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The objective of the presented study was to demonstrate the potential of a bottom-up

“ethological” approach and individual-based model of Markov-like stochastic processes,

employed to gain insights into the factors driving behavior and fate of the invasive

propagule, which determine the initial stages of pest invasion and “cryptic” existence

of the localized, ultra-low density incipient pest populations. The applied model,

PESTonFARM, is driven by the parameters derived directly from the behavior and biology

of the target insect species, and spatiotemporal traits of the local terrain and climate. The

model projections are actively generated by behavior of the primary causative actors of

the invasion processes—individual “virtual” insects—members of the initial propagules

or incipient populations. Algorithms of the model were adjusted to reflect behavior

and ecology of the Mediterranean fruit fly, Ceratitis capitata, used as a case-example

in the presented study. The model was parametrized based on compiled published

experimental information about C. capitata behavior and development, and validated

using published data from dispersion and trapping studies. The model reliably simulated

behavior, development and dispersion of individual members of an invasive cohort,

and allowed to quantify pest establishment and detection chances in landscapes of

varying spatiotemporal complexity, host availability and climates. The results support the

common view that, under optimal conditions (farmland with continuous fruit availability

and suitable climate), even a single propagule of medium size (100 females) usually

results in pest establishment and detection within the first year post-invasion. The results

demonstrate, however, that under specific sub-optimal conditions determined by the

local climate, weather fluctuations and landscape topography (e.g., sub-urban), the

incipient cryptic populations may occasionally continue for several generations, and

remain undetected by typical pest surveillance grids for the periods extending beyond

2-years post-invasion.
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Lux Incipient Populations in Landscapes of Varying Complexity

INTRODUCTION

Some of the most elusive biological phenomena—cryptic
existence and fate of alien insect propagules or survival and
resurgence of residual populations struggling at the verge of
extinction—are actively generated by and critically depend
on individual behavior of just a small number of insects,
operating within environmental mosaics of the locally fluctuating
opportunities, resources and threats. Such incipient populations
are inherently vulnerable to stochastic uncertainties (Potapov
and Rajakaruna, 2013; Rajakaruna et al., 2013) and essentially,
are intractable experimentally. In fairly uniform environments,
generic population models, mostly based on “random diffusion”
paradigms (Rudd and Gandour, 1985; Kot et al., 2004; Liebhold
and Tobin, 2008; Roques et al., 2008), largely explain the
growth and spread of the initial populations, and estimate
the relation between propagule pressure and probability of
establishment (Memmott et al., 2005; Colautti et al., 2006;
Drake and Jerde, 2009). But at the ultra-low densities and fine
spatial scales of the species-typical daily exploration ranges,
translocations of the individual insects are determined by
the proximate configurations of environmental attributes and
transient availability of resources, and thus are far from random
(Lux, 2014; Manoukis et al., 2014; Lux et al., 2016, 2017). It is
broadly recognized that during the initial cryptic “latency phase,”
such small cohorts may linger for some time undetected (Sakai
et al., 2001). But in the case of pests of economic concern,
duration of the cryptic pest presence and its ultimate success—
establishment or resurgence—have immense socioeconomic and
regulatory ramifications (Carey, 1996; Papadopoulos et al., 2013;
Mcinnis et al., 2017). Consequently, the quest for approaches and
methods which could offer new insights into the mechanisms
of such ephemeral processes, reveal their key behavioral and
environmental drivers and quantify pest establishment and
detection chances–is of the utmost practical relevance.

Confronted with the paucity of experimental options, we
propose the individual-focused “ethological” approach (Lux,
2014)-stochastic simulation of lifetime events and behaviors
of “virtual” individual members of the incipient cohorts,
operating under hypothetical agro-ecological scenarios of
varying complexity and climates. Such in silico emulation of
the pest-landscape system offers unique possibility to capture
the wealth of information about behavioral particularities of
the target insect species, and reflect the impacts of the local
conditions with their spatiotemporal dynamics at insect-relevant
scales (An et al., 2009; Lux et al., 2016). Importantly, for
very small populations scattered at ultra-low densities, such
an approach permits more realistic reflection of the individual
stochastic uncertainty and non-random behavioral mechanisms
of the choices made in locally heterogeneous environment.
Once parametrised and validated, the model permits “virtual”
emulation of an unlimited number of scenarios—quantification
of the net effects of even minor modifications to the topography
and/or climate of the studied system (Lux et al., 2016).
Such agent-based models, often in combination with cellular
automata, can serve as “virtual environmental laboratories” for
emulation of complex systems, and are currently used to study

ecological and evolutionary processes (DeAngelis and Mooij,
2005; Jovani and Grimm, 2008; DeAngelis and Grimm, 2014),
for development of environmental decision support tools (Parker
et al., 2002; Parker, 2005; Grimm et al., 2014; Reed et al., 2016),
modeling effects of land use and climate change (Louca et al.,
2015; Hyandye and Martz, 2017), or site-specific integrated pest
management (IPM) (Lux et al., 2016).

The objective of the study presented here was to demonstrate
the potential of such an approach for quantification of the
latency phase of “cryptic” pest existence, its detectability and
establishment chances, in relation to the species-specific pest
traits, the initial propagule size, the local landscape topography
and climate. For this purpose, an individual-based Markov-like
stochastic process model (PESTonFARM, Lux, 2014; Lux et al.,
2016) was used, with its algorithms and parameters adjusted
to reflect the biology and behavior of Ceratits capitata, a well-
researched species of enormous economic importance, used here
as a case-example. The potential of the presented approach
and the model for site-specific assessments of the local pest
establishment risks and detection chances, or for optimisation of
the pest detection schemes according to the local site topography-
was also discussed.

METHODS

Outline of the Model
PESTonFARM (Lux, 2014; Lux et al., 2016) is a site-focused
individual-based model, which simulates behavior of individual
insects operating within the locally heterogeneous environment.
Themodel consists of twomainmodules, representing properties
of individual “virtual” insects and traits of “virtual” local terrain.

Algorithms of the “virtual insect” module encapsulate relevant
information about ecology and behavior of the target insect
species, and accordingly, determine (in a stochastic sense)
behavior and fate of “virtual” members of the cohorts, which
represent the local pest population. Insects constitute suitable
objects for such simulation, because their behavior, although
intricate, can be reliably described by a set of rules linked
to the traits of proximate environs. Individual behavior can
be approximated by a Markov-like stochastic process, where
response or fate of each insect is stochastically determined only
by its current internal state and surrounding conditions (Lux,
2014). Accordingly, each behavioral step, event or “decision”
of each individual “virtual” insect is fully randomized and
stochastically dependent on its age, reproductive state, and on the
local weather conditions, current status of the sector of its actual
residence, and where relevant-also that of the nearby sectors.

Local terrain is represented by a set of matrices made by
square sectors, with their values representing insect-relevant
traits. The trait-values of each sector fluctuate daily according
to seasonal changes in host plant phenology, host availability
and infestation, local insect density and IPM treatments. Spatial
resolution (sector size) is determined by pest biology and its
estimated daily mobility ranges (Lux, 2014).

