
June 2018 | Volume 9 | Article 13151

Mini Review
published: 11 June 2018

doi: 10.3389/fimmu.2018.01315

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Steven Foung,  

Stanford University,  
United States

Reviewed by: 
Joseph Marcotrigiano,  

National Institute of Allergy and 
Infectious Diseases (NIAID),  

United States  
Brian G. Pierce,  

University of Maryland,  
College Park, United States

*Correspondence:
Mansun Law  

mlaw@scripps.edu

Specialty section: 
This article was submitted to 

Vaccines and Molecular 
Therapeutics,  

a section of the journal  
Frontiers in Immunology

Received: 30 March 2018
Accepted: 28 May 2018

Published: 11 June 2018

Citation: 
Tzarum N, Wilson IA and Law M 
(2018) The Neutralizing Face of 

Hepatitis C Virus E2 Envelope 
Glycoprotein.  

Front. Immunol. 9:1315.  
doi: 10.3389/fimmu.2018.01315

The neutralizing Face of Hepatitis  
C virus e2 envelope Glycoprotein
Netanel Tzarum 1, Ian A. Wilson 1,2 and Mansun Law 3*

1 Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 
 United States, 2 Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, United States, 
3 Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States

The high genetic variability of hepatitis C virus, together with the high level of glyco-
sylation on the viral envelope proteins shielding potential neutralizing epitopes, pose a 
difficult challenge for vaccine development. An effective hepatitis C virus (HCV) vaccine 
must target conserved epitopes and the HCV E2 glycoprotein is the main target for such 
neutralizing antibodies (NAbs). Recent structural investigations highlight the presence 
of a highly conserved and accessible surface on E2 that is devoid of N-linked glycans 
and known as the E2 neutralizing face. This face is defined as a hydrophobic surface 
comprising the front layer (FL) and the CD81 binding loop (CD81bl) that overlap with the 
CD81 receptor binding site on E2. The neutralizing face consists of highly conserved res-
idues for recognition by cross-NAbs, yet it appears to be high conformationally flexible, 
thereby presenting a moving target for NAbs. Three main overlapping neutralizing sites 
have been identified in the neutralizing face: antigenic site 412 (AS412), antigenic site 434 
(AS434), and antigenic region 3 (AR3). Here, we review the structural analyses of these 
neutralizing sites, either as recombinant E2 or epitope-derived linear peptides in complex 
with bNAbs, to understand the functional and preferred conformations for neutralization, 
and for viral escape. Collectively, these studies provide a foundation and molecular 
templates to facilitate structure-based approaches for HCV vaccine development.

Keywords: hepatitis C virus, neutralizing antibodies, crystal structure, neutralizing face, vaccine design

Hepatitis C is a worldwide epidemic that can cause liver failure and hepatocellular carcinoma. 
Hepatitis C virus (HCV) infects 1–2% of the world population with estimated 1.5–2 million new 
infections each year (1–4). Direct-acting antivirals have now been developed to treat patients with 
persistent HCV infection, yet the reports of increasing number of new HCV infections highlight the 
urgency in developing an effective HCV vaccine for global control of HCV infection (5).

Hepatitis C virus is an enveloped, positive-strand, RNA virus classified within the Hepacivirus 
genus, one of the four genera of the Flaviviridae virus family. The HCV particles consist of a nucle-
ocapsid containing the viral genome surrounded by an endoplasmic reticulum-derived membrane 
crowned by the E1–E2 envelope proteins (6). It was suggested that the HCV particle is a hybrid 
lipoviral particle (7) that incorporates a thick shell of host-derived apolipoproteins coating the viral 
surface (8) and may reduce virus sensitivity to neutralizing antibodies (NAbs) (9, 10). This unique 
coating of the HCV virion is structurally distinct from other members of the Flaviviridae family. The 
E1 and E2 are type I transmembrane glycoproteins with C-terminal transmembrane domains that 
form a heterodimer on the viral envelope to enable viral entry into the host cells (11). Of note, it has 
been shown in mammalian cell expression systems that E1 and E2 form noncovalent heterodimers 
(12, 13), whereas in the cell culture HCV system, the virion-associated E1–E2 complex can be linked 
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covalently by disulfide bonds (14). It is unclear that which form 
represents the functional E1E2 heterodimer, or whether they 
could represent different maturation stages of E1E2.

