frequency band is presented in panel a, b, c, d, e and f. For each panel, the red solid line and the blue dashed line correspond to the ASD group and the TD group
respectively. Color should be used for this figure in print.
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Fig. 3. The DFA exponents of instantaneous
amplitude of beta oscillations. Panels a and b
show the DFA exponent of each cortical ROI for
ASD group and TD group, respectively. The
size of each ROI corresponds to its magnitude
of DFA exponent. Panel c shows the ROIs with
significant group effect (TD > ASD) after FDR
correction. The continuous curves and shade
regions in panel d show the group-level
average DFA exponents and related standard
errors of all 84 ROIs for both groups, respec-
tively (ASD group: green curve and shade re-
gion; TD group: red curve and shade region).
Color should be used for this figure in print.

Fig. 4. The DFA exponents of instantaneous
amplitude of low-gamma oscillations. Panels a
and b show the DFA exponents of each cortical
ROI for ASD group and TD group, respectively.
The size of each ROI corresponds to its mag-
nitude of DFA exponent. Panel c shows the
cortical ROIs with significant group effect
(TD > ASD) after FDR correction. The con-
tinuous curves and shade regions in panel d
show the group-level average DFA exponents
and related standard errors of all 84 ROIs for
both groups, respectively (ASD group: green
curve and shade region; TD group: red curve
and shade region). Color should be used for
this figure in print.
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(medial temporal gyrus), 22R (superior temporal gyrus), 25R (sub-
geneual anterior cingulate cortex), 28R (hippocampal area), 34R
(parahippocampal gyrus2), 38R (temporal pole), 43R (postcentral
gyrus) and 47R (ventrolateral prefrontal cortex).

In summary, several interesting results were revealed. Firstly,
compared to beta band, more ROIs with significant group effect
(TD > ASD) were found for low-gamma band oscillations. Besides,
more ROIs with significant group effect (TD > ASD) were revealed in
the right hemisphere compared to the left hemisphere. Secondly, cor-
tical ROIs with significantly reduced DFA exponents for both beta and
low-gamma oscillations in ASD group include left inferior temporal
gyrus (ITG), left medial temporal gyrus (MTG), left superior temporal
gyrus (STG), left temporal pole (TP), left parahippocampal gyrus
(PHG), right primary somatosensory cortex (S1), right orbital frontal
cortex (OFC), right insular, right temporal pole (TP), right postcentral
gyrus (PCG) and right ventrolateral prefrontal cortex (VLPFC).

4. Discussion

4.1. The scale-free dynamics and LRTCs in brain oscillations

Scale-free fluctuations and LRTCs are ubiquitous in human neural
activities, which suggests that the brain may operate at, or close to,
critical regime (Palva et al., 2013). It has been widely recognized that
any system operating at criticality could maximize their dynamic range
of information processing and communication, and should have high
efficiency in transmitting information and a readiness to respond to
environmental changes (Botcharova et al., 2014; Linkenkaer-Hansen
et al., 2001). Here, we validated the presence of scale invariance in the
instantaneous amplitude through ML-DFA (Botcharova et al., 2013).
The presence of scale-invariance could be seen in most of the brain
oscillations across all the ROIs, all the six frequency bands investigated
and all the participants in both groups. Moreover, observing the results
shown in Fig. 2, we could find two interesting results. Firstly, the per-
centages of TD participants for which the presence of scale-invariance
was confirmed were larger than those of ASD patients for all the six
frequency bands and nearly all the ROIs. This result may indicate that
although scale-invariance could be detected in these patients, this scale-
free property was disrupted. Secondly, it seems that these percentages
were much larger in higher frequency bands, compared to those of
lower frequency bands, which may be caused by the band-pass filtering
before DFA.

The LRTCs are believed to be associated with model dynamical
systems that show efficiency in learning, memory formation, rapid in-
formation transfer and network organization (Botcharova et al., 2014).
Previous researches suggested that stronger LRTCs correspond to larger
integration times of physiological processes, and LRTCs are positive
correlated with the ability of brain to maintain transiently stable os-
cillations in support of active neuronal representations during sustained
cognitive operations (Smit et al., 2011). Since some of the aberrant
functions commonly observed in ASD (e.g., language, social cognition
and communication) require sustained cognitive operations, it’s ne-
cessary to explore the scale-free dynamics of intrinsic brain activities in
patients with ASD.

4.2. The attenuated LRTCs of instantaneous amplitude of oscillatory
activities in autistic brain

We found that the LRTCs of beta and low-gamma oscillations of
some ROIs were attenuated in our patients, compared to those of TD
subjects. These ROIs mainly involved the key nodes in the default mode
network (e.g., MTG, TP, PHG and HIP), mirror neuron system (e.g., S1,
PCG, M1, VLPFC and IFG) and salience network (e.g., insular and ACC)
(Iacoboni and Dapretto, 2006; Padmanabhan et al., 2017; Uddin et al.,
2013), which are highly relevant to the social dysfunction in ASD
(Hamilton, 2013; Padmanabhan et al., 2017; Uddin et al., 2013). The