The model uses two key “external” forcing factors:
temperature and time. The temperature represents daily
average for each season day, while the time factor consists of
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successive season days. All phenomena are simulated with 1-day
temporal resolution.

Model Adaptation to the Target Species:
Mediterranean Fruit Fly, C. capitata
The generic PESTonFARM model was developed to simulate
behavior and development of frugivorous tephritid fruit flies,
which share substantial similarities in their overall biology
patterns. Its version 3.1 was adapted and on-farm validated
for the European cherry fruit fly, Rhagoletis cerasi, and
IPM in cherry orchards (Lux et al., 2016). For the study
presented here, the model (version 4.1) was adapted and
parameterized to reflect the relevant aspects of the biology
and behavior of C. capitata (medfly). Unlike R. cerasi, medfly
is a multivoltine species, hence accordingly, a provision was
added to simulate overlapping generations and multiple 1-
day-spaced discrete age-cohorts. Furthermore, the two species
differ quantitatively. Thus, although most of the assumptions
and processes described for the version 3.1 (R. cerasi model)
were retained without major changes, the model was re-
parameterized, based on the published information about
C. capitata and the author’s own on-farm observations.
Overview of the general assumptions and simulated processes
(sub-models) was provided by Lux et al. (2016), while the
processes simulated in the C. capitata model, adopted estimates
of the key parameters and their sources, are presented in
Table 1.

Model Evaluation
The model was validated by confronting model-generated
data with the results of published experiments, used as a
point of reference. In all simulated hypothetical scenarios, the
assumed conditions broadly resembled that in the reference
studies.

General correctness of the simulation of medfly development
was verified by confronting the annual population patterns
generated by the model for a typical farmland landscape with
the results of field experiments from Greece (Papadopoulos
et al., 2001). Simulation of the patterns of fly dispersal and
trapping was compared with the results of mark recapture
experiments conducted by Meats and Smallridge (2007) and
Plant and Cunningham (1991). For all fly dispersion scenarios,
a homogenous 1 sqkm “virtual” site was generated, containing
1,600 sectors (40 × 40), 625 m2 each (25 × 25m). It was
assumed that the whole area is covered by uniform pattern of
fruit trees, planted in a symmetric grid, with uniform canopies
of moderate size (ca. 4m diameter). Furthermore, eight traps
were distributed in pairs, set at the following distances from
the site center: 75, 150, 300, and 600m (Figure 2). The traps
were assumed to be baited with a lure resembling standard
PTA (putrescine, trimethylamine, ammonium acetate) attractant
(Ekesi et al., 2007). Simulations were conducted for three
different temperature regimes, constant throughout the whole
25-week period: the optimal (25◦C) and two other varied
by ± 5◦C (20◦ and 30◦C). To approximate field conditions,
constant 2% daily extrinsic mortality risk due to on-site resident
natural enemies and pathogens was assumed, based on the

author’s own data. To illustrate the modulating effects of
the presence of the natural enemies (extrinsic mortalities) on
medfly distribution patterns, for the optimal scenario (25◦C),
an additional case was emulated with no extrinsic mortalities
assumed. For each scenario, lifetime behavior, dispersal and
trapping of a “virtual” cohort of 1,000 females were simulated.
The whole cohort was “released” on day-1 from the center
of the site. The virtual flies were allowed to leave the site
temporarily, but no immigration was assumed to compensate
for the individuals who did not return to the site during the
same explorative event. For the most representative simulation
from each series, weekly distribution patterns were superimposed
and combined into a diagram representing density-pattern of
fly presence during the cohort’s lifetime. In the “reference”
mark recapture experiments (Plant and Cunningham, 1991;
Meats and Smallridge, 2007), only sterile insects were used,
thus effectively, lifetime dispersal patterns of a single, non-
reproducing adult generation were studied. Accordingly, to
emulate such experiments, no reproduction was “allowed” for
the released “virtual” cohort, i.e., the “oviposition” module of the
model was temporarily switched off.

The results were compared with the experimental data
reported in the relevant publications. The capacity of
the model to reproduce the published experiments and
approximate their results was treated as the evidence of
correct model calibration. Afterwards, the model was “locked”
and used without any further adjustments to its internal
parameters.

Virtual Experiments—Simulation of
Propagule Behavior, Fate and Detection in
Landscapes of Varying Complexity
Virtual Landscapes
Five “virtual” landscapes were generated by the model according
to pre-defined parameters (Table 2), varied in the degree of their
spatial heterogeneity (Figure 1). The landscapes, representing 1
sq km of terrain (further referred to as “modeled site” or “site”),
comprised 1,600 square sectors, each representing 625 m2 (25
× 25m) of land, arranged in 40 × 40 grid. The five types
of “artificial” landscapes were designed to approximate typical
scenarios, such as fruit production region (further referred to
as “Farm Site”) with regular 4-hectare blocks of host and non-
host trees of regular size, and four variants of peri-urban/urban
landscapes (further referred to as “Urban Site 1-4”) with different
density of buildings, host and non-host trees of randomly varied
canopy size, land coverage and host/non-host type. The four
landscapes varied in spatiotemporal complexity, fraction of land
containing any trees (host or non-host) and the overall host
availability, but not in the relative contribution of the host species
(always 1:1:1:1) and their respective traits, such as suitability for
pest development, phenology, canopy structure and quality. In
the landscapes, every grid sector was individually characterized
by a range of independent traits, such as: canopy coverage and
size, dominant host and its traits, and daily updated about current
phenology status, local pest presence, fruit infestation, trap
effectiveness, IPM.
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TABLE 1 | The main aspects of biology, key processes taken into account, sub-models and adopted parameters.

Aspect Process/parameter Adopted values Relation/sub-model Basis/source

Adult females Sex ratio of adults emerging from the

soil

1:1 Constant Assumed

Pattern of adult emergence from the

soil

Staggered, lasting 25–40 days, 75%

emerging during the first 10 days

Asymmetric bell-shaped function

adjusted to fit the assumed

distribution

Assumed, based on own

on-farm observations

Lifespan under constant optimal

conditions (20–25◦C) and in absence

of extrinsic mortality causes

Aver = 79.1, max = 170 days Gompertz function, calculated

according to daily-cohort age,

dynamically adjusted to account for

seasonally changing temperatures

Based on: Vargas et al.,

1997, 2000; Duyck and

Quilici, 2002; Manrakhan

and Lux, 2006; Grout and

Stoltz, 2007; Carey et al.,

2008; Nyamukondiwa and

Terblanche, 2009

Intrinsic mortality modeled with 1-day

resolution according to individual age

1–170 days

Age/maturity categories, at optimal

conditions (20–25◦C)

1–10 Young, 11–45 Mature, 46–75

Old, 76 + Very Old

Extrinsic daily mortality risk caused by

the complex of on-farm resident

predators and natural enemies

2% Constant Broadly estimated, based

on own and historic data

Immature stages Sex ratio and egg status 1:1, 100% fertilized Constant Assumed

Temperature-dependant duration of

in-fruit development (from egg to

adult emerging from the soil)

Eggs: 3–11 days, Larvae: 8–55 days,

Pupae: 9–67 days

Custom-build functions, dynamically

adjusted to account for seasonally

changing temperatures

Based on: Duyck and

Quilici, 2002; Ricalde et al.,

2012

Temperature-dependant stage

survival ranges

Eggs: 60–90%, Larvae: 19–80%,

Pupae: 26–70%

Based on: Ricalde et al.,

2012

Combined in-soil mortality due to

extrinsic factors, e.g., predators etc.