Hepatitis C virus entry is a complex and multistep process 
that involves interactions of the viral particles with cell surface 
glycosaminoglycans and many host factors, with the tetraspanin 
CD81, scavenger receptor class B member 1 (SR-B1), claudin-1, 
and occludin considered to be the essential set of entry factors 
(15–18). E2 may serve as the receptor binding protein of HCV 
and directly interacts with the CD81 and the SR-B1 [for review 
see Feneant et al. (19)]. In contrast, the role of E1 is poorly under-
stood and appears to help modulate the E2-receptor interactions 
and fusion with the host cell membrane (20–22).

E2 is the main target of NAbs and it has been suggested that the 
major mechanism for HCV neutralization is blockage of interac-
tion between E2 and its receptor CD81 (23). Several broadly NAbs 
(bNAbs) have been isolated from infected patients or immunized 
animals. The majority of these bNAbs target three overlapping/
adjacent neutralizing sites (as defined by antibody competition) 
and block E2 binding to the CD81 receptor [for review see Ref. 
(23, 24)]. These epitopes include antigenic site 412–423 (AS412, 
antigenic domain E, or epitope I), antigenic site 434–446 [AS434, 
part of E2 front layer (FL), antigenic domain D, or epitope II], 
and antigenic region 3 (AR3). When the first E2 structure was 
determined, these neutralizing sites were found to cluster on an 
exposed surface devoid of glycans on E2, known as the neutral-
izing face (25). Here, we summarize recent knowledge on the E2 
neutralizing face, based on structures of the E2 core domain and 
peptide–bNAb complexes corresponding to different E2 epitopes.

STRUCTURAL STUDieS OF e2 enveLOPe 
GLYCOPROTein

Structural studies of the HCV envelope glycoproteins are essen-
tial for a better understanding of the viral entry mechanism as 
well as for vaccine and drug design. Yet, since overexpression of 
the HCV envelope glycoproteins often results in misfolded or 
aggregated proteins, structural studies have been technically chal-
lenging. To date, there are no available high-resolution struc tures of 
the E1E2 heterodimer, the entire E1, or the entire E2. Moreover, 
since the E2 transmembrane region is required for folding of E1 
(13), only the ectodomain of the E2 can be expressed as a folded 
and soluble protein (26–28) and, therefore, is more amenable for 
structural studies.

e2 CORe DOMAin STRUCTUReS

The E2 glycoprotein (amino acid 384–746 in the H77 proto-
typic strain) is heavily modified post translationally by up to 
11 N-linked glycans (29) and 9 strictly conserved disulfide bonds. 
E2 possesses three variable regions (VRs), hypervariable region 
1 (HVR1), and VRs 2 and 3 (VR2 and VR3, Figure  1A), that 
comprise ~25% of the E2 sequence and contribute to the high 
genetic diversity of HCV. The VRs and N-linked glycans increase 
the inherent heterogeneity of E2, which in turn influence the 
accessibility of antibody epitopes. The E2 ectodomain is a highly 

stable protein with a melting temperature (Tm) of ~85°C (30). 
Yet, two independent hydrogen–deuterium exchange (HDX) 
mass spectrometry experiments indicate high flexibility of the 
E2 protein, mostly in the VRs, the FL, and CD81 binding loop 
(CD81bl) (30, 31) that further hinder structural studies of E2.

To determine the structure of E2, the E2 ectodomain was engi-
neered by removal of the E2 flexible regions in two independent 
studies (25, 31). In both cases, a bound mAb facilitated crystal-
lization of E2 (Figures 1B,D). The first structure of the prototypic 
strain H77 isolate (genotype 1a) in complex with bNAb AR3C (see 
below), consists of E2 residues 412–645 with an internal trunca-
tion of VR2 and removal of the N448 and N576 glycosylation sites 
(E2c) (25). The second structure, of the J6 isolate (genotype 2a) 
in complex with non-neutralizing mAb 2A12 that binds to the 
back layer (BL), consists of E2 residues 456–656 (456–652 based 
on H77 isolate numbering) (31). Overall, both structures share a 
similar fold but with significant conformational variation around 
the VR3 region (564–612) and some differences in their disulfide 
bonds (32). The E2 core domain adopts a globular structure with 
a new protein fold consisting of a central immunoglobulin (Ig) 
β-sandwich fold that is stabilized by conserved disulfide bonds 
and flanked by a FL and a BL (N- and C-terminally). FL is 
mostly a β-strand with a short helix that packs against the central 
β-sandwich and BL consisting of antiparallel β-sheets and short 
helices (Figures  1A,B). Both E2 structures indicate that more 
than 60% of the residues are disordered or in loops, despite the Ig 
β-sandwich scaffold being highly stabilized by disulfide bonds that 
can accommodate conformational flexibility of VRs and FL (30).