DMN is a core brain system for self-referential processing (i.e., the
ability to process social information relative to oneself) and mentalizing
(i.e., the ability to infer the mental states of others) (Buckner et al.,
2008). The mirror neuron system (MNS), which contains cells that fire
not only when the human is in action but also when he/she observes
others carrying out the same actions, is a key network hypothesized to
play a role in many social, cognitive and language-related abilities
(Chen and Yuan, 2008; Oberman et al., 2007). The salience network
(SN), composed of the insular cortex and ACC, is involved in inter-
oceptive and affective processes and the identification of relevant in-
ternal and extrapersonal stimuli to guide behavior, and is closely as-
sociated with the ability of social responsiveness through modulating
the attention to social stimuli (Uddin et al., 2013). Considering the core
functions of DMN, MNS and SN on social cognition, it’s reasonable that
attenuated LRTCs were mainly found in the ROIs of these systems.

We also tested whether the power spectra were significantly altered
in our patients through independent samples t-tests with the age of each
participant as a covariate, which were conducted for each ROI and each
band respectively. Significant results could not be seen in all the six
bands, which may suggest that there were not significant SNR or
average amplitude differences between the oscillations of two groups.
Previous studies revealed significantly altered power in the ASD group
(Wang et al., 2013). This discrepancy may be caused by the paradigm
used here (i.e., EEG recording with alternating eyes open and eyes
closed periods).

The abnormal LRTCs were limited to the beta and low-gamma ac-
tivities. The gamma oscillations (> 30Hz) may be the most commonly
observed oscillatory activity in ASD research (Maxwell et al., 2015).
And it has been revealed that gamma activity over frontal regions could
reflect DMN activity (Berkovich-Ohana et al., 2012). The gamma os-
cillations are thought to represent firing of inhibitory GABAergic in-
terneurons, and a prevailing hypothesis states that loss or reduction of
inhibitory interneurons may lead to impaired processing of social and
emotional stimuli in ASD (Rubenstein and Merzenich, 2010). Reduced
LRTCs were also found in the beta band. Previous studies revealed al-
tered activities of beta band, which are related to the maintenance of
the current sensorimotor or cognitive states in patients with ASD (Engel
and Fries, 2010; Leung et al., 2014).

Smit et al. (2011) speculated that stronger LRTCs indicate stronger
ability to maintain transiently stable oscillations in support of active
neuronal representations during sustained cognitive operations (Smit
et al., 2011). The attenuated LRTCs, expressed as decreased DFA ex-
ponent in beta and low-gamma bands, of cortical regions within social
cognition related networks suggest that the impaired social abilities
observed in ASD may be caused by the fact that autistic brain is asso-
ciated with highly volatile, random and irregular states of neuronal
oscillations.

4.3. The influence of interpolating “bad electrodes”

In the EEG preprocessing, another strategy, i.e., the bad electrodes
were deleted (i.e., not interpolated), was also used. Apart from this, the
EEG preprocessing steps were the same as the original manuscript. DFA
was conducted on the source activities obtained via eLORETA. We
found that using this strategy could not significantly affect the results,
i.e., abnormal LRTCs were still limited to beta & low-gamma band, and
the ROIs within DMN, MNS and SN. However, it revealed that: (1) for
beta band, significant group effects were not found in the following
ROIs: 34 L, 13R and 44R; (2) for low-gamma band, significant group
effects were not found in the following ROIs: 34 L, 21R, and 28R.

4.4. Limitations of the current study

The limitations of this study need to be mentioned. Firstly, the EEG
signals being investigated have mixed eye-open and eye-closed periods,
and opening the eye or not may significantly modulate the DFA
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exponent of neuronal oscillations. However, we were unable to conduct
DFA on each period because of practical reasons (i.e., the length of each
period was too short for DFA). Secondly, the largest window size used
here is 15 s, which is shorter than many previous studies (Linkenkaer-
Hansen et al., 2005). This may have resulted in the particularly high
percentages of fluctuation plots being accepted as linear, and the re-
latively higher DFA exponents compared to those in many previous
studies. After signal preprocessing, the mean length of remaining sig-
nals across subjects was 226 s and 251 s for the ASD and TD group re-
spectively. It suggested that the maximum window size should be about
1/10th of data length (Hardstone et al., 2012). We also conducted DFA
with maximum window size 20 s, and found that the results of group
comparison were similar to those reported here. We did not conduct
DFA with maximum window size larger than 20 s, since this may reduce
the robustness of average fluctuations estimation. Since the maximum
window size of some previous studies was set to be 10˜20 s (Smit et al.,
2011), we believed that analyzing LRTCs with maximum window size
15 or 20 s could also provide significant insight into the neuropatho-
logical mechanism of ASD.

5. Conclusion

Here, the LRTCs of instantaneous amplitude of beta and low-gamma
oscillations were attenuated in the patients with ASD. Moreover, the
cortical regions with reduced LRTCs were mainly located in well-re-
cognized brain networks associated with autism, such as the DMN, MNS
and SN. These results suggest that reduced LRTCs of beta and gamma
oscillations in social cognition related networks may play an important
role in the dysfunction of social, communication and emotional ability
commonly observed in patients with ASD.
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