30% Constant Broadly estimated, based

on own and historic data

Fecundity Mating status of mature females Mated (100%) Constant Assumed

Maximum and peak lifetime fecundity

(under optimum conditions, temp.

20–25◦C)

742 eggs/female, peak at 20–35 days

post emergence

Custom-build function adjusted to fit

the published data, dynamically

adjusted to account for

temperature-dependant female

maturation pace

Based on: Shoukry and

Hafez, 1979; Manrakhan

and Lux, 2006

Intrinsic age-dependent daily

fecundity

Range: 0–16, daily individual values

generated according to age,

assuming normal distribution

Mobility Average area covered during a single

local exploration errand, used to set

the sector size and spatial resolution

of all site-related traits

625, equivalent to 25 × 25m sector Constant Assumed based on:

preliminary on-farm

observations

Dispersion range 200–700m Not programmed, emulated by

behavior of ‘virtual individuals’

Own observations, and:

Meats et al., 2003

IN/OUT balance between emigration

from the modeled site/area and

immigration from the neighborhood

1:0.25 Constant Assumed for all scenarios

presented in the paper

On-site exploration, mobility, and

micro-migration

Range and patterns dynamically

adjusted according to female maturity,

current temperature and local

conditions, potential daily averages

and SDs calculated according to

cohort age, individual values

generated based on average and SD

Custom-build age-dependent

functions and algorithms adjusted to

fit the published data, dynamically

adjusted to account for

temperature-dependant female

maturation pace

Based on own on-farm

observations, and: Plant

and Cunningham, 1991;

Meats et al., 2006; Meats

and Smallridge, 2007;

Navarro-Llopis et al., 2014;

Pimentel et al., 2017

Host phenology,

fruit suitability and

infestation

Host phenology and fruit suitability for

oviposition

Beginning of fruit maturation and

suitability, harvest

Species/cultivar-specific Based on: Papadopoulos

et al., 2001

Host suitability for immature

development

Varied, host species specific, ranging

from 60 to 100%

Constants Assumed, partially based on

own data

Daily fruit attractiveness and suitability

for larval development

Ranging from 0 to species-specific

maximum

Asymmetric bell-shaped function Assumed, function adjusted

to fit data of Papadopoulos

et al., 2001

Harvest accuracy Varied for hosts, from 40 to 80% Constants Assumed

Local (sectoral) population density Actual value for each sector

(Continued)
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TABLE 1 | Continued

Aspect Process/parameter Adopted values Relation/sub-model Basis/source

Detection with

baited traps

Trap type & density & bait type Mc Phail trap (4/sqkm) baited with

food-type (PTA) lure

Constant for all modeled scenarios

and repetitions (simulation runs)

Assumed, and estimated

based on experience and

data of: Delrio and

Zümreogl̆u, 1983; Lance

and Gates, 1994; Kendra

et al., 2010; Manoukis and

Hoffman, 2014; Meats,

2014; Manoukis et al., 2015

Trap location Close the center of site quarter, in a

host-containing sector

Frequency of bait change Every 60 days Constant

Daily decline in bait efficacy 0.5%daily Constant

Average daily trapping risk for a newly

baited trap, within the sector

5% Constant within the sector of trap

location

Effective bait attractiveness area,

surrounding baited trap

625 sqm (25 × 25m) Constant, uniform within the sector of

trap location

Responsiveness of females to baited

trap

Age dependent, ranging from the

initial 40 to 100% at peak, and

declining to 50% when 6–7 weeks old

and further down to 15% afterwards

Custom build function adjusted to fit

the assumed thresholds, dynamically

adjusted to account for

temperature-dependant female

maturation pace

Based on: Manrakhan and

Lux, 2006, 2008, 2009;

Meats and Edgerton, 2008;

Gilchrist and Meats, 2011

Niche utilization Fruit infestation [%] Actual value for each sector Custom build functions, according to

type of behavior, with minor impact at

low to moderate infestation level

Estimated

Local (sectoral) daily population

density

Actual value for each sector

IPM No IPM or any other population

suppression actions was assumed

none Relevant model functions were not

activated

Assumed

External forcing

factors

Time, season days 1-day resolution constant Assumed

Climate (temperature) Average daily temperature Custom-build function, generating

annual temperature patterns

Base climate approximating

Crete, Greece

Extreme weather conditions Calm, no extreme temp. fluctuations,

lack of strong winds, rain or hail

storms

Assumed

TABLE 2 | Landscape structure parameters.

Site-specific parameters Farm Urban Urban Urban Urban

site site 1 site 2 site 3 site 4

No canopy (buildings, roads) 0 (%) 20 (%) 40 (%) 60 80 (%)

Host trees 80 (%) 40 (%) 30 (%) 20 (%) 10 (%)

Non-host trees 20 (%) 40 (%) 30 (%) 20 (%) 10 (%)

Canopy parameters (the Canopy Canopy

same for or all sites) coverage [%] diameter [m]

Average SD Average SD

Host trees 50 15 4 1.5

NON-host trees 60 18 5 1.8

Host Trees
The presence of the same four host types was assumed for each
modeled scenario, jointly providing suitable fruit throughout the
season. The assumption of nearly continuous fruit availability
was based on experience from sub- and tropical horticulture,
further supported by findings of Papadopoulos et al. (2001).
The hosts varied in their phenology, overall attractiveness and
suitability for development of the immature pest stages–eggs and

larvae. Furthermore, for different hosts, varied harvest accuracy
(the percentage of the fruit removed) was assumed, ranging from
60 to 80% (Table 3).

Pest Surveillance/Detection
Each “virtual” landscape variant was “equipped” with the same
“pest detection scheme.” Four pest detection traps, spaced by
ca 500m, were randomly distributed close to the center of
each quarter of the modeled area (Figure 1). To emulate the
usual practice in choosing the exact trap location, suitability
of the potential sector was taken into account in order to
facilitate the pest presence and detection, thus the trap was
located in the nearest host-containing sector. The effective range
of bait attractiveness was assumed to approximate sector size
(6252 m).