THe e2 neUTRALiZinG FACe

Based on the H77 E2c structure and epitope mapping experi-
ments, four structural surface regions, or faces, are defined: gly-
can face, occluded face, non-neutralizing face, and neutralizing 
face (25). Of note, FL and CD81bl are not modeled in the J6 E2 
structure (31). The neutralizing face is a predominantly hydro-
phobic surface that overlaps most of FL (421–459) and CD81bl 
(519–535, Figures 1A,B) (25) and consists of highly conserved 
residues. The neutralizing face is accessible on the viral surface 
and is immunogenic both in infection and in immunization 
(23, 33). Negative-stain electron microscopy (EM) of the E2 ecto-
domain in complex with bNAb AR3C suggested that, although 
surrounded by N-glycosylation sites, the neutralization face is not 
obstructed by glycans (excluding the AS412 region, see below) 
or VRs. Moreover, the neutralization face can be recognized by 
NAbs with different angles of approach to E2 (30). Intriguingly, 
it was recently suggested that non-neutralizing mAbs that target 
HVR1 (34) could shield the neutralizing face and protect HCV 
from binding of NAbs.

e2 AnTiGeniC ReGiOn 3

The AR3 is a cluster of discontinuous epitopes formed by E2 FL 
and CD81bl (Figure 1A) that was originally defined by a panel 
of human antibodies isolated from a chronically infected HCV 
patient (35, 36). The AR3 is a target for bNAbs AR3A, AR3B, 
AR3C, and AR3D that exhibit cross-genotype neutralization 
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FiGURe 1 | The neutralizing face of the hepatitis C virus E2 glycoprotein. (A) Schematic representations of E2 regions (a.a. 384–746, based on the prototypic 
isolate H77 numbering system) colored by structural components with variable regions in gray, AS412 region in pink, front layer (FL) in cyan, β-sandwich in red, 
CD81 binding loop (CD81bl) in blue, back layer (BL) in green, and the stalk and transmembrane region (TM) in white. The a.a. sequence of the neutralization face 
(a.a. 412–446 and 525–535) and the epitope of mAb DAO5 is shown below. The AS412, antigenic region 3, and AS434 neutralization epitopes are marked in pink, 
dashed rectangle, and wheat. The epitope of the non-neutralizing mAb DAO5 is marked in green. The N-linked glycosylation sites surrounding the neutralizing face 
(N417, N423, N430, N532, and N540) are underlined. (B) Surface representation of the E2c structure (25) (PDB entry 4MWF) with the structural components 
colored as in (A). The neutralizing face is marked by a red dashed line. (C) The E2 neutralizing epitopes on the E2c structure. For the AS412 epitopes, a.a. 412–420 
are modeled onto E2c based on the AP33 bNAb-AS412 crystal structure (PDB entry 4G6A). The conformational flexibility of AS412 related to the E2 (30) is 
schematically shown. The three known AS412 conformations (β-hairpin, semi-open, and open) for neutralization are shown on the right. (D) Summary of the E2 
crystal structures. The two E2 core domain-mAb structures are marked by stars.
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by blocking E1E2 binding to CD81. The AR3 mAbs have been 
demonstrated to protect against HCV in passive antibody trans-
fer experiments in both the human hepatocyte-chimeric mouse 
model and the genetically humanized mouse model (35, 36).  

The AR3 mAbs share a similar genetic background with their 
heavy chain (HC) encoded by the germline gene family VH1–69 
(36), which is known to be germline gene precursors for the 
generation of bNAbs against HCV (37–39), influenza (40–43), 
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and HIV (44). This group of mAbs interacts with conserved 
hydrophobic residues in their antigens via hydrophobic residues 
at the tip of their complementarity-determining region 2 loops. 
Recently, two independent studies reported the isolation of 
bNAbs, from patients spontaneously cleared HCV, also target 
AR3 and are encoded by VH1–69 genes (45, 46).

Alanine scanning mutagenesis experiments together with 
the structural analysis of H77 E2c–AR3C complex mapped the 
AR3 epitopes to the E2 FL (426–443) and the tip of the CD81bl 
(529–531) (25, 35, 47), overlapping with the majority of E2 
neutralizing face (Figures 1B,C). AR3 comprises mostly highly 
conserved residues across the HCV genotypes (25) although vari-
ability has been observed in several binding residues (e.g., E431, 
L433, and F442).

