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An Outbreak of Polygenic Scores for
Coronary Artery Disease*

Jerome I. Rotter, MD,a,b,c Henry J. Lin, MDa,b
R eaders may have noticed a proliferation of ar-
ticles on polygenic scores and risks for
various medical conditions. More than likely,

the deadly COVID-19 pandemic—for which a diagnosis
and DNA can be had with 1 swab—will soon yield poly-
genic scores for susceptibility to the infection and its
sequelae. Polygenic scores for coronary artery disease
(CAD) have also attracted wide interest.
SEE PAGE 2769
CAD can occur as a single-gene disorder or as a
polygenic condition. In this issue of the Journal,
Aragam et al. (1) show that polygenic scores based on
>6 million common single nucleotide polymorphisms
(SNPs) throughout the genome “robustly prognosti-
cate coronary artery disease risk in the general pop-
ulation” and may be useful for prevention of CAD.

The study had >47,000 participants in 3 health
care systems. Clinical data and lipid levels were from
electronic health records. Disease definitions were
based on billing codes and/or medication pre-
scriptions. Pooled cohort equations were used to
assign patients to clinical risk categories for man-
agement of cholesterol.
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There were 16,002 people in the study who did not
have atherosclerotic cardiovascular disease (CAD,
peripheral artery disease, or cerebral atherosclerosis),
diabetes mellitus, or severe hypercholesterolemia.
And 5,890 of them had borderline or intermediate
CAD risks (by pooled cohort equations). Of these
borderline or intermediate risk individuals, 987 had
CAD polygenic scores in the top 20% of the scores,
and 652 did not have prescriptions for statins (or 652
of 16,002 ¼ 4.1% of the primary prevention group).
Thus, an additional 4.1% of the primary prevention
population could be recommended for statin use, if
polygenic scores were part of treatment guidelines.
This is not an insignificant addition to the target
population for prevention of CAD.

POLYGENIC INHERITANCE

The science of polygenic inheritance is more than 100
years old (2). Wigan (3) gave the following explana-
tion of polygenic inheritance (4,5):

Briefly stated, the ‘quantitative’ characters, on
which evolution and adaptation chiefly depend,
are assumed to be under the control of numerous
polygenes, with individual effects small in com-
parison with those caused by the environment. In
the simplest case, each polygene is represented by
two allelomorphs [variants], one of which has an
effect in the ‘plus’ direction, tending to increase
the expression of the character involved, and the
other in the ‘minus,’ or opposite, direction. Plus
and minus effects of different polygenes are typi-
cally balanced in an organism. That is, the poly-
genes are present in such combinations that the
phenotype conforms relatively closely to the opti-
mum for the environment. But this does not mean
that the genotype is necessarily homozygous, since
balance is expressed in the zygote by the action of
the whole genotype. Therefore, in an individual
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FIGURE 1 Illustration of False Positive and CAD Detection Rates for CAD Polygenic Scores
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Shown are distributions of polygenic scores for people with coronary artery disease (CAD) (solid line) and controls (dashed line). The vertical

line indicates a possible polygenic score cutoff for predictive testing (at scores giving a false positive rate of 5%, in this drawing). The false

positive rate is the proportion of control individuals with positive scores ¼ dark gray/[dark gray D light gray D blue]. The detection rate is

the proportion of patients with CAD with positive scores ¼ [orange D dark gray]/[orange D dark gray D yellow D light gray]. The CAD

detection rate is low at the cutoff used. The false positive rate will be higher for scores with higher detection rates. The figure was adapted

from Supplemental Figure 1 (all ancestries; normalized score; Partners Healthcare Biobank) in Aragam et al. (1).
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heterozygous for the polygenes, recombination
may give rise to new combinations of polygenes,
which, on coming together in a new zygote, will
give a phenotype departing more widely from the
optimum and hence not as well balanced to the
prevailing conditions.

In early statistical models, the number of poly-
genes for a trait could be as few as 3, or there could be
an “infinite series” (6). One article chose 100 poly-
genes, for the sake of discussion, when conjecturing
about genes that influence “fecundity in a sexually
reproducing organism” (7).