Propagule Size, Invasion Pattern and Timing
The same invasion scenario was simulated in all cases: a single
propagule with 100 females, mimicking a small number of
medfly-infested fruits containing 200 larvae (male/female= 1/1)
abandoned close to the center of the modeled site. To avoid
undue restriction in the propagule establishment chances, the
invasion was assumed to start on the 90th day of year (and
of March), when the climatic and fruiting conditions were
approaching its optimum.
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FIGURE 1 | “Virtual” model-generated landscapes of varying degree of fragmentation and complexity.

FIGURE 2 | On-farm propagule development in Mediterranean climate (Start, end of March; site, Farm Site; Med climate, average = 20◦C, min = 11◦C, max = 27◦C).

Climate
Unless indicated otherwise, all simulations were conducted
assuming mild Mediterranean-type climate (further referred
to as “Med climate”) with the pattern approximating that
of Crete, Greece (the annual min = 11◦C, max = 27◦C,
average = 20◦C). Furthermore, for selected cases, simulations

were made assuming constant climate (further referred to
as “Const”) with assumed constant temperature throughout
the year at three levels; 20◦, 25◦, and 30◦C, or the optimal
climate (further referred to as “Opt”) with the annual
temperatures following the same annual pattern as the
“Med” climate, but fluctuating within more narrow,
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TABLE 3 | Host and non-host parameters.

Parameter Host 1 Host 2 Host 3 Host 4 NON-host

Relative incidence 25 [%] 25 [%] 25 [%] 25 [%] –

Host suitability 60 [%] 70 [%] 90 [%] 80 [%] 0 [%]

Max attractiveness 70 [%] 90 [%] 100 [%] 65 [%] 29 [%]

Min attractiveness 25 [%] 29 [%] 28 [%] 23 [%] 13 [%]

Fruit availability [days] 80 65 70 85 –

Harvest time [year day] 90 170 250 350 –

Harvest accuracy [%] 65 75 80 70 –

optimum range (the annual min = 20◦C, max = 25◦C,
average= 22.9◦C).

Conducive Conditions
To avoid undue bias in emulating the cryptic phase of pest
existence, and to clearly expose the effects of the propagule size,
terrain structure and climate on the modeled processes, in all
emulated scenarios, the following assumptions were adopted,
conducive to population development:

• Continuously calm weather throughout the season, without
episodes of severe winds, rain or hail storms etc.

• Nearly continuous food and host (fruit) availability within the
modeled site.

• Absence of any pest suppression treatments (no IPM, except
the four detection traps).

• Lack of significant Allee effect.
• Invasion start at 90th day of the year (end of March), when the

temperature and fruit availability is approaching optimum.
• In the “optimal” scenario of Farm Site, the propagule arrives at

central plot, which starts fruiting soon after.

Presentation of Results
The model simulates all the processes for each grid sector and
season day, and generates a wealth of detailed information. But
due to peculiar feature of the incipient cohorts under the study
(ultra-small size), the numbers generated daily for each sector,
population densities, age structure etc., tend to be extremely
erratic and thus of limited practical interest.

Duration of the Simulated Period
The simulation was conducted for 100 weeks (ca. 2 years),
except the cases when the population of females present on site
(all stages) reached 3,000 individuals, which was treated as a
symptom of pest establishment.

Replications
For each landscape and invasion scenario, 15 simulations were
executed, to assess development and detectability of the incipient
populations founded by the invasive propagules. Each simulation
was replicated with the same initialization settings. Auxiliary
simulations of the selected cases were replicated 5 times.

Statistical Analysis
The results were presented as averages and either SD or
95% confidence limits. In addition, for comparison of model-
generated trapping results with the published trends, a
simplified process control test was used, assuming that the
process is acceptably controlled (simulated), if the respective
experimentally established trend points fall within 3-sigma
control limits of the simulated results.

RESULTS

Model Validation
The “Mediterranean” climate (annual min= 11◦C, max= 27◦C,
average = 20◦C) broadly resembles the annual pattern of
average temperatures in Crete, Greece. With brief seasons of
mildly suboptimal conditions and lack of survival-threatening
extremes, it is generally conducive for medlfy development
throughout most of the year. Summer temperatures (reaching
27◦C) only slightly reduced fly activity, and winters (10–
12◦C) periodically retarded or prevented fly development, and
temporarily restricted or stopped their activities. During such
periods, the flies remained vulnerable to mortality risks, which
varied according to fly developmental stage; eggs, larvae, pupae
and adults. The risks included intrinsic temperature- and age-
dependent mortalities, and extrinsic ones caused by locally
resident predators and pathogens. In optimal conditions (farm
site with continuous host availability and lack of excessive spatial
fragmentation), an invasive propagule of 100 females released in
March, usually was able to establish, and within several months,
substantially increase population size and reach detectable levels.
The numbers of immature stages reached peak in August and
to a lesser extent, also in October-November, while adults–in
September (Figure 2), which resembles seasonal patterns typical
for Greece (Papadopoulos et al., 2001). Also the simulated age
structure of adult insects was comparable to that reported from
the field (Carey et al., 2008).

Lifetime patterns of fly survival, dispersal and trapping were
simulated in a “virtual” homogenous orchard containing fruiting
trees, and three constant temperature regimes (20◦, 25◦, and
30◦C). A cohort of 1,000 females was synchronously released
from a central point, which mimics a situation of an invasion
originating from a single incident of abandoned infested fruit.
Female maturation time, the average andmaximum lifespan were
inversely correlated with temperature (Table 4). Accordingly, the
lifetime patterns of female dispersal varied with temperature as
well (Figure 3). In all cases, the females distributed over the
whole 1 sqkm area, with a fraction (ca. 5–13%) exploring, at
least temporarily, beyond the modeled site (Table 4). The area
of 90% fly “lifetime” presence was highly clustered around the
release point. Its size was temperature-dependent, covering ca.
33–50 hectares (radius from 356 to 444m) (Figure 3), and the
respective 80% fly presence zones were smaller, with radius of ca.
300m, which is in line with the experimental findings of Meats
and Smallridge (2007) and Plant and Cunningham (1991).

Fly catches varied strongly with trap distance from the release
point, ranging from zero to 11.2 females (0–1.1% of the released
cohort). In case of the traps located 75 and 150m from the release
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point, the released flies were detected in each simulation. But
the detection became erratic when the trap distance increased
to 300–600m (Table 4). Similar to the dispersal patterns, also
trap catches and detection chances were positively correlated
with temperature (Table 4). Simulated relationship between the
trap distance and the fraction of the released flies trapped
(Figure 4) closely fits the trends established by Meats and
Smallridge (2007). The 3-sigma control limits of the simulated
data points covered the respective trend points, confirming the
overall correctness of the model settings and reliability of the
generated data. When no extrinsic mortality was assumed (a
case of laboratory conditions or a field under intense pesticide
and fungicide cover), the average lifespan increased (from 26.7
to 41.8 days). In such conditions, also the 90% dispersal range

TABLE 4 | Effect of temperature on medfly dispersal, trapping and longevity*.