The structure of the E2c in complex with the AR3C bNAb 
indicates a well-defined secondary structure of AR3, where E2 FL 
consists of β-strands and an α-helix (436–443) that packs against 
the β-sandwich region and BL. However, this defined conforma-
tion is probably induced or stabilized by binding of the AR3C 
mAb. When unbounded, AR3 on recombinant E2 is highly flex-
ible as shown by HDX mass spectrometry and molecular dynam-
ics simulations (30). Such flexibility may explain the poor quality 
of NAb responses to the E2 neutralizing face in immunization 
studies using recombinant E2.

e2 AnTiGeniC SiTe 412–423 (AS412)

AS412 is a highly conserved linear antigenic site that overlaps 
with the N-terminal region of E2 neutralizing face and contains 
residues that are critical to CD81 binding [e.g., W420 (48)]. AS412 
(412–423) is located between the C-terminus of HVR1 and the 
N-terminus of FL and contains the first two N-glycosylation 
sites (N417 and N423) of E2 (Figure  1A). AS412 is the target 
for some of the most characterized cross-genotype NAbs, isolated 
from both infected donors and E2-immunized animals (49–56) 
(Figure  1D). Moreover, bNAbs against AS412 show passive 
protection in animal models (chimpanzee and humanized mice) 
inoculated with HCV (57, 58) as well as delaying HCV recur-
rence post-transplant in clinical trials [for HCV1 bNAb (59, 60)]. 
However, natural elicitation of such bNAbs in infection is rare 
and is detected only in 2–15% of the patients (54, 61, 62). In ani-
mal immunization experiments, only low levels of NAbs against 
AS412 have been elicited (23, 63).

Although AS412 is present in the H77 E2c construct, only its 
C-terminus (421–423, Figures  1A,C) could be modeled in the 
E2c–AR3C complex structure, suggesting high flexibility of this 
region. The flexibility or conformational heterogenity of AS412 
relative to E2 was validated by a recent EM study on the H77 
E2c-HCV1 bNAbs complex, which revealed a 10–22° variation 
in the angle that the HCV1 Fab fragment approaches E2 (30) 
(Figure  1C, left). A second level of flexibility, likely reflecting 
the intrinsic conformational variability of the region, was 
obser ved in crystal structures of linear peptides corresponding 
to AS412 in complex with different NAbs. Three main conforma-
tions have been reported for AS412 in these antibody complexes 
(Figure 1C, right). The most common and the first to be deter-
mined is the β-hairpin conformation, as observed with HCV1, 

AP33, MRCT10.v362, hu5B3.v3 bNAbs, and MAb24 (55, 64–67) 
(Figures  1C,D). An extended or “open” conformation was 
observed in the complex with rat mAb 3/11 (68) and a semi-
open conformation in complexes with mAbs HC33.1, HC33.4, 
and HC33.8 (Figures 1C,D) (34, 69). Despite these differences 
in the AS412 conformations, alanine scanning mutagenesis and 
structural analysis indicate that L413, G418, and W420 are criti-
cal for binding of AS412 bNAbs [beside 3/11, see below (70)].

The β-Hairpin Conformation
The first conformation of AS412 to be determined and the most 
common is the β-hairpin conformation, stabilized by a number 
of internal backbone hydrogen bonds, with a β-turn at residues 
416–419. In complexes of HCV1, AP33, MRCT10.v362, hu5B3.
v3 bNAbs, and MAb24, the β-hairpin conformation is highly 
similar with slight changes in the β-turn type [type IV hairpin 
turn in the hu5B3.v3 complex, while type I for all of the others 
(55, 64–67)]. The hydrophobic face of the hairpin is recognized 
by a binding pocket composed of the antibody heavy and light 
chains, whereas the N417 and N423 glycosylation sites project 
from the opposite side of the peptide and are solvent exposed 
(65), indicating that AS412 is likely not closely packed against E2. 
Superposition of the AS412 C-terminus (421–423) of AP33 and 
HCV1 on the E2c structure results in steric clashes between the FL 
and the epitope-bound mAb, supporting the notion that AS412 
is flexible on E2. Escape of HCV from neutralization by bNAbs 
targeting AS412 has been reported in several studies (55, 57, 59, 
67, 71, 72), including the N415D/K and N417S/T mutations. The 
N417S/T mutations can result in a glycosylation shift from N417 
to N415. Structural analysis of these AS412 complexes provides 
an explanation for the viral escape mechanism. The side chain 
of N415 is buried in the antibody binding pocket and, therefore, 
mutation of N415 or the glycosylation shift to N415-glycan would 
create steric clashes in the antibody binding pocket and interfere 
with antibody binding.