Polygenes were “invisible” entities (8) for nearly a
century. They were grasped only through complex
statistical analyses—“too small in their individual ef-
fects to be separated and counted” (9). Then the
genome-wide association study (GWAS) era made
polygenes real—countable and identifiable—with
measurable effects (called beta values). The first CAD
GWAS was in 2007, involving 23,000 participants (10).
By 2017, large international consortia and biobanks
led to discovery of 95 CAD genes (or loci) (11). The
current number may be more than 150 (12). Some of
the genes play a role in lipid regulation, insulin
resistance, clotting, inflammation, or vascular tone,
but the mechanisms of action for most CAD polygenes
are unknown (13).
POLYGENIC SCORES

Polygenic scores (also called polygenic risk scores or
genetic risk scores) are the summed effects of all the
risk variants for a trait in an individual. The current
method for combining risk variants into weighted
polygenic scores was proposed by Horne et al. (14).
Other approaches also appeared (15). Two well-known
examples of CAD polygenic scores are the 27-SNP
score of Mega et al. (16) and the 50-SNP score of
Khera et al. (17). Mega et al. showed that individuals
with the highest scores had the greatest benefit from
statins. Khera et al. found that favorable lifestyles
could lower coronary event rates by 50% (compared
with rates for unfavorable lifestyles) among people at
high polygenic risk.

Reviews on the utility of polygenic scores for CAD
have been enthusiastic. For example, in a JACC
editorial, Natarajan (18) called polygenic scores for
CAD, “The First Risk Factor,” and said the following:
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Our current [clinical] framework insufficiently
identifies those likely to sustain premature CHD.
Inouye et al. show that incorporation of CHD
polygenic risk with clinical risk factors can improve
risk prediction and may help identify individuals
who are candidates for earlier preventive thera-
pies. Additionally, this single genetic test
(currently <$100) needs to be performed only once,
and this framework can be applied to calculate
polygenic risk for virtually any trait.

Perhaps realizing that answers to yes or no questions
in titles are almost always no, Levin and Rader (19) wrote
a somewhat tempered editorial for Circulation entitled,
“Polygenic Risk Scores and Coronary Artery Disease:
Ready for Prime Time?” The answer follows:

The current studies provide clear evidence for the
value of CAD PRS in predicting recurrent cardio-
vascular events in patients with pre-existing CAD,
even after accounting for traditional risk factors,
and suggest that high CAD PRS patients may be
most likely to benefit from PCSK9 inhibition. As
such, they add to a growing body of evidence
suggesting clinically impactful roles for genetic
risk stratification in CAD. Ongoing study of the
clinical utility and implementation of CAD PRS is
warranted.

Around the same time, back-to-back reports in the
Journal of the American Medical Association examined
the ability of polygenic scores to predict future CAD
events. Khan et al. (20) wrote an editorial entitled,
“Do Polygenic Risk Scores Improve Patient Selection
for Prevention of Coronary Artery Disease?” They
concluded the following:

The available data do not support the clinical
utility of CAD polygenic risk scores (in their current
form) in middle-aged adults of European descent.
In the meanwhile, the best approach for prevention
of CAD continues to be a combination of
population-wide risk factor approaches for the
entire population and addition of drug therapies
and lifestyle interventions according to guidelines
developed by the American Heart Association and
American College of Cardiology.

A limitation of polygenic scores as individual dis-
ease predictors was shown by Dr. Nicholas Wald
(Figure 1). Dr. Wald argues that the odds ratios for
CAD in relation to polygenic scores are robust but not
high enough for the scores to be useful for general
predictive screening. For example, the odds ratio is
1.9-fold for the top 20% of the polygenic scores
(compared with the remaining 80%) (1). According to
Wald and Old (21), “Estimates of the relative risk
[odds ratios] between a disease marker and a disease
have to be extremely high for the risk factor to merit
consideration as a worthwhile screening test.” But,
conceivably, this limitation for the entire population
should not preclude use of polygenic scores from all
patient care situations involving CAD.

CONCLUSIONS

Although we acknowledge all of the comments stated
here, we believe that the cumulative data favor the
view that polygenic scoring is a low-cost test that can
be done once in a lifetime at any age and for a
growing list of important conditions. This study ex-
tends the evidence that polygenic scores do appear to
provide an added axis of risk for prevention of CAD,
beyond standard clinical risk factors. The current
guidelines may well not capture all individuals who
could benefit from statins. There may be other spe-
cific CAD situations in which the scores are helpful—
possibly among younger people. Further study will
tell how best to use these new risk factors in man-
agement decisions for individual patients and will
show the extent to which the scores help prevent
illness and save lives.
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