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A B S T R A C T   

Novel anti-biofilm and dispersal agents are currently being investigated in an attempt to combat biofilm- 
associated wound infections. Glycoside hydrolases (GHs) are enzymes that hydrolyze the glycosidic bonds be
tween sugars, such as those found within the exopolysaccharides of the biofilm matrix. Previous studies have 
shown that GHs can weaken the matrix, inducing bacterial dispersal, and improving antibiotic clearance. Yet, the 
number of GH enzymes that have been examined for potential therapeutic effects is limited. In this study, we 
screened sixteen GHs for their ability to disperse mono-microbial and polymicrobial biofilms grown in different 
environments. Six GHs, α-amylase (source: A. oryzae), alginate lyase (source: various algae), pectinase (source: 
Rhizopus sp.), amyloglucosidase (source: A. niger), inulinase (source: A. niger), and xylanase (source: A. oryzae), 
exhibited the highest dispersal efficacy in vitro. Two GHs, α-amylase (source: Bacillus sp.) and cellulase (source: 
A. niger), used in conjunction with meropenem demonstrated infection clearing ability in a mouse wound model. 
GHs were also effective in improving antibiotic clearance in diabetic mice. To examine their safety, we screened 
the GHs for toxicity in cell culture. Overall, there was an inverse relationship between enzyme exposure time and 
cellular toxicity, with twelve out of sixteen GHs demonstrating some level of toxicity in cell culture. However, 
only one GH exhibited harmful effects in mice. These results further support the ability of GHs to improve 
antibiotic clearance of biofilm-associated infections and help lay a foundation for establishing GHs as therapeutic 
agents for chronic wound infections.   

1. Introduction 

Chronic wounds include diabetic foot ulcers, pressure ulcers, and 
venous ulcers and are estimated to affect 1 to 2% of the entire population 
of developed countries [1]. As the comorbidities (age, diabetes, and 
obesity) associated with chronic wounds continue to rise, their incidence 
is expected to exhibit a similar trend [2–4]. Chronic wounds have a 
significant impact on quality of life and are associated with high 
morbidity and mortality [5]. The chronicity of wounds is due in part to 
an inability of the host to clear infection and heal naturally. The 
development of a biofilm in the wound impedes host clearance of bac
teria and can confer an increased tolerance to antibiotics [6,7]. A biofilm 
is a community of microorganisms that are protected by an extracellular 
polymeric substance (EPS) [8]. The EPS is composed of various sub
stances including polysaccharides, proteins, lipids, extracellular DNA, 

and various host components such as fibrin and collagen [8]. To improve 
the outcome of chronic wound infections, agents targeting the EPS have 
been proposed as therapeutic agents [9,10]. 

The current standard of care for chronic wound infections is me
chanical debridement of the infected tissue. This mode of treatment is 
often painful and not highly effective, as biofilm cells present deep in the 
tissue may not be completely removed by debridement [11]. To improve 
the treatment process, biofilm dispersal agents have been proposed to 
induce bacterial dispersal either by acting as a signal that initiates active 
dispersal or by disrupting the EPS scaffolding, causing passive dispersal. 
In theory, these newly planktonic cells would then be more susceptible 
to antimicrobials or immune cell clearance. As proof of concept, we 
successfully showed that by targeting the polysaccharide component of 
the EPS we could improve antibiotic efficacy in vitro and in vivo [12,13]. 
Our previous studies utilized the glycoside hydrolases (GHs) α-amylase 
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(from Bacillus subtilis) and cellulase (from Aspergillus niger) to target the 
α-1,4 and β- 1,4 linkages, respectively, of exopolysaccharides in the 
bacterial EPS and induce dispersal from the biofilm [12–14]. However, 
polysaccharides in the EPS can vary substantially, based on the species 
present in the biofilm and include varying linkages such as α-1,6, β-1,2, 
β-1,3, and β-1,6. Thus, it is likely that effective dispersal may require a 
cocktail of different GHs, especially for highly polymicrobial infections. 
This study focused on screening sixteen different GHs that have a variety 
of targets (Table 1) to induce bacterial dispersal in biofilms established 
by either Pseudomonas aeruginosa, Staphylococcus aureus, or both 
together, in a variety of models. 

Our long-term goal is to provide new treatment options for difficult 
to treat biofilm-related infections by determining the most efficacious 
GHs that improve bacterial clearance when used in conjunction with 
antibiotics. To this end we evaluated the efficacy of GHs in two in vitro 
models, an ex vivo mouse model, and an in vivo mouse model. As a major 
concern for the development of antimicrobial and anti-biofilm agents is 
toxicity to the host, we also screened GHs for toxicity in both repre
sentative cell lines and mice. Our results suggest a lack of toxicity for five 
of the GHs tested. 

2. Results 

2.1. Several GHs disperse mono-species biofilms in vitro 

In order to compare the efficacy of the selected GHs to disperse 
bacteria, we first tested them against two bacterial species commonly 
found in chronic wounds, in a commonly utilized in vitro well-plate 
dispersal assay [14]. P. aeruginosa or S. aureus were grown for 48 h 
and then the biofilms were treated with PBS (vehicle control) or 500 
U/mL of different GH enzymes. 500 U/mL was selected for the GHs of 
interest based on the concentration of DNase used to disrupt biofilms in 
previously published work [15]. One enzyme, pectinase (source: 
Rhizopus sp.), was tested at 125 U/mL due to the inability of a higher 
concentration to go into solution. After 2 h, the dispersed cells in the 
supernatant were removed and the remaining biofilm was sonicated. 
Both the supernatant and biofilm cells were serially diluted and plated to 
measure CFU and calculate ‘percent dispersed’ (Fig. 1). 