Parameter 20◦C 25◦C 30◦C

90% Fly presence area [hectares] 32.7 (4.94) 45.0 (3.67) 50.5 (3.26)

90% Fly presence radius [m] 356.3 (27.95) 418.8 (17.09) 443.8 (14.00)

Exploration beyond the site [No

of females]

44.8 (8.11) 124.2 (4.71) 128.0 (12.06)

Maturation time [days] 16 9 6

Aver. Longevity [days] 35.1 (1.61) 26.7 (0.48) 16.9 (0.44)

Max lifetime [days] 156.6 (12.54) 113.2 (13.74) 79.8 (6.98)

Distance Trapping (in 2 traps) and detection

75m No of trapped females 4.4 (1.14) 7.6 (2.70) 11.2 (2. 17)

Detections/simulations* 5/5 5/5 5/5

150m No of trapped females 1.8 (0.84) 3.0 (1.00) 5.2 (3. 19)

Detections/simulations* 5/5 5/5 5/5

300m No of trapped females 0.4 (0.89) 0.6 (0.55) 1.0 (1.00)

Detections/simulations* 1/5 3/5 3/5

600m No of trapped females 0.0 (0.00) 0.4 (0.55) 0.6 (0.55)

Detections/simulations* 0/5 2/5 3/5

*The table contains averages of 5 simulations/replicates, and SD (provided in

parentheses).

increased from 45.0 to 56.3 hectares (90% radius from 418.8
to 468.8m).

Virtual Experiments–Simulation of
Propagule Behavior, Fate and Detection in
Landscapes of Varying Complexity
All simulated scenarios emulated medfly invasions initiated by a
single propagule of 100 females, emerging from a small number
of infested fruits “abandoned” at the center of each virtual
landscape.

Under “Constant” climates (20◦, 25◦, and 30◦C), with lack
of any seasonal temperature fluctuation, the development of
the invasive propagule was dependent on both the temperature
and the degree of site fragmentation. Durations of medfly
developmental stages and successive generations changed
according to the temperature, and largely reflected the published
data (Ricalde et al., 2012). In spite of the constant temperatures
and continuous fruit availability, the host succession forcing
seasonal pest shifts within the site, and variation in host traits
(attractiveness, suitability and harvest accuracy) (Tables 2, 3),
when combined, constituted a mild environmental factor, which
jointly with different temperatures and varying site spatial
complexity, substantially diversified the trajectories of propagule
development and fate (Figures 5–7).

As expected, and regardless of temperature regime, the largest
population growth occurred on the Farm Site comprising large
blocks of adjacent diverse hosts. Maximum size of the incipient
populations, reached during the first 12 months post-invasion,
varied greatly between temperature regimes, and was the highest
at 25◦C, followed by 30◦ and 20◦C, with ca. 2,400, 1,100, and
300 insects per site (all stages), respectively. Fragmentation of
the terrain severely curtailed propagule development, and for all
“Urban” sites and temperature regimes, at the peak time, the
pest population ranged from ca. 100–270 insects per site. In
general, in the “Urban” landscapes, the impact of temperature
was less pronounced compared to the farmland, and with the
exception of Urban Site 4 at 20◦C, the population maxima
were broadly similar. However, the population patterns and
trends were not consistent, as well as the pest establishment

FIGURE 3 | Effects of temperature on dispersion.
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FIGURE 4 | Effects of trap distance on number of females caught.

prospects. In most “Urban” scenarios, after the initial increase,
the population gradually declined, and at the end of the first year
post-invasion, the numbers of surviving individuals were low,
indicating unpromising pest establishment prospects. However,
at 25◦C, in moderately fragmented sites (Urban 1–3), the
incipient populations broadly fluctuated, and at the end of the
first year post-invasion, were still at the size suggesting good
survival and establishment chances.

It has to be noticed, that the combined effects of temperature
and landscape fragmentation were scenario-specific, non-
additive and non-linear. Furthermore, these relations shall
be expected to heavily rely on the local host configurations;
completeness of the annual host succession chain, host traits,
spatial arrangement and diversity etc., which compounds the
difficulty to generalize the results.

Under the “Optimal” climate (annual min = 20◦C,
max = 25◦C, average = 22.9◦C) and optimal site conditions
(Farm Site with continuous host availability and lack of excessive
spatial fragmentation), the initial propagule quickly followed
the generally expected rapid growth trajectory (Mcinnis et al.,
2017). Within several months the population established, and
reached the densities which, in most cases, assured detection of
pest incursion.

Relatively minor modification made to the Mediterranean
climate, removal of mild barriers of cool winter and hot summer,
substantially facilitated population growth. Compared to the
Med case (Figure 2), under the optimal conditions (Figure 8),
during subsequent generations the incipient population reached
higher levels, which became the most evident toward the end of
the 12-months period, which ended up with ca. 2-fold difference
in the number of surviving individuals.

Two years post-invasion, landscape fragmentation, combined
with very small propagule size and mild seasonal barriers of the
“Mediterranean” climate (annual min = 11◦C, max = 27◦C,
average = 20◦C), frequently reduced the incipient populations
below viability level. Barring the most extreme scenario (Urban
Site 4), the chances for surviving the simulated 2 years period
did not differ substantially among the landscapes, and ranged
from 60 to 73%. Although generally, in the “urban” landscapes,

the survival chances were inversely related to the degree of site
fragmentation and host availability. Even when the incipient
cohorts survived the two winters, at the end of the 2nd year
simulation, the numbers of survivors were frequently below
the initial propagule size, with only several individuals left at
various stages (eggs, larvae, pupae, adults), which indicated bleak
prospects for their future (Table 5).

Remarkably, in all landscapes, the incipient cohort usually
survived longer that 1 year. The average duration of extinction-
ended period ranged from 407 to 567 days (Table 5), and usually,
was terminated during the second winter. As to be expected, the
chances for successful pest establishment were the highest on a
“farmland” with solid blocks of host trees (Table 5), where after 2
years, the number of on-site residing insects (all stages) increased
ca. 10 times, confirming pest establishment. Although even there,
it varied, depending whether the initial propagule arrived on a
plot containing host trees fruiting soon after the arrival, or on
a host bearing fruits later in the season. In the latter case, the
establishment chances and the number of insects present on a
farm at the end of the 2 year period were lower, and the instances
of extinction happened earlier.

Precise estimation of pest detection chances was not our
objective; nevertheless, numerous non-detection cases, which
occurred within the first 2-years post-invasion (detectability
ranging from 66 to 93%), reveal that the detection process of
small incipient populations is erratic (Table 5). On average, the
detection happened ca. 4–8months post-invasion, thus generally,
the first few invading generations usually developed undetected.
Interestingly, in the “Urban” sites, the relation between the pest
detection chances and the degree of landscape fragmentation
was not straightforward. In the most fragmented sites (Urban
Site 3 and 4), the pest detection, if occurred, seemed to happen
earlier than in the farmland. Furthermore, in the moderately
fragmented Site 3, the actual chances for pest detection were the
highest (Table 5). The latter indicates that a degree of landscape
fragmentation may lead to concentration of the insects in fewer
spots, which might actually facilitate pest detection. In general,
however, with such low density incipient populations, the actual
detection seems largely stochastic, which finally tends to occur
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FIGURE 5 | Effects of site fragmentation on propagule development at constant temperature 20◦C.

after sufficiently long time. On many occasions, the detection
happened well after the incipient population reached its peak,
often at the time of its decline, when very low numbers (ca. ca.
40–60) of insects were actually present on farm (Table 5). The
results demonstrate, that in urban scenarios, quite frequently (ca
35% of cases) such incipient “cryptic” populations may remain
undetected for prolonged time, at least as long as 2 years.