The Semi-Open Conformation
The semi-open conformation was observed in the complex struc-
tures with human bNAbs HC33.1, HC33.4, and HC33.8 (34, 69). 
In this conformation, beside residues 414 and 415 that form an 
antiparallel β-sheet with the long HC CDR3, the antigen adopts 
an extended conformation that is stabilized by one internal 
backbone hydrogen bond (69). Residues 416–419 adopt a β-turn 
conformation as in the original β-hairpin structures (69). The 
neutralization potency of the HC33 bNAbs is not impaired by the 
N417S/T mutation and the glycosylation shift to N415 because 
the side chain of N415 (as well as N417 and N423) is solvent 
exposed in the antibody–peptide complex structure (54, 69, 73). 
Modeling of N-linked glycans on N415 indicates potential 
interactions with the HC33 HC (69) that may explain the higher 
neutralization potency of HC33.1 against glycan-shifted virus 
(73). These properties indicate that the semi-open conformation 
would be a useful template for structure-based vaccine design.

The Open Conformation
The extended open conformation of the AS412 was observed in 
its crystal structure with rat NAb 3/11 (68). This conformation 
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is stabilized by internal backbone hydrogen bonds, similarly to 
the β-hairpin conformation, but through creation of a different 
interaction network. The side chains of N415, W420, and H421 are 
critical for the binding of 3/11 (68, 70). AS412 is immersed in a deep 
cavity formed by both the HC and LC of 3/11 with only the side 
chains of N417 and S419 exposed to solvent, providing a structural 
explanation for viral escape by point mutations N415Y and G418D 
and the glycosylation shift mutation N417S (68, 71, 72).

Cyclic AS412
So far two groups have reported structure-based design of AS412 
as cyclic immunogens (cycAS412) (74, 75) (Figure 1D). In the 
first study, cycAS412 did not elicit NAbs in immunized mice (74). 
Structural studies of one of these mAbs, C2, in complex with 
cycAS412, revealed that cycAS412 retains a β-hairpin conforma-
tion but binding to the C2 mAb is mediated by the opposite face of 
the epitope. Consequently, the structure suggests that cycAS412 
failed to mimic the AS412 conformation required for binding 
of bNAbs leading to the lack of neutralization capability. In the 
second study, another cyclic AS412 peptide, C1, was studied 
(75). Mice immunized with this cyclic peptide conjugated to a 
protein carrier produced better binding and NAb responses than 
the equivalent linear peptide, albeit neutralization was restricted 
to the virus from which the peptide was derived. In the same 
study, AS412 was also grafted onto a hairpin at E2c BL region. The 
addition of a second copy of AS412 to E2c was not detrimental 
to the engineered protein (T2) and the antibody response elicited 
appeared to be similar to the standard, soluble, C-terminally 
truncated, E2 ectodomain (384–661). It is yet to be determined 
why the antibody response was still restricted to the autologous 
virus despite NAbs to AS412 being elicited.

e2 AnTiGeniC SiTe 434–446 (AS434)

AS434 is a short hydrophobic 1.5 turn α-helix (helix α-1, 437–442) 
encircled by a N- and C-terminal extended regions spanning 
FL residues 434–446. Several NAbs that target AS434 have been 
isolated from chronically infected HCV donors (39) and from 
immunized mice (76) (Figure 1). Beside NAbs, AS434 can also 
elicit non-neutralizing mAbs that were proposed to interfere with 
NAbs that target AS412 (39, 76, 77). AS434 is highly conserved 
among HCV genotypes (excluding residues 434 and 444) and 
escape mutants have not been observed in vitro (39), indicating 
that it is a good target for structure-based vaccine design.