Using this simple, well-plate biofilm model we saw that alginate 
lyase (source: various algae), α-amylase (source: A. oryzae), β-amylase 
(source: barley), amyloglucosidase (source: A. niger) and xylanase 
(source: A. orzyae) significantly dispersed P. aeruginosa from mono- 
species biofilms (Fig. 1A). Alginate lyase (source: various algae) and 
xylanase (source: A. oryzae) target β-1,4 linkages, which are commonly 
found in the P. aeruginosa exopolysaccharide alginate [16]. β-amylase 
(source: barley), amyloglucosidase (source: A. niger) and xylanase 
(source: A. orzyae) target α-1,4 linkages, which are found in the 

P. aeruginosa exopolysaccharide Pel [17]. This suggests that the 
P. aeruginosa biofilms grown in this model possess alginate and/or Pel in 
their EPS, and that degrading these two exopolysaccharides is sufficient 
to disperse a significant number of bacterial cells. Although, it is clear 
that not all α-1,4 or β-1,4-targeting enzymes had the same effect. 

S. aureus was significantly dispersed in this model by all tested GHs 
except for the two pectinases (sources: A. niger, Rhizopus sp.) (Fig. 1B). 
This is interesting because PNAG, which is composed of β-1,6 linkages 
[18], is thought to be the main exopolysaccharide produced in S. aureus 
biofilms [19], but none of these GHs target β-1,6 linkages. This result 
suggests the possibility that some of the GHs exhibit promiscuous 
binding to other polysaccharide linkages or perhaps there are poly
saccharides present in the S. aureus EPS that have yet to be described. 
Notably, we also saw that the dispersal caused by the PBS control was 
lower for S. aureus biofilms than we have previously reported [14]. 
These results illustrate the variability of this model between replicates 
and studies. However, we still support the use of this model for early 
screening of dispersal agents prior to advancing to in vivo studies. 

2.2. GHs are less effective in dispersing polymicrobial biofilms 

The majority of biofilm-associated chronic infections are poly
microbial [20,21], with P. aeruginosa and S. aureus frequently found in 
the same wounds [22]. It has been well documented that many pheno
typic bacterial traits, including virulence, biofilm formation and anti
microbial tolerance, can change when bacteria are grown in the 
presence of other species [23,24]. To determine if the efficacy of the 
selected GHs differed when S. aureus and P. aeruginosa were grown 
together, versus alone, wells were inoculated with a 1:1 ratio of 
P. aeruginosa and S. aureus. After 48 h of bacterial growth, non-attached 
cells were removed with a PBS wash, and the biofilms were then treated 
and processed the same way as the mono-species in vitro well-plate 
biofilms (Fig. 2A). 

In the in vitro well-plate model, there were differences in dispersal for 
both bacterial species when comparing mono-to poly-microbial bio
films. α-amylase (source: A. oryzae), β-amylase (source: barley), amy
loglucosidase (source: A. niger), lichenase (source: B. subtilis), alginate 
lyase (source: various algae), and xylanase (source: A. oryzae) were less 
efficient at dispersing P. aeruginosa from polymicrobial biofilms as 
compared to mono-microbial biofilms (Supplemental Figure 1A). 
However, the efficacy of amyloglucosidase (source: Rhizopus sp.), pec
tinase (source: Rhizopus sp.), inulinase (source: A. niger) and cellulase 
(source: A. niger) to disperse P. aeruginosa from polymicrobial biofilms 
was higher than from mono-microbial. Interestingly, there was a sig
nificant loss of efficacy by several GHs to disperse S. aureus from poly
microbial biofilms as compared to the mono-species biofilms 
(Supplemental Figure 1B). In the mono-species S. aureus biofilms, almost 

Table 1 
GHs utilized for this study.  

Enzyme Source Commercial Source Catalog # Activation Temperature (◦C) 

Alginate lyase Various algae Sigma Aldrich A1603 37 
α-Amylase Bacillus sp. MP Biomedicals 100447 37 
α-Amylase Aspergillus oryzae Sigma Aldrich A9857 37 
α-Amylase Porcine Pancreas Sigma Aldrich A4268 37 
β -Amylase Barley Sigma Aldrich A7130 37 
Amyloglucosidase Aspergillus niger Sigma Aldrich 10113 60 
Amyloglucosidase Rhizopus sp. Sigma Aldrich A9228 60 
Cellulase Aspergillus niger MP Biomedicals 150583 37 
Diastase Aspergillus oryzae Sigma Aldrich 9962 37 
Inulinase Aspergillus niger Sigma Aldrich 57620 37 
Invertase Saccharomyces cerevisiae Sigma Aldrich 14504 60 
Invertase Candida utilis Sigma Aldrich 14753 60 
Lichenase Bacillus subtilis Megazyme E-LICHN 60 
Pectinase Aspergillus niger Sigma Aldrich 17389 60 
Pectinase Rhizopus sp. Sigma Aldrich P2401 37 
Xylanase Aspergillus oryzae Sigma Aldrich X2753 37  
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all of the GHs exhibited significant dispersal while only α-amylase 
(source: A. oryzae), inulinase (source: A. niger), alginate lyase (source: 
various algae), and xylanase (source: A. oryzae) significantly dispersed 
S. aureus from polymicrobial biofilms. 