DISCUSSION

The objective of the presented study was to demonstrate the
potential of individual-based stochastic process emulationmodel,
driven by the parameters derived directly from biology of
the target pest species, and spatiotemporal representation of
the local terrain and climate. The paper represents bottom-up

Frontiers in Physiology | www.frontiersin.org 10 January 2018 | Volume 8 | Article 1121

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lux Incipient Populations in Landscapes of Varying Complexity

FIGURE 6 | Effects of site fragmentation on propagule development at constant temperature 25◦C.

“ethological” approach employed to gain insights into the factors
driving the initial stages of pest invasion or “cryptic” existence
of incipient pest populations. It is focused on behavior of the
primary causative actors of such processes, individual insects-
members of the initial propagules or incipient populations.
The agent-based modeling approach was chosen because it can

adequately reflect the complexity and local specificity of the
process, permit concurrent emulation of numerous component
sub-processes determining pest behavior and development, and
estimate the ultimate process outcomes.

The model, PESTonFARM (Lux, 2014; Lux et al., 2016) was
adapted to broadly reflect behavioral and developmental traits of
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FIGURE 7 | Effects of site fragmentation on propagule development at constant temperature 30◦C.

medfly, and used to emulate behavior and fate of the invasive
propagules in “virtual” environments, varying in the degree
of fragmentation and spatial complexity, host availability, and
climatic conditions. The relevance and precision of the model
depends on selection of component sub-processes, realism of
the assumptions and accuracy of the input data. As may be

expected with complex systems, precise quantification of all
assumptions, relations and parameters is not feasible. On the
other hand, including only rigorously parametrized processes,
although tempting to ensure formal methodological correctness,
also comes at a price (Lux et al., 2016). Discarding plausible, but
only superficially quantified relations de facto means adopting
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FIGURE 8 | Propagule development in optimal conditions (Start, end of March; site, Farm Site; Opt climate, average = 22.9◦C, min = 20◦C, max = 25◦C).

TABLE 5 | Propagule establishment and detection: Single 100 female cohort, emerging from centrally “abandoned fruit”*.

Parameter* Farm site Urban site 1 Urban site 2 Urban site 3 Urban site 4

Medfly survival during 2 years period (any stage) (%) 73.3 66.7 73.3 60.0 6.7

Time, if extinct (day post-invasion) 467.8 ± 86.9 480.0 ± 72.1 567.2 ± 69.4 551.4 ± 88.9 406.7 ± 46.8

Adult survival Adult survival (%) 53.3 66.7 53.3 46.7 0.0

No of survivors 164.0 ± 154.2 7.3 ± 2.6 4.5 ± 3.4 5.8 ± 2.9 0.0

Maximum No during the 2 year period 286.5 ± 160.6 110.9 ± 30.2 144.5 ± 30.4 148.7 ± 31.9 75.3 ± 7.3

Immature survival Eggs 190.4 ± 171.4 4.3 ± 4.2 0.0 4.5 ± 3.4 0.0

Larvae 461.3 ± 426.2 15.3 ± 8.8 6.4 ± 4.1 6.6 ± 3.5 6.0

Pupae 224.0 ± 217.6 5.9 ± 2.3 2.7 ± 1.9 2.0 ± 0.7 3.0

Detection Detection (%) 86.7 80.0 66.6 93.3 73.3

Day 1st detected 236.2 ± 88.8 238.3 ± 96.1 204.9 ± 31.1 130.3 ± 30.9 141.2 ± 44.9

No trapped 1st at detection 1.0 1.0 1.0 1.0 1.0

No of females at 1st detection 165.9 ± 108.5 57.7 ± 26.7 110.6 ± 37.2 82.6 ± 19.8 47.0 ± 11.9

*Averages and ± 95% confidence limits, based on 15 simulations, each lasting 2 years, “Med” climate, annual min = 11◦C, max = 27◦C, average = 20◦C.

“hidden,” and frequently much less realistic default patterns
(zero-order linear relations) for the “discarded” processes.
The difficulty in balancing the trade-offs between conceptual
simplicity and clarity of the model, process complexity vs.
our insight and data availability, model realism, generality and
utility, is already recognized (Evans et al., 2014; Evans and
Moustakas, 2016; Moustakas, 2017). Simple models built on
generic assumptions, sometimes based on superficial analogy
borrowed from other disciplines, such as random “particle like”
insect dispersion, or continuous “area-wide” probability-field of
an insect being caught even in a distant surveillance trap, etc.

may provide sufficient approximation of large pest incursions at
high population densities. For very small propagules or incipient
populations at ultra-low densities, when the process outcome
depends on a complex behavior and stochastically uncertain
fate of a few individual insects operating in a locally complex
environment, such models may still offer generic predictions
which might be statistically relevant for a pool of events made
of hundreds of individual invasion cases, but are likely to be of
little relevance to a particular case or location.

Our model is focused on the causative actors of the early
invasion process, and the complexity of their individual behavior.
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Hence, a pragmatic approach was taken-including into the model
also putative and, in some cases, only tentatively parametrized
processes, and verifying the model in confrontation with
experimental data. The aim was to construct a “frame-model”
for holistic emulation of the pest-landscape system at the insect-
relevant scale, which could be fine-tuned once more precise
information becomes available. Merits of such approach to the
agent-based models were demonstrated in earlier studies (An
et al., 2009; Lux et al., 2016). The same pragmatic approach was
used in modeling climatic conditions. Although it is possible to
use in the model hourly temperatures, the realistic gain in the
precision of generated projections is usually problematic, apart
from largely false “impression of the precision.” This is due to
the fact that hourly temperatures are usually available from more
or less distant weather stations, where the conditions and terrain
are usually different. Even more importantly, in heterogeneous
landscapes containing diverse tree patterns with varied canopies,
the local temperatures in the spots where the individual flies
actually live and operate greatly vary within the whole site, and
also within individual tree canopies. Fruit flies, such as R. cerasi,
are known for their capacity to actively seek suitable spots within
the canopy, which may vary diurnally and depend on fly age (Lux
et al., 2017). Because our aim was to evaluate generic scenarios,
and not to provide precise pest forecasting, using average daily
temperatures as the external forcing factor for the simulation
process was deemed acceptable, which also provided the added
benefit of increased model efficiency.