AS434 has been structurally defined by six crystal structures 
of mAbs in complex with the corresponding linear peptides. 
Four of them are human bNAbs (HC84.1, HC84.27, HC84.26, 
and HC84.26AM) (78, 79) and the other two are the weakly and 
non-neutralizing murine mAbs (12 and 8) (80, 81) (Figure 1D). 
Although some variations are found in the conformation of the 
N- and C-terminal regions, residues 437–442 of the different 
peptides adopt an α-helical conformation that is similar to that 
observed in E2c FL (25). Notwithstanding, the biological activi-
ties of the mAbs vary greatly because of the way they approach 
their epitopes. When superposed on the E2c crystal structure, the 
human bNAbs bind to AS434 using an angle of approach that is 
similar to bNAb AR3C with only minor structural clashes with 

the E2 protein. In contrast, superposition of the murine mAbs 
onto the E2c structure results in structural clashes with the cen-
tral β-sandwich scaffold. These clashes suggest that the murine 
mAbs bind an opposite face of the epitope (almost 180° rotation 
of the helix) and, therefore, would require some conformational 
rearrangement of AS434 upon antibody binding. The transition 
between the two modes of binding is possibly supported by the 
high flexibility of E2 FL as indicated by HDX experiments (30).

In the structures of the HC84 human bNAbs, the C-terminal 
but not the N-terminal loop of the AS434 was modeled. Yet, the 
interactions are dominated by hydrophobic interactions between 
the side chains of the α-helical residues L441 and F442 and the 
antibody CDRH2 hydrophobic tip (39, 78). Similar to the AR3 
bNAbs, the HCs of HC84 bNAbs also originate from the VH1-69 
family genes. In contrast, in the murine mAb 8 structure, only the 
N-terminal loop was modeled with a different mode of binding to 
AS434: hydrophilic interaction with the side chains of E431 and 
N434 and hydrophobic interaction with the side chains of W437 
and L438 that are essential for antibody binding. This different 
mode of binding requires conformational rearrangement of 
AS434 on E2 to expose the side chains of W437 and L438 buried 
in the E2c structure.

With the goal of using bNAbs for HCV immunotherapy, a  
recent study (79) applied yeast display to affinity mature the 
human HC84.26 bNAb. The affinity-matured mAb, HC84.26AM, 
showed improved affinity and neutralization against diverse HCV 
isolates and the capability to protect humanized mice against 
challenge with infectious human serum. Structural study of 
HC84.26AM in complex with the AS434 peptide showed that the 
conformation of the epitope is similar to that with the wild-type 
mAb, where mutations in the light chain improved the biological 
activity of the antibody.

THe CD81 BinDinG LOOP

CD81bl, spanning residues 519–535, connects β-strands 5 and 6 
of the E2 β-sandwich scaffold and contains critical residues for 
CD81 receptor binding, including Y527, W529, G530, and D535 
(48). Although fully modeled as a loop in the H77 E2c structure, 
the CD81bl is highly flexible when unbound as indicated from 
HDX experiments (30) and disordered in the J6 E2 core structure 
(31). Intriguingly, the alanine scanning mutagenesis indicates 
that many residues, despite being distal from the CD81 binding 
surface, can severely suppress E2 binding to CD81 when mutated 
(47, 48). These results suggest that the overall conformation 
of CD81bl is important in positioning W529, G530, and A531 
toward E2 FL so as to form the receptor binding site and neutral-
izing face of E2.

The mAb DAO5 is a non-neutralizing mAb that can compete 
with CD81 binding to soluble E2 (82), and targets the C-terminus 
of CD81bl and β-strand 6 of the β-sandwich scaffold region 
(residues 529–540). Crystal structures of mAb DAO5 in complex 
with peptides derived from the J4 and JFHI isolates (82) indicate 
that the peptide adopts a one-turn α-helical conformation with 
the side chains of F537 and L539 buried in the antibody binding 
interface. In the E2c–AR3C structure, this region adopts a β-strand 
conformation with F537 and L539 side chains pointing toward 
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the core of the β-sandwich. Since DAO5 is non-neutralizing, it is 
possible that it recognizes misfolded E2 presented in the antigens 
used in immunization.

COnCLUSiOn

The mechanisms used by HCV, as well as by HIV and influenza 
virus, to evade the humoral immunity include high genetic vari-
ability, glycan shielding of immune epitopes, and conformational 
flexibility near the neutralizing sites on the viral envelope pro-
teins (83). An effective vaccine for HCV must address these chal-
lenges, inter alia, by targeting conserved neutralizing epitopes 
to improve the immune response. Despite the challenges in 
structural studies of HCV envelope glycoproteins, the recent 
E2 structures (E2c and linear epitopes) have contributed to the 
identification of the E2 neutralizing face. Structural characteri-
zation of HCV antigen–antibody complexes has improved our 

understanding of how the immune system recognizes HCV to  
achieve broad neutralization. These studies provided the field 
with useful molecular templates to enable structure-based design 
of candidate vaccine antigens.
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