Theoretically, the amyloglucosidases (sources: A. niger and Rhizopus 
sp.) should exhibit similar results as they target the same linkages. 
However, enzymes from different sources have been documented to 
have different levels of activity or quality level [25]. Amyloglucosidase 
(source: A. niger) has a reported quality level of MQ “100” while amy
loglucosidase (source: Rhizopus sp.) exhibits a higher quality level of 
MQ “200”. These numbers are based on Sigma Aldrich M-Clarity™ 
Program to provide transparency in the product quality attributes such 
as testing sites, discriminating features, and regulation ranging from MQ 
100 (low) to MQ 600 (high). Nonetheless, amyloglucosidase (source: 
A. niger) has a 3x higher activity level (120,000 U/g) compared to the 
other amyloglucosidase (40,000 U/g). However, a 500 U/mL concen
tration was used for both amyloglucosidases. Differences in purity, ac
tivity level, and enzymatic properties could explain this discrepancy 
amongst the same enzyme from different sources. 

Inulinase (source: A. niger) was the only GH that caused significant 
dispersal of both P. aeruginosa and S. aureus in the polymicrobial well- 
plate model. These findings suggest that when P. aeruginosa and 

S. aureus are grown together, either the biomass of biofilm increases 
significantly, thwarting degradation, or the exopolysaccharide compo
sition of the biofilm differs from that of mono-microbial biofilms. Data 
from an experiment comparing the overall biomass of P. aeruginosa and 
S. aureus mono- and polymicrobial biofilms indicated no significant 
difference (Supplemental Figure 2). So potentially, when P. aeruginosa 
and S. aureus are grown together in vitro, S. aureus contributes less to the 
EPS, and P. aeruginosa becomes the main polysaccharide producer. This 
also suggests that the increased complexity of highly polymicrobial 
biofilms will likely require a cocktail of enzymes that target many 
different polysaccharide bonds. 

To assess GH therapy in a more clinically relevant model, 
P. aeruginosa and S. aureus were grown together for 48 h in an in vivo 
murine chronic wound model, which we have previously described [12, 
26–28]. Wounds were infected with a 1:1 ratio of 104 CFU of 
P. aeruginosa and S. aureus. After 48 h of infection, mice were euthanized 
and the infected wound tissue was collected for ex vivo treatments. Ex 
vivo treatments were performed to reduce the number of animals used, 
as each wound bed is cut into four pieces for four separate treatments. 
The infected tissue was treated for 2 h with PBS (vehicle control) or 
different GH solutions at 500 U/mL or 125 U/mL for pectinase (source: 
Rhizopus sp.). After the allotted time, the dispersed cells in the 

Fig. 1. GHs disperse P. aeruginosa and 
S. aureus from mono-species biofilms 
grown in well-plates. PAO1 (A) or SA31 
(B) biofilms were grown in 24-well cell cul
ture plates for 48 h and then treated with 
PBS (vehicle control) or the indicated GH for 
2 h. Enzymes are grouped according to the 
bonds they target. Percent dispersal was 
calculated as follows: (CFU in supernatant/ 
CFU in supernatant + CFU in biofilm). One- 
way analysis of variance and a Tukey- 
Kramer multiple –comparison test were 
used to test for differences between results. 
*, P < 0.05; **, P < 0.01; ***, P < 0.001; 
****, P < 0.0001. Mean±standard deviation 
is shown, n = 5/group.   
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supernatant were removed, serially diluted, and plated to determine 
CFU. The tissue containing the remaining biofilm was homogenized in 
PBS, serially diluted in PBS, and plated to enumerate CFU and calculate 
‘percent dispersed’ (Fig. 2B). 

Interestingly, GH therapy was more efficacious overall in dispersing 
bacteria from biofilms grown in vivo versus in well-plates (Fig. 2B). 
α-amylase (source: A. oryzae), pectinase (source: Rhizopus sp.), inuli
nase (source: A. niger), alginate lyase (source: various algae), and xyla
nase (source: A. oryzae) all significantly dispersed both P. aeruginosa and 
S. aureus from infected wound tissue, as opposed to only inulinase that 
significantly dispersed both species from biofilms grown in vitro. 
α-amylase (source: Bacillus sp.), α-amylase (source: porcine pancreas), 
amyloglucosidases (sources: A. niger, Rhizopus sp.), lichenase (source: 
B. subtilis) and cellulase (source: A. niger) were efficacious in dispersing 
P. aeruginosa but not S. aureus, and diastase (source: A. oryzae) was the 
only GH that significantly dispersed S. aureus, but not P. aeruginosa in 
this model. The most striking difference was the number of enzymes that 
successfully dispersed P. aeruginosa from tissue as compared to the 
number that dispersed P. aeruginosa from in vitro biofilms (five for mono- 
species and three for polymicrobial). Taken together, six GHs exhibited 
the best therapeutic dispersal potential: α-amylase (source: A. oryzae), 
amyloglucosidase (source: A. niger), pectinase (source: Rhizopus sp.), 

inulinase (source: A. niger), alginate lyase (source: various algae), and 
xylanase (source: A. oryzae). These GHs were selected to test dispersal 
efficacy in vivo as well as determine their ability to improve antibiotic 
clearance in vivo. 

2.3. GH treatment coupled with meropenem lowers bacterial load in P. 
aeruginosa-infected wounds 

In order to test the therapeutic potential of the selected GHs, we 
utilized our murine chronic wound model. Wounds were infected with 
104 CFU of P. aeruginosa carrying the pQF50-lux plasmid. After 48 h of 
infection, the wound beds were irrigated 3 times with either PBS 
(vehicle control), meropenem (antibiotic control), GHs, or GHs + mer
openem for 30 min. The wound beds were imaged pre-treatment, 
immediately post-treatment, and 5- and 20-h post-treatment. Mice 
were then euthanized and the wound beds and spleens were collected to 
enumerate CFU per gram of tissue. 