The results confirm that the model, although still tentative,
generates projections closely mirroring the experimental data
about temperature-dependent medfly development (Ricalde
et al., 2012), age structures of field-established population and
the presence of variable fractions of “old” flies, as documented
by Carey et al. (2008). Also, the on-site dispersion of invasive
propagules and catches by the traps located at various distances
to the invasion spot-was emulated in agreement with the
trends experimentally established by Meats et al. (2003, 2006),
Meats and Smallridge (2007). It has to be recognized, however,
that in spite of the fact that medfly is among the most
intensely studied pests, our understanding of the behavior and
ecology of wild populations living in complex natural conditions
still remains limited and incomplete. Most of our knowledge
is based on the laboratory or, to lesser extent, semi-field
experiments executed in spatially homogenous agro-landscapes,
mostly conducted with lab-reared flies, more often than not,
originating from the colonies kept for many generations in
highly artificial conditions. Although it is known that behavior
of wild, locally established flies may differ compared to the
newly released lab adapted insects, sometimes directions and
magnitudes of such discrepancies may be difficult to estimate
or, occasionally, might even contradict the “common sense”
expectations. For example, the fraction of “old” individuals
in wild populations in Greece was found to be much higher
than previously thought, and although it is generally believed
that the lab-adapted flies will live longer in lab conditions
than the newly collected wild ones, in fact the residual life
expectancy of the wild-trapped flies, when,maintained in optimal
lab conditions, was found to be longer compared to their

lab-adapted counterparts (Carey et al., 2008). Furthermore,
medfly behavior, its diurnal and lifetime patterns strongly depend
on the individual age, maturity and nutritious status (Manrakhan
and Lux, 2006, 2008), or even conditions and scale of the
experimental set-ups used during observations (Manrakhan
and Lux, 2009). Even the seemingly simple phenomenon of
propagule dispersion, is de facto a complex process-a combined
outcome of several sub-processes, independently moderated by
ambient temperature, individual insect age, site spatiotemporal
structures etc. They include, for example varied pace of female
maturation, variation in survival rates, age- and status-dependent
propensities to undertake various activities, lifetime changes
in the patterns of movement, etc. These seemingly unrelated
processes, with inherent stochasticity components, jointly
translate into individually different “intrinsic” lifespans, further
curtailed by varied durations of individual exposures to extrinsic
mortality factors, such as the local activity of natural enemies
and pathogens. Last, but not least, distributions are modulated
also by seasonally changing patterns and traits of the terrain
and patterns of the local IPM practices, presence or absence of
host trees, their spatial arrangement, cultivar composition and
canopy structures, fluctuating phenology status etc. The resulting
dispersion patterns constitute the overall outcome of all these
processes. For these reasons, the models based on the random
dispersion paradigm usually provide acceptable approximations
for larger populations (e.g., several thousand individuals) in
larger and fairly homogeneous environments, but are less
adequate to study the initial ultra-low-sized cohorts (from a few
to few hundred) operating at the local and highly heterogeneous
scales. The presented model emulates the abovementioned sub-
processes at the scales relevant to the usual ranges of medfly
explorative behavior, and generates dispersion and trapping
results which largely remain in line with the experience and
the published experimental findings (Duyck and Quilici, 2002;
Meats et al., 2003, 2006; Manrakhan and Lux, 2006, 2008, 2009;
Meats and Smallridge, 2007; Carey et al., 2008; Ricalde et al.,
2012).

To demonstrate the potential of the model to provide
preliminary insights into general trends in medfly behavior at
the early stages of invasion, fate of a 100-female propagule was
emulated in “virtual,” model generated landscapes, varying in
the degree of their fragmentation and complexity. In each 1
sqkm modeled site, four pest monitoring traps were located,
which broadly approximates the usual trap densities employed
in intense pest surveillance grids, like the ones routinely used in
Australia (Meats, 2014) or California (Manoukis et al., 2014). As
reported byMeats and Smallridge (2007), also in our simulations,
the detection within the lifespan of the first invading generation
occurred very seldomwhen the propagules arrived at the spot not
immediately proximate to the trap. But contrary to the “common
wisdom,” many times, the detection finally happened not at
the time when the incipient population was at its maximum,
but much later (4–9 months post-invasion), sometimes during
the population decline phase, when the actual numbers of
the adult flies present on site were surprisingly low (10–100
individuals/km2). This indicates, that in the case of ultra-small
incipient populations, the detection process is highly random,
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related not only to the incipient population size, but largely also
to the “persistence” of the trapping exercise.

As commonly expected (Mcinnis et al., 2017), the invasion
into a farmland frequently resulted in rapid pest multiplication,
establishment and detection. However, even in such “conducive”
environment, the pace of population growth and timing of its
detection was modified by a “good luck” element-whether the
initial propagule arrived at the spot about to bear fruit soon, or
at a plot containing a host fruiting much later in the season. In
the latter case, the initial need for broad dispersion to reach the
plots with suitable host substantially reduced the invading cohort
and retarded the population growth. Alike, in the climates with
seasonally suboptimal conditions (cool winter or very hot/dry
summers), the timing of the invasion largely determines the
prospects for propagule development and establishment.

In more fragmented landscapes, broadly representing various
sub-urban scenarios, the processes of pest establishment and
detection become progressively more erratic along with the
increase in site fragmentation and complexity. In many cases,
the detection occurred after more than a year post-invasion,
and on several occasions failed during the whole 2 year-long
modeled period, despite continuous pest presence in the area.
The set of “conducive” assumptions adopted in all reported
simulations, in particular the assumed lack of significant Alee
effect, propagule arrival at the pest-suitable time of the year,
continuous host presence and moderate extrinsic in-the-soil
mortality (30%), absence of “ephemeral” random incidences of
bad weather etc., combined together, likely caused a degree
of overestimation of the pest establishment and detection
chances. In view of this, the obtained results, demonstrating the
possibility of occasional “cryptic” existence of the pest, which
can remain undetected by the pest surveillance scheme for
prolonged period of a few years, gain in credibility. Schematic
relations between the degree of site suitability and uncertainty
and likely position and breadth of the “cryptic” pest phase are
presented on Figure 9. Including into the simulations random
mildly “unconducive” conditions mentioned above, in most cases
broaden the “extinction zone,” but will not eliminate the “cryptic”
phase, rather will increase its breadth and shift the “cryptic”
zone down the “site suitability and uncertainty” continuum,
presented on Figure 9. Between the two broadly recognized and
largely predictable scenarios of a localized pest invasion (Mcinnis
et al., 2017): rapid establishment and detection or propagule
extinction (in optimal or adverse conditions, respectively), there
is a “continuum of uncertainty” of variable extent, with cryptic
pest presence and its erratic detection, conveniently ignored
by simplistic approaches. Currently, paucity of experimental
data and lack of experimental methods hamper quantitative
exploration of this “uncertainty zone.” The presented approach
and model, once improved, could permit to tackle this
phenomenon.