There were no statistically significant differences detected in the 
bacterial loads from the wound beds of mice treated with enzyme versus 
PBS (Fig. 3A). However, bacteria were detected in the spleens of mice 
treated with some GHs, but not PBS (Fig. 3B). This suggests that some of 
the GHs caused the systemic spread of P. aeruginosa, which is consistent 

Fig. 2. GHs disperse polymicrobial bio
films in vitro (A) or from infected wound 
tissue ex vivo (B). PAO1/SA31 biofilms 
were grown in 24-well cell culture plates (A) 
or murine wounds (B) for 48 h and then 
harvested and treated with PBS (vehicle 
control) or the indicated GH for 2 h. En
zymes are grouped according to the bonds 
they target. Percent dispersed was calculated 
as follows: (CFU in supernatant/CFU in su
pernatant + CFU in biofilm) x 100. Two-way 
analysis of variance and a Tukey-Kramer 
multiple –comparison test were used to test 
for differences between results. *, P < 0.05; 
**, P < 0.01; ***, P < 0.001; ****, P <
0.0001. Mean±standard deviation is shown, 
n = 5/group.   
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with our previously published data [13]. This was also supported by the 
visualization of bacteria spreading outside the wound bed by IVIS at 20 
h post-treatment (Fig. 3C). 

In order to test whether the dispersed cells were more effectively 
killed by antibiotics, mice were infected as above, but treated with either 
meropenem plus PBS or meropenem plus GH. Collectively, adding GHs 
did not significantly increase the ability of meropenem to kill bacteria 
within the wound beds (Fig. 4A). However, we saw that the number of 
mice within each treatment group whose wound bed bacterial load fell 
at or below 105 CFU/g of tissue (often used as a threshold for clinical 
infection [29–31]), was higher for some of the treatment groups versus 

others. Two of the treatment groups possessed at least one mouse that 
had lower bacterial load than the clinical level of infection after only one 
treatment. Inulinase + meropenem reduced the bacterial load to below 
clinical level of infection in 50% of the animals. While this seems 
apparent in some of the representative IVIS images (Fig. 4B), it should be 
noted that in general, IVIS has a detection limit of 106 CFU per gram of 
tissue [32]. We also saw that none of the mice in these treatment groups 
(n = 5 or 6/group) had bacteria in their spleens. This indicates that any 
bacteria that were dispersed due to the GH treatment were likely killed 
by meropenem. Overall, inulinase and xylanase were able to disperse 
bacteria in vivo and potentiate the efficacy of meropenem in some mice. 

Fig. 3. GHs induce dispersal in vivo. Wounds were infected with 104 bioluminescent PAO1. At 48 h post-infection, mice were treated with 3 × 30 min irrigations of 
PBS (negative control) or the indicated GHs. At 20 h post-treatment, mice were euthanized and their wound beds (A) and spleens (B) were collected and homog
enized. The homogenates were then serially diluted and plated to enumerate CFU per gram of tissue. ND indicates no detection of bacteria in the tissue samples for 
that treatment. Mice were imaged pre-treatment, 0 h, 5 h, and 20 h post-treatment by IVIS (C). Each mouse is represented by a dot on the graph. n = 5 or 6/group. 
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Taken together, these results reaffirm that GHs should always be 
used in conjunction with antibiotics to prevent septic events. We have 
shown that some of these GHs have the ability to reduce bacterial load to 
below the clinical level of infection after just one treatment. It is possible 
that with repeated treatments, GHs in combination with antibiotics, can 
successfully clear biofilm-associated wound infections completely. 

2.4. GHs are also effective in diabetic mice 

Individuals with diabetes mellitus are more prone to developing 
biofilm-associated infections including diabetic foot ulcers, pressure 
ulcers, and venous ulcers [33]. Approximately 15% of individuals with 
diabetes mellitus develop an ulcer on the lower extremity, with 14–24% 
of those ulcers leading to amputation [34,35]. Studies in mice have 
demonstrated that biofilms in the wounds of diabetic mice are more 
robust and prevalent [28,36]. Thus it is possible that in the diabetic 
wound environment, the abundance and/or type of exopolysaccharides 
expressed is different than in a non-diabetic wound. If true, the efficacy 
of GHs could also be different in diabetic vs non-diabetic wounds. 
Furthermore, there is the possibility that bacterial dispersal by GHs 
could have a more dire effect on individuals immunocompromised by 
diabetes. As diabetic patients would likely represent a large sector of 
those receiving a future GH therapeutic, it is important to test whether 
GHs are safe and effective in dispersing the biofilms present in the 
wounds of a diabetic host. To test this, we utilized the Lepdb/db mouse 
strain. This strain is derived from the C57BL/6 mouse with an autosomal 
recessive mutation of the leptin receptor on chromosome 4 to mimic 
Type 2 diabetes [37]. db/db mice become obese and insulin resistant due 
to beta cell failure in the pancreas [38]. 

For these experiments, wild-type C57BL/6 and db/db mice were 
wounded and infected with P. aeruginosa. At 48 h post-infection, PBS, 
10% GH (5% amylase and 5% cellulase combination in weight (grams) 
per volume (mL), or 10% GH + meropenem was administered as 3 × 30 
min irrigations. Mice were imaged prior to treatment, immediately after 
treatment, and 5 h and 20 h post-treatment (Fig. 5A). Upon euthanasia, 
the wound beds and spleens were collected and processed to enumerate 
CFU per gram of tissue (Fig. 5B and C). As seen in the IVIS images 
(Fig. 5A), PBS did not induce dispersal in either mouse strain. There 
were also no bacteria enumerated in the spleens of PBS-treated mice 
post-euthanasia. Conversely, the 10% GH treatment induced bacterial 
dispersal from the wound bed in both mouse strains. This dispersal event 
can be visualized in the representative IVIS images as well as the CFU 

enumeration from the spleen (Fig. 5A,C). In the db/db mice, mass 
dispersal can be imaged as soon as 5 h post-treatment. There was also a 
higher bacterial load in the spleen of the db/db mice (5.7 × 105 CFU/g) 
compared to their parent strain, C57BL/6 mice (1.4 × 104 CFU/g) that 
were treated with 10% GH. 

Next, we wanted to determine if combining GHs with an antibiotic 
would prevent the systemic spread of P. aeruginosa in diabetic mice as 
we have seen before in non-diabetic mice. Experiments were conducted 
as above, with the addition of meropenem to the GH irrigations. The 
addition of meropenem to 10% GH reduced the bacterial loads in the 
wound beds of both mouse strains at 20 h post-treatment as demon
strated by IVIS imaging (Fig. 5A) and CFU enumeration from tissue 
homogenates (Fig. 5B). The bacterial load in the wounds of all the db/db 
mice that were treated with GH plus meropenem fell below the 
threshold of clinical infection (Fig. 5B). The addition of meropenem also 
protected all of the mice from dispersal-induced bacteremia, as there 
were no bacteria detected in the spleen homogenates. There were also 
no bacteria detected in the spleens treated with PBS alone. However, 
there were bacteria detected in the spleens of mice treated with GH 
alone (Fig. 5C), indicating systemic bacterial dispersal from the wound 
bed. These results suggest that not only does GH treatment disperse 
P. aeruginosa from wounds in a diabetic host, but that the addition of 
antibiotics prevents sepsis, even in an immunocompromised host. 

2.5. Some GHs exhibit signs of toxicity 

Next, the safety of GH enzymes was examined. We first tested GHs on 
the human fibroblast cell line CCD110 and the human epithelial cell line 
CCD841. We exposed cells to GHs for 30 min, 90 min, or 3 h to replicate 
the 30-min dwell time for the irrigations we perform when treating mice 
with GHs. Therefore, 30-min exposure represents one irrigation, 90-min 
exposure represents the entire 3, 30-min irrigation treatments, and 3-h 
exposure represents a treatment maximum of two times the normal 
exposure rate. The GHs utilized in this study are listed in Table 1. Cells 
were treated with either MEM (vehicle control) or 500 U/mL or 125 U/ 
mL of GH enzymes. After exposure, the treatments were removed and 
cell viability was assessed. 

Overall, as the exposure time increased, the percentage of viable cells 
decreased. After the maximum 3- hour exposure, there were eleven 
enzymes that caused more than 50% of cell death to the fibroblast cells 
(Fig. 6A) and nine enzymes that exhibited the same percentage of cell 
death to the epithelial cells (Fig. 6B). Fibroblasts exposed for 30 min to 

Fig. 4. GHs improve antibiotic efficacy in vivo. Wounds were infected with 104 bioluminescent PAO1. After 48 h, wounds were treated with 3 × 30 min irrigations 
of 3 mg/mL meropenem or 500 or 125 U/mL of meropenem + GHs. At 20 h post-treatment, mice were euthanized and their wound beds (A) were collected and 
homogenized. The homogenates were then serially diluted and plated to enumerate CFU per gram of tissue. Mice were imaged pre-treatment, and at 0, 5, and 20 h 
post-treatment (B). Each mouse is represented by a dot on the graph, n = 5 or 6/group. 
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lichenase (source: B. subtilis) exhibited a lethal dose above 50% 
(Fig. 6A). Lichenase was the only β-1,3 targeting enzyme so it is possible 
that this linkage could be present in the fibroblast cell matrix, which 
includes collagen type I and III [39]. Interestingly, pectinase (source: 
A. niger), which was toxic to both cell lines, targets α-1,4 linkages, but 
the remaining GHs that target this linkage did not exhibit toxic effects. It 
is unclear as to why some of the α-1,4 targeting GHs exhibited toxicity, 
while others did not. While these results support the utilization of some 
GHs is potentially safe, clearly others have the capacity to damage 
human cells. Thus, future studies should be conducted to explain these 

toxic effects in vitro by testing various concentrations, and treatment 
exposure times. 