Such a result is not unusual. In conservation biology, the
possibility of long cryptic existence of the species considered
extinct since many years and surviving undetected in small
numbers—is widely recognized and well documented. On
many occasions, their continuous existence in the area became
revealed only by sudden “re-discovery” or resurgence caused by

environmental change. Examples are abundant, and include even
seemingly difficult to overlook large mammals, such as Bridled
Nailtail Wallaby, “re-discovered” near Dingo, Queensland,
Australia, after being thought extinct from 1937 to 1973 year
(Australia Wildlife Conservancy)1, or Gilbert’s potoroo, last
sighted 1869 and, after a thorough search conducted in the
1970s, thought to be extinct, until its rediscovery in 1994 in well
researched Two Peoples Bay Nature Reserve in Australia (New
Scientist, 1994)2. Similarly, resurgence of several indigenous fish
species was observed after invasion of water hyacinth at Lake
Victoria in Africa (personal observation) or after overfishing the
earlier introduced alien top predator, the Nile perch (Balirwa
et al., 2003; Chapman et al., 2003).

Also in fruit flies, in the areas with well-established and
broadly spread medfly populations (e.g., in Greece), seasonal
interruptions in our capacity to monitor or detect the pest
presence, either by fruit sampling or trapping, are well known
from the experience and are documented in the literature
(Papadopoulos et al., 2001). In fact, such situations are fairly
typical for the areas with regular periods of suboptimal
climatic conditions, hampering insect development, reproductive
and explorative activities, and temporarily reducing their
responsiveness to attractants. During such seasons, the pest
population is also periodically decimated to very low or residual
levels, which, upon the onset of more favorable conditions,
especially in farmland landscapes with sufficient continuity
of host presence, rapidly builds up again and reaches easily
detectable levels.

Very small invasive propagules, founding highly localized
incipient populations, present more complex case. Their
precarious existence is threatened by even broader range of
adverse factors, which can push them into the peril of extinction
(non-establishment) or maintain for some time at low levels.
The possibility for substantial delays in detecting such point-
source invasions even in favorable conditions, extending beyond
generation time, was already reported (Meats et al., 2003;
Mcinnis et al., 2017). Favorable incidents, such as transient
suppression of the local natural enemies, local alteration of
soil cover temporarily reducing mortality of the flies emerging
from soil, or random availability of “un-harvested” suitable
fruit source, permit such incipient populations, lingering at
the verge of extinction, to expand and reach detectable and
economically concerning levels. On the other hand, seasonally
occurring mild suboptimal conditions combined with landscape
fragmentation periodically restrict the cohort size, and extend
the cryptic (undetected) period of pest presence. The latter
could be extended much further, if the already small local
cohort becomes randomly attenuated by occasional spells of
unfavorable weather, even short breaks in the local annual “fruit-
chain,” more accurate local harvests or IPM treatments etc. Such
randomly occurring events, which nevertheless might constitute
typical feature of some locations, will repeatedly inhibit the

1http://www.australianwildlife.org/wildlife/bridled-nailtail-wallaby.aspx Accessed

March 14, 2017
2https://www.newscientist.com/article/mg14419562-300-potoroos-return/

Accessed March 14, 2017
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FIGURE 9 | Occurrence of medfly “cryptic” phase under periodically suboptimal conditions of varying uncertainty.

population growths or reduce it back close to the starting
levels, maintaining the “fluctuating equilibrium” state of the
incipient cohort, thus substantially extending the duration of its
“cryptic” phase.

In addition to the fundamental and scientific merits of
exploring this elusive biological phenomenon, in the case of
medfly, the question of realistically plausible durations of the
“cryptic” existence of undetected incipient populations has
immense socioeconomic and regulatory ramifications, leading to
controversy in estimations of its extent. It is generally accepted
that under favorable host and climatic conditions the invading
flies will either not survive or will reproduce rapidly, and
thus are likely to be detected within the first few generations
(Mcinnis et al., 2017; Shelly et al., 2017), which was also
demonstrated by our simulations. However, the possibility that
such populations could remain undetected for more extended
periods (years) is widely questioned (Mcinnis et al., 2017; Shelly
et al., 2017). Consequently, recurrent pest detections in the areas
deemed pest-free are then attributed to random new invasion
incidents, further justified by analysis of trade, commodity and
human movements (Szyniszewska, 2013). On the other hand, the
documented pest detections in largely the same (or similar) and,
frequently, sub-urban environments, recorded at stochastically
similar intervals ranging several years, provide grounds for
the opinion about the possibility of longer durations of the
“cryptic” pest phase (Carey, 1996; Papadopoulos et al., 2013;
Carey et al., 2017), stretching beyond the already accepted
periods of a few generations (Mcinnis et al., 2017). Because
of the inherent experimental “intractability” of the incipient
populations existing at the ultra-low densities, both the opinions
postulating the occurrence of several-year-long cryptic phase, as
well as the views negating such possibility-are largely based on
indirect evidence.

In this context, it has to be emphasized that the presented
results do not allege to represent any “real” situation in any
particular country/location, or discuss regulatory implications of
the biological phenomenon of variable durations of the “cryptic”
pest phase. The results illustrate hypothetical scenarios and
“general” relations between the fate of invasive pest propagule,
landscape topography and climate, and demonstrate the capacity
of the proposed approach to comprehensively emulate the
relevant processes and quantify their outcomes. The presented
stochastic individual-based model, based on strictly “insect-
focused” approach, has the capacity to offer plausible projections,
solely based on experimentally documented knowledge about
individual pest behavior and the relevant traits of the local
environment. The presented results demonstrate, that such
approach offers new, pest-biology-based insights into the details
of this elusive process.

To progress beyond this “potential-demonstration” stage,
several information gaps about medfly ecology shall be filled,
in order to substitute some of the experience-based estimates
used in the model with more accurate experiment-based data. As
demonstrated earlier in the case of the European cherry fruit fly,
R. cerasi, the model, when parametrised to reflect “real” local site
topographies, IPM conditions and climates, and tuned to emulate
specific behavioral traits of the locally-acclimated on-site residing
insects, can generate fairly realistic and accurate assessments
of diverse site-specific scenarios and provide guidance for the
local IPM improvement (Lux et al., 2016). Thus, potentially, the
model could serve to identify important gaps in our knowledge
about the ecology and behavior of incipient fruit fly populations,
estimate impacts of various environmental traits and topography
arrangements, and possibly, exploit the local spatiotemporal
landscape heterogeneity for enhancement of the local pest
surveillance schemes.
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CONCLUSIONS

1. The model reliably simulates propagule behavior and
development, its fate and detection in landscapes of varying
spatiotemporal complexity, host availability and climates.

2. The results support the common view that, under optimal
conditions (farmland with continuous fruit availability and
suitable climate), even a single propagule of medium size (100
females) usually results in pest establishment and detection
within the first year post-invasion.

3. The results demonstrate, however, that under specific sub-
optimal conditions determined by the local climate and
landscape topography (e.g., sub-urban), the incipient phase
may occasionally continue for generations and stretch beyond
2-years post-invasion, being undetected by typical pest
surveillance grids.
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