2.6. Most candidate GHs do not demonstrate toxicity in vivo 

We next assessed GH safety in murine wounds. Mice were wounded as 
we have previously described [12,26–28], and the uninfected wounds 
were administered treatments in 3 × 30 min irrigations. The GHs that 
exhibited the highest dispersal potential were selected. These included 
α-amylase (source: A. oryzae), amyloglucosidase (source: A. niger), 

Fig. 5. GHs are effective in diabetic mice. Wounds were infected with 104 bioluminescent PAO1. At 48 h post-infection, mice were treated with 3 × 30 min 
irrigations of PBS (negative control), a 10% GH solution made with equal parts of amylase (source: Bacillus sp.) and cellulase (source: A. niger), or 10% GH +
meropenem (M). Mice were imaged pre-treatment, 0 h, 5 h, and 20 h post-treatment by IVIS (A). At 20 h post-treatment, mice were euthanized and their wound beds 
(B) and spleens (C) were collected and homogenized. The homogenates were then serially diluted and plated to enumerate CFU per gram of tissue. Each mouse is 
represented by a dot on the graph, n = 5 or 6/group. 
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pectinase (source: Rhizopus sp.), inulinase (source: A. niger), alginate 
lyase (source: various algae) and xylanase (source: A. oryzae). The 
wounds were imaged every 48 h using a SilhouetteStar™ wound imaging 
and documentation system, and body weights were recorded. After 12 
days of repeated treatments, mice were euthanized and the spleens were 
collected and weighed. There was no significant reduction in wound 
closure after 7 days of treatment compared to the PBS vehicle control 
(Fig. 7A and B). Wounds treated with alginate lyase (source: various 
algae) exhibited the lowest percentage wound closure (27.6%) and those 
treated with pectinase (source: Rhizopus sp.) exhibiting the highest 
(53.1%), but these differences were not significantly different from the 
control. After 7 treatments, the mice receiving the xylanase treatments 
(source: A. oryzae) were euthanized on day 8 due to lethargy and the 
development of swelling at the wound site. After 12 days of treatment, all 
wounds were over 80% closed. Body weight was monitored throughout 
the study since a decrease is often associated with illness. There was no 
significant decrease in the body weights of GH-treated mice during the 12 
days of treatments as compared to the PBS control (Fig. 7C). Lastly, there 
was no significant difference in spleen weight between the groups, except 
for the xylanase (source: A. oryzae) group (Fig. 7D). Xylanase (source: A. 
oryzae) treated mice exhibited almost double the spleen weight (0.263 g) 
of those in the PBS group, suggesting severe splenomegaly. It should be 
noted though that the spleens from the xylanase treated mice were 
collected after 7 days of treatment, while the spleens from all other mice 
were collected after 12 days of treatment. 

Overall, our results suggest that repeated exposure to GHs did not 
cause toxic effects to the mice, with the exception of xylanase (source: 
A. oryzae), which caused multiple severe effects that required euthanasia. 

We realize that the scope of our toxicity studies were narrow, and more 
thorough testing would be required before application to humans, but 
these results are promising nonetheless. Another limitation of our study 
was the very limited treatment regime. We only tested one concentration 
of each enzyme, in one vehicle, with one treatment schedule (one topical 
application per day). It is quite possible that GH treatments could be 
optimized by varying one or more of these parameters. 

3. Discussion 

Biofilms provide shelter for their constituent bacteria. This shelter 
inherently provides increased tolerances to desiccation, nutrient limi
tation, antibiotics, and phagocytosis [8,40]. These advantages poten
tially make biofilm infections difficult for the immune system to clear, 
even with clinical intervention, encouraging the pursuit of alternative 
treatment methods for biofilm infections to improve antibiotic potency. 
We, and others, have previously demonstrated the ability of GHs to 
disrupt biofilms in a variety of both in vitro and in vivo models [12–14, 
41–43]. However, the specific GH enzymes that have been explored for 
therapeutic purposes are very limited. The overall goal of this study was 
to test the efficacy and safety of an expanded panel of agents from this 
class of enzymes. We began with 16 enzymes, screening them first in a 
simple well-plate in vitro model against P. aeruginosa and S. aureus bio
films. This experiment demonstrated that the efficacy of GHs changes 
based on the composition of the biofilm; enzymes that effectively disrupt 
mono-species biofilms may lose their effectiveness when additional 
species are added. We have observed this interesting phenomenon pre
viously with cellulase and α-amylase [14], and are still unclear of the 

Fig. 6. Some GHs exhibit toxic effects to 
human cells in culture. 10,000 human 
epithelial fibroblasts (CCL110) (A) or 20,000 
human normal colonic cells (CCD841) (B) 
were seeded into a 96-well plate for 48 h. 
After attachment, cells were exposed to 
various GHs for 30 min, 90 min, or 3 h. After 
exposure, 10% AlamarBlue + MEM + FBS 
was added and plates were incubated for 6 h. 
Viable cells remaining on the plate were 
quantified via absorbency and percent 
viability was calculated as [absorbency of 
treated cells/absorbency (average of un
treated cells)] x 100. Values below LD50 
were considered toxic. Mean±standard de
viation is shown.   
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mechanism responsible. It is possible that the addition of other species 
alters the biofilm matrixome produced by bacteria, in particular by 
P. aeruginosa. 

As GHs target specific linkages within the EPS, the dispersal efficacy 
should reflect the linkages present and therefore allow insight into the 
polysaccharides that are produced. In the in vitro mono-microbial biofilms 
(Fig. 1), GHs that target the α-1,4 and β-1,4 linkages exhibited significant 
dispersal, suggesting P. aeruginosa produces the polysaccharides Pel and 
alginate in this model. Previous studies have shown contradictory results 
when determining the importance of alginate in biofilm formation in vitro 
[44,45]. These varying results from us [14] and others suggest that 
P. aeruginosa is utilizing various combinations of polysaccharides, which 
is dependent upon the environment, other species present, and the model. 
In this study, GH treatments that targeted the linkage found in alginate 
and Pel caused significant dispersal of P. aeruginosa, suggesting the utili
zation of these polysaccharides in biofilm formation in this model. 
However, when S. aureus was added in this model (Fig. 2A), the enzymes 
that target the β-1,4 linkages were unable to disperse P. aeruginosa, sug
gesting the absence of alginate. Conversely, when P. aeruginosa and 
S. aureus were grown together in vivo (Fig. 2B), the GHs that target Pel, Psl, 
or alginate all dispersed P. aeruginosa, suggesting that all three poly
saccharides are being utilized or are not produced at all. Another possi
bility is that these enzymes are breaking up host components in the EPS, 
therefore freeing the bacteria. As EPS-targeting therapeutics continue to 
be investigated, future studies need to be conducted to evaluate envi
ronmental conditions that result in modification of the matrixome and its 
potential effect on therapeutic effectiveness. 

We advanced the GHs that were most effective in vitro to testing in 
vivo. Our results demonstrate the variable ability of translating in vitro 
results to more clinically relevant in vivo models. For example, pectinase 
(source: Rhizopus sp.) induced biofilm dispersal in vivo but did not 
significantly disperse P. aeruginosa in the simple well-plate in vitro 
model. Inulinase (source: A. niger) did not exhibit significant dispersal in 

vitro but improved the efficacy of antibiotics in vivo. However, some of 
the in vitro results were translational in vivo. For example, xylanase 
(source: A. oryzae) dispersed P. aeruginosa in vitro and improved anti
biotic efficacy in vivo, and α-amylase (source: A. oryzae) induced biofilm 
dispersal in both models. So while no in vitro model will be completely 
predictive of in vivo efficacy, using a simple well-plate biofilm model to 
screen multiple dispersing agents does have utility. 

In order to gauge the potential safety of using GHs therapeutically, 
we evaluated their toxicity on human cells in culture, as well as in our 
mouse wound model. These experiments revealed the potential toxicity 
of a number of different GH enzymes, but also suggested some may be 
both safe and effective. To the best of our knowledge, this study is the 
first to describe the safety of GHs for biofilm dispersal during infection 
and while these studies are a good start, GHs will need to be further 
tested for safety in larger animals prior to clinical studies. It is also likely 
that GH treatments can be improved by optimizing concentration, de
livery vehicles, purity of enzymes, routes of administration and dosing 
schedules. Taken together, our data, and the work of others, suggest a 
great utility for GHs both as anti-biofilm agents as well as tools to 
explore the dynamic nature of the biofilm matrixome. 

4. Materials and methods 

4.1. Bacterial strains 

P. aeruginosa wild-type strain PAO1 [46], S. aureus wild-type strain 
SA31 [47] and a bioluminescent PAO1 strain carrying the luminescence 
reporter plasmid pQF50-lux [48] have all been previously described. 
P. aeruginosa and S. aureus were grown in baffled 125 mL Erlenmeyer 
flasks, with shaking at 200 rpm in Luria-Bertani (LB) broth at 37 ◦C for 
16–18 h 100 μL of the overnight culture was used to inoculate 
sub-cultures containing 10 mL of LB broth and was grown at 37 ◦C at 
200 rpm for 2.5 h. Planktonically grown cells in the sub-culture were 

Fig. 7. Only xylanase treatment causes toxic effects in mice. Uninfected wound beds were irrigated with 3 × 30 min treatments of PBS (vehicle control) or GHs 
every 24 h for 12 days. Wounds were imaged every 48 h (A) to monitor wound closure (B). Mice were also weighed every 48 h to monitor body weight (C). Lastly, the 
spleens were collected and weighed 24 h after the last treatment. Xylanase (source: A. oryzae) treated mice were euthanized after 7 treatments because they exhibited 
signs of toxicity. One-way (D) or two-way (B, C) analysis of variance and a Tukey-Kramer multiple-comparison were used to test for differences between results. ***, 
P < 0.001. Mean±standard deviation is shown, n = 6 or n = 3 for xylanase (source: A. oryzae)/group. 
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then used to initiate infection and inoculate the in vitro model. All CFU 
were quantified by serial dilution and plating on Staphylococcus medium 
110 (Difco) and Pseudomonas isolation agar (Difco). 

4.2. Glycoside hydrolases 

Enzymes listed in Table 1 were prepared by dissolving lyophilized 
powder or diluting liquid solutions in 1 x phosphate buffered saline (PBS) at 
37 ◦C or 60 ◦C according to manufacturer’s instructions for 30 min 1 x PBS 
was used as a vehicle control. Enzyme solutions were prepared fresh 
immediately before use. All enzymes were used at a concentration of 500 U/ 
mL except for pectinase (source: Rhizopus sp.) that was used at 125 U/mL. A 
10% GH solution was made by combining 5% amylase (source: Bacillus sp.) 
and 5% cellulase (source: A. niger) weight per volume solution. 

4.3. In-vitro well-plate biofilm model 

To measure biofilm dispersal in vitro, the wells of a 24-well, non-tissue 
culture-treated, plate (Falcon) were inoculated with 800 μL of sub-culture, 
containing 105 S. aureus, P. aeruginosa, or S. aureus and P. aeruginosa. The 
correct inoculating dose was established by diluting the sub-cultures with LB. 
For polymicrobial biofilms, 10–20% adult bovine serum (B9433 Sigma- 
Aldrich®) was added to the inoculating solution to prevent P. aeruginosa 
from outcompeting S. aureus as previously shown [49]. Biofilms were grown 
for 48 h at 37 ◦C with shaking at 80 rpm. Following incubation, the super
natant was removed, and each well was gently rinsed with 1 mL PBS to 
remove any nonattached cells. Subsequently, wells were treated with 1 mL 
enzyme solution or vehicle control (1 x PBS) for 2 h at 37 ◦C with shaking at 
80 rpm. Following treatment, the supernatant was removed and serially 
diluted in PBS. CFU were enumerated to calculate the ‘dispersed’ fraction. 1 
mL of PBS was added to the remaining biofilms, which were broken up by 30 
min of sonication, then serially diluted and plated for CFU enumeration to 
determine the ‘biofilm’ fraction. Percent dispersal was calculated by dividing 
the dispersed CFU by the total CFU (biofilm-associated plus dispersed). Two 
biological replicates with three technical replicates were performed for each 
treatment. 

4.4. In vivo and ex vivo biofilm dispersal 

Our murine chronic wound model has been previously described [12, 
26–28]. Briefly, mice were anesthetized by intraperitoneal injection of 
sodium pentobarbital. After a surgical plane of anesthesia was reached, 
the backs were shaved and mice were administered a full thickness, dor
sal, 1.5- by 1.5-cm excisional skin wound to the level of the panniculus 
muscle with surgical scissors. Wounds were then covered with a semi
permeable polyurethane dressing (Opsite dressing; Smith and Nephew), 
under which 104 CFU of bioluminescent P. aeruginosa (in vivo) or 1:1 ratio 
of P. aeruginosa and S. aureus (ex vivo) bacterial cells were injected into the 
wound bed. Infection was allowed to proceed for 48 h, a time at which we 
have demonstrated the presence of biofilm in wounds [28,47,50]. After 
48 h, mice were euthanized, and wound beds were harvested for ex vivo 
GH treatments. Tissue from the wound bed was cut into 4-sections, with 
each section receiving a different treatment. Tissue was submerged in 1 
mL of treatment and incubated for 2 h at 37 ◦C, with shaking, at 80 rpm. 
Afterwards, the supernatant containing the dispersed cells was serially 
diluted. 1 mL of PBS was added to the remaining tissue and homogenized 
at 5 m/s for 60 s in FisherScientific™ 2 mL Pre-Filled Bead Mill Tubes 
using a FastPrep-24™ MP Biomedical Benchtop Homogenizer. The su
pernatant and biofilms were serially diluted, plated, and the percent 
dispersal was calculated as described above. 

For in vivo studies, mice were treated with 3 × 30 min irrigations of 
either PBS, 3 mg/mL meropenem, GHs, or GHs + meropenem 48 h post- 
infection. Mice receiving meropenem were administered an intraperi
toneal injection of 300 mg/kg of meropenem 4 h prior and 8 h post- 
treatment. Mice were imaged pre-treatment, immediately post- 
treatment (0 h), and 5 h, and 20 h post-treatment with IVIS. Mice 

were euthanized at 20 h post-treatment and their spleens and wound 
beds were collected and placed into pre-weighed FisherScientific™ 2 mL 
homogenizing tubes containing 1 mL of PBS. The tissue was homoge
nized at 5 m/s for 60 s two times. The homogenates were serially diluted 
and plated to enumerate CFU per gram of tissue. Two biological repli
cates with three technical replicates were performed for each treatment. 

4.5. Cell culture 

The human fibroblast and colonic epithelial cell lines (CCL110 and 
CCD841, respectively) were purchased from ATCC which utilizes STR 
technology for Cell Authentication, and were used in a low passage 
(<20) within 6 months or less after receipt or resuscitation. Both cell 
lines were cultured in Eagle’s Minimum Essential Medium (MEM) 
(Gibco™ Cat # 67-008-6) supplemented with 10% fetal bovine serum 
(Gibco™ Cat# A4766801) and 1% penicillin/streptomycin (Gibco™ 
Cat# 15070063) with 5% CO2, at 37 ◦C. 

4.6. Cell toxicity assay 

10,000 CCL110 cells or 20,000 CCD841 cells were seeded into a 96- 
well tissue cultured treated polystyrene plate (Falcon) for 48 h at 37 ◦C 
with 5% CO2. Upon attachment, the MEM media was removed and cells 
were rinsed with PBS pH 7.4 (Gibco™ Cat# 10010023). 200 μL of GHs 
reconstituted in supplemented MEM media was administered to the cell 
lines for 30-min, 90-min, or 3-h at 37 ◦C, with 5% CO2. The GH treat
ments were removed, and adhered cells were rinsed with PBS pH 7.4 
(Gibco™) prior to adding 10% AlamarBlue® diluted with MEM + FBS 
media for 6 h. The living cells that remained were quantified via ab
sorbency at 590-nm in a Synergy H1 Hybrid Reader (Biotek). Percent 
viability was calculated [absorbency of treated cells/absorbency 
(average of untreated cells)] x 100. One biological replicate with six 
technical replicates was performed for each treatment. 

4.7. In vivo toxicity screening 

Mice were administered surgical excision wounds as described 
above. 48 h after injury, wounds were irrigated three times with PBS 
(vehicle control) or GHs, with 30-min dwell time, every 24 h. Wounds 
were imaged and measured every 48 h using SilhouetteStar™ (ARANZ 
Medical). Body weights were also recorded every 48 h. After 12 days of 
repeated treatments, mice were euthanized. Upon euthanasia, spleens 
were collected and weighed to screen for splenomegaly. Two biological 
replicates with three technical replicates were performed for each 
treatment. 

4.8. Statistical analysis 

All statistical analysis was performed utilizing GraphPad Software, 
Inc. Multivariant analyses were performed by either one-way or two- 
way analysis of variance (ANOVA) by Tukey’s multiple comparison test. 
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